1
|
Lim YH, Wong EC, Chong WC, Mohammad AW, Koo CH, Lau WJ. Introducing self-healing properties to polyethersulfone (PES) membrane via poly(vinyl alcohol)/ polyacrylic acid (PVA/PAA) surface coating. CHEMOSPHERE 2024; 349:140772. [PMID: 38006919 DOI: 10.1016/j.chemosphere.2023.140772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
During membrane filtration, it is inevitable that a membrane will experience physical damage, leading to a loss of its integrity and a decrease in separation efficiency. Hence, the development of a water-responsive membrane capable of healing itself autonomously after physical damage is significantly important in the field of water filtration. Herein, a water-enabled self-healing composite polyethersulfone (PES) membrane was synthesized by coating the membrane surface using a mixed solution composed of poly (vinyl alcohol) and polyacrylic acid (PVA-PAA). The self-healing efficiency of the coated PES membrane was examined based on the changes in water flux at three stages which are pre-damaged, post-damaged, and post-healing. The self-healing process was initiated by the swelling of the water-responsive PVA and PAA, followed by the formation of reversible hydrogen bonds, completing the self-healing process. The coated PES membrane with three layers of PVA-PAA coatings (at 3:1 ratio) demonstrated high water flux and remarkable self-healing efficiency of up to 98.3%. The self-healing capability was evidenced by the morphology of the membrane observed via scanning electron microscope (SEM). The findings of this investigation present a novel architecture approach for fabricating self-healing membranes using PVA-PAA, in addition to other relevant parameters as reported.
Collapse
Affiliation(s)
- Yi Heng Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Eng Cheong Wong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia; Centre for Advanced and Sustainable Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia.
| | - Abdul Wahab Mohammad
- Chemical and Water Desalination Program, College of Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates; Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600. Bangi, Selangor, Malaysia
| | - Chai Hoon Koo
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
2
|
Kavishvar D, Ramachandran A. The yielding behaviour of human mucus. Adv Colloid Interface Sci 2023; 322:103049. [PMID: 38039907 DOI: 10.1016/j.cis.2023.103049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Mucus is a viscoelastic material with non-linear rheological properties such as a yield stress of the order of a few hundreds of millipascals to a few tens of pascals, due to a complex network of mucins in water along with non-mucin proteins, DNA and cell debris. In this review, we discuss the origin of the yield stress in human mucus, the changes in the rheology of mucus with the occurrence of diseases, and possible clinical applications in disease detection as well as cure. We delve into the domain of mucus rheology, examining both macro- and microrheology. Macrorheology involves investigations conducted at larger length scales (∼ a few hundreds of μm or higher) using traditional rheometers, which probe properties on a bulk scale. It is significant in elucidating various mucosal functions within the human body. This includes rejecting unwanted irritants out of lungs through mucociliary and cough clearance, protecting the stomach wall from the acidic environment as well as biological entities, safeguarding cervical canal from infections and providing a swimming medium for sperms. Additionally, we explore microrheology, which encompasses studies performed at length scales ranging from a few tens of nm to a μm. These microscale studies find various applications, including the context of drug delivery. Finally, we employ scaling analysis to elucidate a few examples in lung, cervical, and gastric mucus, including settling of irritants in lung mucus, yielding of lung mucus in cough clearance and cilial beating, spreading of exogenous surfactants over yielding mucus, swimming of Helicobacter pylori through gastric mucus, and lining of protective mucus in the stomach. The scaling analyses employed on the applications mentioned above provide us with a deeper understanding of the link between the rheology and the physiology of mucus.
Collapse
Affiliation(s)
- Durgesh Kavishvar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | - Arun Ramachandran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Grotberg JB, Romanò F. Computational pulmonary edema: A microvascular model of alveolar capillary and interstitial flow. APL Bioeng 2023; 7:036101. [PMID: 37426383 PMCID: PMC10325818 DOI: 10.1063/5.0158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
We present a microvascular model of fluid transport in the alveolar septa related to pulmonary edema. It consists of a two-dimensional capillary sheet coursing by several alveoli. The alveolar epithelial membrane runs parallel to the capillary endothelial membrane with an interstitial layer in between, making one long septal tract. A coupled system of equations uses lubrication theory for the capillary blood, Darcy flow for the porous media of the interstitium, a passive alveolus, and the Starling equation at both membranes. Case examples include normal physiology, cardiogenic pulmonary edema, acute respiratory distress syndrome (ARDS), hypoalbuminemia, and effects of PEEP. COVID-19 has dramatically increased ARDS in the world population, raising the urgency for such a model to create an analytical framework. Under normal conditions fluid exits the alveolus, crosses the interstitium, and enters the capillary. For edema, this crossflow is reversed with fluid leaving the capillary and entering the alveolus. Because both the interstitial and capillary pressures decrease downstream, the reversal can occur within a single septal tract, with edema upstream and clearance downstream. Clinically useful solution forms are provided allowing calculation of interstitial fluid pressure, crossflows, and critical capillary pressures. Overall, the interstitial pressures are found to be significantly more positive than values used in the traditional physiological literature. That creates steep gradients near the upstream and downstream end outlets, driving significant flows toward the distant lymphatics. This new physiological flow provides an explanation to the puzzle, noted since 1896, of how pulmonary lymphatics can function so far from the alveoli: the interstitium is self-clearing.
Collapse
Affiliation(s)
- James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Francesco Romanò
- Université Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014 LMFL-Laboratoire de Mécanique des Fluides de Lille-Kampé de Fériet, F-59000 Lille, France
| |
Collapse
|
4
|
Grotberg JB, Romanò F. Computational pulmonary edema: A microvascular model of alveolar capillary and interstitial flow. APL Bioeng 2022; 6:046104. [PMID: 36389648 PMCID: PMC9653270 DOI: 10.1063/5.0109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
We present a microvascular model of fluid transport in the alveolar septa related to pulmonary edema. It consists of a two-dimensional capillary sheet coursing by several alveoli. The alveolar epithelial membrane runs parallel to the capillary endothelial membrane with an interstitial layer in between, making one long septal tract. A coupled system of equations is derived using lubrication theory for the capillary blood, Darcy flow for the porous media of the interstitium, a passive alveolus, and the Starling equation at both membranes. Case examples include normal physiology, cardiogenic pulmonary edema, noncardiogenic edema Acute Respiratory Distress Syndrome (ARDS) and hypoalbuminemia, and the effects of positive end expiratory pressure. COVID-19 has dramatically increased ARDS in the world population, raising the urgency for such a model to create an analytical framework. Under normal conditions, the fluid exits the alveolus, crosses the interstitium, and enters the capillary. For edema, this crossflow is reversed with the fluid leaving the capillary and entering the alveolus. Because both the interstitial and capillary pressures decrease downstream, the reversal can occur within a single septal tract, with edema upstream and clearance downstream. Overall, the interstitial pressures are found to be significantly more positive than values used in the traditional physiological literature that creates steep gradients near the upstream and downstream end outlets, driving significant flows toward the distant lymphatics. This new physiological flow may provide a possible explanation to the puzzle, noted since 1896, of how pulmonary lymphatics can function so far from the alveoli: the interstitium can be self-clearing.
Collapse
Affiliation(s)
- James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, 1107 Gerstacker Bldg., 2200 Bonisteel Blvd., Ann Arbor, Michigan 48109-2099, USA
- Author to whom correspondence should be addressed: . Tel.: (734)-936-3834. Fax: (734)-936-1905
| | - Francesco Romanò
- Univ. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014, LMFL-Laboratoire de Mécanique des Fluides de Lille-Kampé de Fériet, F-59000 Lille, France
| |
Collapse
|
5
|
Romanò F, Muradoglu M, Fujioka H, Grotberg JB. The effect of viscoelasticity in an airway closure model. JOURNAL OF FLUID MECHANICS 2021; 913:A31. [PMID: 33776140 PMCID: PMC7996000 DOI: 10.1017/jfm.2020.1162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The closure of a human lung airway is modeled as a pipe coated internally with a liquid that takes into account the viscoelastic properties of mucus. For a thick enough coating, the Plateau-Rayleigh instability blocks the airway by the creation of a liquid plug, and the pre-closure phase is dominated by the Newtonian behavior of the liquid. Our previous study with a Newtonian-liquid model demonstrated that the bifrontal plug growth consequent to airway closure induces a high level of stress and stress gradients on the airway wall, which is large enough to damage the epithelial cells, causing sub-lethal or lethal responses. In this study, we explore the effect of the viscoelastic properties of mucus by means of the Oldroyd-B and FENE-CR model. Viscoelasticity is shown to be very relevant in the post-coalescence process, introducing a second peak of the wall shear stresses. This second peak is related to an elastic instability due to the presence of the polymeric extra stresses. For high-enough Weissenberg and Laplace numbers, this second shear stress peak is as severe as the first one. Consequently, a second lethal or sub-lethal response of the epithelial cells is induced.
Collapse
Affiliation(s)
- F. Romanò
- Univ. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014 - LMFL - Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, F-59000, Lille, France
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - M. Muradoglu
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - H. Fujioka
- Center for Computational Science, Tulane University, New Orleans, LA, 70118, USA
| | - J. B. Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Akram S, Saleem N, Umair MY, Munawar S. Impact of partial slip and lateral walls on peristaltic transport of a couple stress fluid in a rectangular duct. Sci Prog 2021; 104:368504211013632. [PMID: 33950751 PMCID: PMC10305832 DOI: 10.1177/00368504211013632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The impact of lateral walls and partial slip with different waveforms on peristaltic pumping of couple stress fluid in a rectangular duct with different waveforms has been discussed in the current article. By means of a wave frame of reference the flow is explored travelling away from a fixed frame with velocity c. Peristaltic waves generated on horizontal surface walls of rectangular duct are considered using lubrication technique. Mathematical modelling of couple fluid for three-dimensional flow are first discussed in detail. Lubrication approaches are used to simplify the proposed problem. Exact solutions of pressure gradient, pressure rise, velocity and stream function have been calculated. Numerical and graphical descriptions are displayed to look at the behaviour of diverse emerging parameters.
Collapse
Affiliation(s)
- Safia Akram
- MCS, National University of Sciences
and Technology, Islamabad, Pakistan
| | - Najma Saleem
- College of Sciences & Human
Studies, Prince Mohammad Bin Fahd University, Alkhobar, Saudi Arabia
| | - Mir Yasir Umair
- MCS, National University of Sciences
and Technology, Islamabad, Pakistan
| | - Sufian Munawar
- Department of Quantitative Methods,
College of Business Administration, Imam Abdulrahman Bin Faisal University, Dammam,
Saudi Arabia
| |
Collapse
|
7
|
Turkyilmazoglu M. Magnetohydrodynamic Moving Liquid Plug Within a Microchannel: Analytical Solutions. J Biomech Eng 2021; 143:011012. [PMID: 33030204 DOI: 10.1115/1.4048713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Indexed: 11/08/2022]
Abstract
The wide applications of plug flows in microscale in science and engineering help them attract a great deal recent interest. An analytical study is undertaken here to study the impacts of a transversely applied external uniform magnetic field affecting the motion of liquid in the plug in terms of hydrodynamic mixing properties. The well-known symmetric vortex structure occurring in a long plug with moderate aspect ratio is observed to be preserved, while the recirculation phenomenon is highly affected by the action of the magnetic field. The decelerating feature of Lorentz force on the liquid motion is illuminated by reducing the strength of the recirculating vortex moving towards the upper and lower walls. The effects of magnetic field on the flow resistance of the liquid plug as well as on the plug circulation rate and on the axial flux are also clarified. The liquid plug considered here is shown to be fully consistent with the continuous liquid flow in a channel whose exact solution is further extracted.
Collapse
Affiliation(s)
- Mustafa Turkyilmazoglu
- Department of Mathematics, Hacettepe University, Beytepe, Ankara 06532, Turkey; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
8
|
Wu Y, Li Z, Ji Y, Lu R. Experimental study of rheological properties of solid propellant slurry at low‐shear rate and numerical simulation. J Appl Polym Sci 2020. [DOI: 10.1002/app.49287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yue Wu
- College of Chemical EngineeringInner Mongolia University of Technology Hohhot China
| | - Zhuo Li
- College of ScienceInner Mongolia University of Technology Hohhot China
| | - Yong‐chao Ji
- College of ScienceInner Mongolia University of Technology Hohhot China
| | - Rong Lu
- China Aerospace Science & Industry Corporation Hohhot China
| |
Collapse
|
9
|
Munir B, Xu Y. Effects of gravity and surface tension on steady microbubble propagation in asymmetric bifurcating airways. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2020; 32:072105. [PMID: 35002196 PMCID: PMC8722330 DOI: 10.1063/5.0012796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/03/2020] [Indexed: 05/21/2023]
Abstract
Mechanical ventilation is nowadays a well-developed, safe, and necessary strategy for acute respiratory distress syndrome patients to survive. However, the propagation of microbubbles in airway bifurcations during mechanical ventilation makes the existing lung injury more severe. In this paper, finite element and direct interface tracking techniques were utilized to simulate steady microbubble propagation in a two-dimensional asymmetric bifurcating airway filled with a viscous fluid. Inertial effects were neglected, and the numerical solution of Stokes's equations was used to investigate how gravity and surface tension defined by a Bond (Bo) number and capillary (Ca) number influence the magnitudes of pressure gradients, shear stresses, and shear stress gradients on the bifurcating daughter airway wall. It is found that increasing Bo significantly influenced both the bubble shape and hydrodynamic stresses, where Bo ≥ 0.25 results in a significant increase in bubble elevation and pressure gradient in the upper daughter wall. Although for both Bo and Ca, the magnitude of the pressure gradient is always much larger in the upper daughter airway wall, Ca has a great role in amplifying the magnitude of the pressure gradient. In conclusion, both gravity and surface tension play a key role in the steady microbubble propagation and hydrodynamic stresses in the bifurcating airways.
Collapse
Affiliation(s)
- Bacha Munir
- Author to whom correspondence should be addressed:
| | | |
Collapse
|