1
|
Woessner AE, Witt NJ, Jones JD, Sander EA, Quinn KP. Quantification of age-related changes in the structure and mechanical function of skin with multiscale imaging. GeroScience 2024; 46:4869-4882. [PMID: 38761286 PMCID: PMC11336155 DOI: 10.1007/s11357-024-01199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
The mechanical properties of skin change during aging but the relationships between structure and mechanical function remain poorly understood. Previous work has shown that young skin exhibits a substantial decrease in tissue volume, a large macro-scale Poisson's ratio, and an increase in micro-scale collagen fiber alignment during mechanical stretch. In this study, label-free multiphoton microscopy was used to quantify how the microstructure and fiber kinematics of aged mouse skin affect its mechanical function. In an unloaded state, aged skin was found to have less collagen alignment and more non-enzymatic collagen fiber crosslinks. Skin samples were then loaded in uniaxial tension and aged skin exhibited a lower mechanical stiffness compared to young skin. Aged tissue also demonstrated less volume reduction and a lower macro-scale Poisson's ratio at 10% uniaxial strain, but not at 20% strain. The magnitude of 3D fiber realignment in the direction of loading was not different between age groups, and the amount of realignment in young and aged skin was less than expected based on theoretical fiber kinematics affine to the local deformation. These findings provide key insights on how the collagen fiber microstructure changes with age, and how those changes affect the mechanical function of skin, findings which may help guide wound healing or anti-aging treatments.
Collapse
Affiliation(s)
- Alan E Woessner
- Department of Biomedical Engineering, University of Arkansas, 123 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
- Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, AR, USA
| | - Nathan J Witt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Jake D Jones
- Department of Biomedical Engineering, University of Arkansas, 123 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Edward A Sander
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, 123 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA.
- Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
2
|
Ethier CR, Nguyen TD. Announcing the 2022 Richard Skalak Award Editors' Choice Papers. J Biomech Eng 2024; 146:090201. [PMID: 38470399 DOI: 10.1115/1.4065051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Affiliation(s)
- C Ross Ethier
- Department of Biomedical Engineering and Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; Departments of Ophthalmology, Emory University, Atlanta, GA 30332
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218; Department of Ophthalmology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21287
| |
Collapse
|
3
|
Witt NJ, Woessner AE, Herrmann J, Quinn KP, Sander EA. Mechanical Models of Collagen Networks for Understanding Changes in the Failure Properties of Aging Skin. J Biomech Eng 2024; 146:071002. [PMID: 38183223 PMCID: PMC10983714 DOI: 10.1115/1.4064406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Skin undergoes mechanical alterations due to changes in the composition and structure of the collagenous dermis with aging. Previous studies have conflicting findings, with both increased and decreased stiffness reported for aging skin. The underlying structure-function relationships that drive age-related changes are complex and difficult to study individually. One potential contributor to these variations is the accumulation of nonenzymatic crosslinks within collagen fibers, which affect dermal collagen remodeling and mechanical properties. Specifically, these crosslinks make individual fibers stiffer in their plastic loading region and lead to increased fragmentation of the collagenous network. To better understand the influence of these changes, we investigated the impact of nonenzymatic crosslink changes on the dermal microstructure using discrete fiber networks representative of the dermal microstructure. Our findings suggest that stiffening the plastic region of collagen's mechanical response has minimal effects on network-level stiffness and failure stresses. Conversely, simulating fragmentation through a loss of connectivity substantially reduces network stiffness and failure stress, while increasing stretch ratios at failure.
Collapse
Affiliation(s)
- Nathan J. Witt
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52240
| | - Alan E. Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242
| | - Kyle P. Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Edward A. Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA 52242; Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
4
|
Barsimantov Mandel J, Solorio L, Tepole AB. Geometry of adipocyte packing in subcutaneous tissue contributes to nonlinear tissue properties captured through a Gaussian process surrogate model. SOFT MATTER 2024; 20:4197-4207. [PMID: 38477130 DOI: 10.1039/d3sm01661g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Subcutaneous tissue mechanical response is governed by the geometry and mechanical properties at the microscale and drives physiological and clinical processes such as drug delivery. Even though adipocyte packing is known to change with age, disease, and from one individual to another, the link between the geometry of the packing and the overall mechanical response of adipose tissue remains poorly understood. Here we create 1200 periodic representative volume elements (RVEs) that sample the possible space of Laguerre packings describing adipose tissue. RVE mechanics are modeled under tri-axial loading. Equilibrium configuration of RVEs is solved by minimizing an energetic potential that includes volume change contributions from adipocyte expansion, and area change contributions from collagen foam stretching. The resulting mechanical response across all RVE samples is interpolated with the aid of a Gaussian process (GP), revealing how the microscale geometry dictates the overall RVE mechanics. For example, increase in adipocyte size and increase in sphericity lead to adipose tissue softening. We showcase the use of the homogenized model in finite element simulations of drug injection by implementing a Blatz-Ko model, informed by the GP, as a custom material in the popular open-source package FEBio. These simulations show how microscale geometry can lead to vastly different injection dynamics even if the constituent parameters are held constant, highlighting the importance of characterizing individual's adipose tissue structure in the development of personalized therapies.
Collapse
Affiliation(s)
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, 205 Gates Rd, West Lafayette, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| |
Collapse
|
5
|
Peirce-Cottler SM, Sander EA, Fisher MB, Deymier AC, LaDisa JF, O'Connell G, Corr DT, Han B, Singh A, Wilson SE, Lai VK, Clyne AM. A Systems Approach to Biomechanics, Mechanobiology, and Biotransport. J Biomech Eng 2024; 146:040801. [PMID: 38270930 DOI: 10.1115/1.4064547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
The human body represents a collection of interacting systems that range in scale from nanometers to meters. Investigations from a systems perspective focus on how the parts work together to enact changes across spatial scales, and further our understanding of how systems function and fail. Here, we highlight systems approaches presented at the 2022 Summer Biomechanics, Bio-engineering, and Biotransport Conference in the areas of solid mechanics; fluid mechanics; tissue and cellular engineering; biotransport; and design, dynamics, and rehabilitation; and biomechanics education. Systems approaches are yielding new insights into human biology by leveraging state-of-the-art tools, which could ultimately lead to more informed design of therapies and medical devices for preventing and treating disease as well as rehabilitating patients using strategies that are uniquely optimized for each patient. Educational approaches can also be designed to foster a foundation of systems-level thinking.
Collapse
Affiliation(s)
| | - Edward A Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, 5629 Seamans Center, University of Iowa, Iowa City, IA 52242; Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695; Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514
| | - Alix C Deymier
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032
| | - John F LaDisa
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Wauwatosa, WI 53226; Department of Pediatrics, Division of Cardiology Herma Heart Institute, Children's Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226
| | - Grace O'Connell
- Department of Mechanical Engineering, University of California-Berkeley, 6141 Etcheverry Hall, Berkeley, CA 94720
| | - David T Corr
- Department of Biomedical Engineering, Center for Modeling, Simulation, & Imaging in Medicine, Rensselaer Polytechnic Institute, 7042 Jonsson Engineering Center 110 8th Street, Troy, NY 12180
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907; Center for Cancer Research, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907
- Purdue University West Lafayette
| | - Anita Singh
- Bioengineering Department, Temple University, Philadelphia, PA 19122
| | - Sara E Wilson
- Department of Mechanical Engineering, University of Kansas, 1530 W 15th Street, Lawrence, KS 66045
| | - Victor K Lai
- Department of Chemical Engineering, University of Minnesota Duluth, Duluth, MN 55812
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| |
Collapse
|
6
|
Loffet EA, Durel JF, Gao J, Kam R, Lim H, Nerurkar NL. Elastic fibers define embryonic tissue stiffness to enable buckling morphogenesis of the small intestine. Biomaterials 2023; 303:122405. [PMID: 38000151 PMCID: PMC10842730 DOI: 10.1016/j.biomaterials.2023.122405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
During embryonic development, tissues must possess precise material properties to ensure that cell-generated forces give rise to the stereotyped morphologies of developing organs. However, the question of how material properties are established and regulated during development remains understudied. Here, we aim to address these broader questions through the study of intestinal looping, a process by which the initially straight intestinal tube buckles into loops, permitting ordered packing within the body cavity. Looping results from elongation of the tube against the constraint of an attached tissue, the dorsal mesentery, which is elastically stretched by the elongating tube to nearly triple its length. This elastic energy storage allows the mesentery to provide stable compressive forces that ultimately buckle the tube into loops. Beginning with a transcriptomic analysis of the mesentery, we identified widespread upregulation of extracellular matrix related genes during looping, including genes related to elastic fiber deposition. Combining molecular and mechanical analyses, we conclude that elastin confers tensile stiffness to the mesentery, enabling its mechanical role in organizing the developing small intestine. These results shed light on the role of elastin as a driver of morphogenesis that extends beyond its more established role in resisting cyclic deformation in adult tissues.
Collapse
Affiliation(s)
- Elise A Loffet
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jenny Gao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Richard Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Hyunjee Lim
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
7
|
Mahutga RR, Barocas VH, Alford PW. The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis. J Mech Behav Biomed Mater 2023; 144:105967. [PMID: 37329673 PMCID: PMC10330778 DOI: 10.1016/j.jmbbm.2023.105967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Multiscale mechanical models in biomaterials research have largely relied on simplifying the microstructure in order to make large-scale simulations tractable. The microscale simplifications often rely on approximations of the constituent distributions and assumptions on the deformation of the constituents. Of particular interest in biomechanics are fiber embedded materials, where simplified fiber distributions and assumed affinity in the fiber deformation greatly influence the mechanical behavior. The consequences of these assumptions are problematic when dealing with microscale mechanical phenomena such as cellular mechanotransduction in growth and remodeling, and fiber-level failure events during tissue failure. In this work, we propose a technique for coupling non-affine network models to finite element solvers, allowing for simulation of discrete microstructural phenomena within macroscopically complex geometries. The developed plugin is readily available as an open-source library for use with the bio-focused finite element software FEBio, and the description of the implementation allows for the adaptation to other finite element solvers.
Collapse
Affiliation(s)
- Ryan R Mahutga
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| |
Collapse
|