1
|
Kandil K, Zaïri F, Zaïri F. Comprehensive analysis of damage evolution in human annulus fibrosus: Numerical exploration of mechanical sensitivity to biological age-dependent alteration. Comput Biol Med 2024; 182:109108. [PMID: 39276612 DOI: 10.1016/j.compbiomed.2024.109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND OBJECTIVE The annulus fibrosus is an essential part of the intervertebral disc, critical for its structural integrity. Mechanical deterioration in this component can lead to complete disc failure, particularly through tears development, with radial tears being the most common. These tears are often the result of both mechanical and biological factors. This study aims to numerically investigate the mechanisms of radial failure in the annulus tissue, taking into account the mechanical and age-dependent biological damage origins. A newly developed microstructure-based model was upgraded to predict damage evolution in the different annulus regions. METHODS The study employs a computational model to predict mechanical failures in various annulus regions, using experimental data for comparison. The model incorporates age-dependent microstructural changes to evaluate the effects of biological aging on the mechanical behavior. It specifically includes a detailed analysis of the temporal changes in circumferential rigidity and failure strain of the annulus. RESULTS The model demonstrated a strong ability to replicate the experimental responses of the different annulus regions to failure. It revealed that age-related microstructural changes significantly impact the rigidity and failure response of the annulus, particularly in the posterior regions and as well the anterior inner side. These changes increase susceptibility to rupture with aging. A correlation was also observed between the composition of collagen fibers, water content, and the annulus transversal response in both radial and axial directions. CONCLUSION The findings challenge previous assumptions, showing that age-dependent microstructural changes have a notable effect on the annulus mechanical properties. The computational model closely aligns with experimental observations, underscoring the determinant role of oriented collagen fibers in radial failure. This study enhances the understanding of annulus failure and provides a foundation for further research on the impact of aging on disc mechanical integrity and failure.
Collapse
Affiliation(s)
- Karim Kandil
- Icam School of Engineering, Lille campus, 6 rue Auber, B.P. 10079, 59016, Lille, France; Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Fahmi Zaïri
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France.
| | - Fahed Zaïri
- Ramsay Générale de Santé, Hôpital Privé Le Bois, 59000, Lille, France
| |
Collapse
|
2
|
Tamoud A, Zaïri F, Zaïri F. A data-driven microstructure-based model for predicting circumferential behavior and failure in degenerated human annulus fibrosus. Acta Biomater 2024:S1742-7061(24)00620-2. [PMID: 39427767 DOI: 10.1016/j.actbio.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The degeneration of the intervertebral disc annulus fibrosus poses significant challenges in understanding and predicting its mechanical behavior. In this article, we present a novel approach, enriched with detailed insights into microstructure and degeneration progression, to accurately predict the mechanics of the degenerated human annulus. Central to this framework is a fully three-dimensional continuum-based model that integrates hydration state and multiscale structural features, including proteoglycan macromolecules and interpenetrating collagen fibrillar networks across various hierarchical levels within the multi-layered lamellar/inter-lamellar soft tissue, capable of sustaining deformation-induced damage. To ensure accurate and comprehensive predictions of the degenerated annulus mechanical behavior, we establish a data-driven correlation between disc degeneration grade and individual age, which influences the composition and mechanical integrity of annulus constituents while accounting for regional variations. The methodology includes a thorough identification of age- and grade-related evolutions of model inputs, followed by a detailed quantitative evaluation of the model predictive capabilities, with a focus on circumferential behavior and failure. The model successfully replicates experimental data, accurately capturing stiffness, transverse response (Poisson's ratio), and ultimate properties across different annulus regions, while also accommodating the modulation of the age/grade relationship. The reduction rates between normal and severe degeneration align reasonably well with experimental data, with the inner region exhibiting the largest decrease in stiffness (34.63 %) and no significant change observed in the outer region. Failure stress drops considerably in both regions (49.86 % in the inner and 45.33 % in the outer), while failure strain decreases by 36.39 % in the outer and 24.74 % in the inner. Our findings demonstrate that the proposed framework significantly enhances the predictive accuracy of annulus mechanics across a spectrum of degeneration levels, from normal to severely degenerated states. This approach promises improved predictive accuracy, deeper insights into disc health and injury risk, and a robust foundation for further research on the impact of degeneration on disc integrity. STATEMENT OF SIGNIFICANCE: Understanding and predicting the mechanical behavior of degenerated human annulus fibrosus remains a significant challenge due to the complex interplay of structural, biochemical, and age-related factors. This study presents a microstructure-based approach to address this challenge by integrating hydration state, detailed structural features across hierarchical scales, and deformation-induced damage and failure, alongside age-related changes and degeneration grade factors. This approach enables accurate simulations of annulus mechanics across regions, with model results thoroughly compared to available data, reinforcing its applicability in capturing degeneration effects. By capturing the intricate interactions between microstructure and mechanical behavior in degenerated discs, the model lays a strong foundation for improving clinical assessments and guiding future treatment strategies for disc-related conditions.
Collapse
Affiliation(s)
| | - Fahmi Zaïri
- Univ. Lille, IMT Nord Europe, JUNIA, Univ. Artois, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Fahed Zaïri
- Ramsay Générale de Santé, Hôpital privé Le Bois, 59000 Lille, France
| |
Collapse
|
3
|
McKinley JP, O'Connell GD. Review of state-of-the-art micro and macro-bioreactors for the intervertebral disc. J Biomech 2024; 165:111964. [PMID: 38412621 DOI: 10.1016/j.jbiomech.2024.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Lower back pain continues to be a global epidemic, limiting quality of life and ability to work, due in large part to symptomatic disc degeneration. Development of more effective and less invasive biological strategies are needed to treat disc degeneration. In vitro models such as macro- or micro-bioreactors or mechanically active organ-chips hold great promise in reducing the need for animal studies that may have limited clinical translatability, due to harsher and more complex mechanical loading environments in human discs than in most animal models. This review highlights the complex loading conditions of the disc in situ, evaluates state-of-the-art designs for applying such complex loads across multiple length scales, from macro-bioreactors that load whole discs to organ-chips that aim to replicate cellular or engineered tissue loading. Emphasis was placed on the rapidly evolving more customizable organ-chips, given their greater potential for studying the progression and treatment of symptomatic disc degeneration. Lastly, this review identifies new trends and challenges for using organ-chips to assess therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan P McKinley
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| | - Grace D O'Connell
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| |
Collapse
|
4
|
Zhou M, Theologis AA, O’Connell GD. Understanding the etiopathogenesis of lumbar intervertebral disc herniation: From clinical evidence to basic scientific research. JOR Spine 2024; 7:e1289. [PMID: 38222810 PMCID: PMC10782075 DOI: 10.1002/jsp2.1289] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 01/16/2024] Open
Abstract
Lumbar intervertebral disc herniation, as a leading cause of low back pain, productivity loss, and disability, is a common musculoskeletal disorder that results in significant socioeconomic burdens. Despite extensive clinical and basic scientific research efforts, herniation etiopathogenesis, particularly its initiation and progression, is not well understood. Understanding herniation etiopathogenesis is essential for developing effective preventive measures and therapeutic interventions. Thus, this review seeks to provide a thorough overview of the advances in herniation-oriented research, with a discussion on ongoing challenges and potential future directions for clinical, translational, and basic scientific investigations to facilitate innovative interdisciplinary research aimed at understanding herniation etiopathogenesis. Specifically, risk factors for herniation are identified and summarized, including familial predisposition, obesity, diabetes mellitus, smoking tobacco, selected cardiovascular diseases, disc degeneration, and occupational risks. Basic scientific experimental and computational research that aims to understand the link between excessive mechanical load, catabolic tissue remodeling due to inflammation or insufficient nutrient supply, and herniation, are also reviewed. Potential future directions to address the current challenges in herniation-oriented research are explored by combining known progressive development in existing research techniques with ongoing technological advances. More research on the relationship between occupational risk factors and herniation, as well as the relationship between degeneration and herniation, is needed to develop preventive measures for working-age individuals. Notably, researchers should explore using or modifying existing degeneration animal models to study herniation etiopathogenesis, as such models may allow for a better understanding of how to prevent mild-to-moderately degenerated discs from herniating.
Collapse
Affiliation(s)
- Minhao Zhou
- Department of Mechanical EngineeringUniversity of California, Berkeley (UC Berkeley)BerkeleyCaliforniaUSA
| | - Alekos A. Theologis
- Department of Orthopaedic SurgeryUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | - Grace D. O’Connell
- Department of Mechanical EngineeringUniversity of California, Berkeley (UC Berkeley)BerkeleyCaliforniaUSA
- Department of Orthopaedic SurgeryUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Zhou M, Archibeck ES, Feteih Y, Abubakr Y, O'Connell GD. Non-enzymatic glycation increases the failure risk of annulus fibrosus by predisposing the extrafibrillar matrix to greater stresses. Acta Biomater 2023; 168:223-234. [PMID: 37433360 DOI: 10.1016/j.actbio.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Growing clinical evidence suggests a correlation between diabetes and more frequent and severe intervertebral disc failure, partially attributed to accelerated advanced glycation end-products (AGE) accumulation in the annulus fibrosus (AF) through non-enzymatic glycation. However, in vitro glycation (i.e., crosslinking) reportedly improved AF uniaxial tensile mechanical properties, contradicting clinical observations. Thus, this study used a combined experimental-computational approach to evaluate the effect of AGEs on anisotropic AF tensile mechanics, applying finite element models (FEMs) to complement experimental testing and examine difficult-to-measure subtissue-level mechanics. Methylglyoxal-based treatments were applied to induce three physiologically relevant AGE levels in vitro. Models incorporated crosslinks by adapting our previously validated structure-based FEM framework. Experimental results showed that a threefold increase in AGE content resulted in a ∼55% increase in AF circumferential-radial tensile modulus and failure stress and a 40% increase in radial failure stress. Failure strain was unaffected by non-enzymatic glycation. Adapted FEMs accurately predicted experimental AF mechanics with glycation. Model predictions showed that glycation increased stresses in the extrafibrillar matrix under physiologic deformations, which may increase tissue mechanical failure or trigger catabolic remodeling, providing insight into the relationship between AGE accumulation and increased tissue failure. Our findings also added to the existing literature regarding crosslinking structures, indicating that AGEs had a greater effect along the fiber direction, while interlamellar radial crosslinks were improbable in the AF. In summary, the combined approach presented a powerful tool for examining multiscale structure-function relationships with disease progression in fiber-reinforced soft tissues, which is essential for developing effective therapeutic measures. STATEMENT OF SIGNIFICANCE: Increasing clinical evidence correlates diabetes with premature intervertebral disc failure, likely due to advanced glycation end-products (AGE) accumulation in the annulus fibrosus (AF). However, in vitro glycation reportedly increases AF tensile stiffness and toughness, contradicting clinical observations. Using a combined experimental-computational approach, our work shows that increases in AF bulk tensile mechanical properties with glycation are achieved at the risk of exposing the extrafibrillar matrix to increased stresses under physiologic deformations, which may increase tissue mechanical failure or trigger catabolic remodeling. Computational results indicate that crosslinks along the fiber direction account for 90% of the increased tissue stiffness with glycation, adding to the existing literature. These findings provide insight into the multiscale structure-function relationship between AGE accumulation and tissue failure.
Collapse
Affiliation(s)
- Minhao Zhou
- Department of Mechanical Engineering, University of California, Berkeley, 2162 Etcheverry Hall, #1740, Berkeley, CA 94720-1740, USA
| | - Erin S Archibeck
- Department of Mechanical Engineering, University of California, Berkeley, 2162 Etcheverry Hall, #1740, Berkeley, CA 94720-1740, USA
| | - Yarah Feteih
- Department of Mechanical Engineering, University of California, Berkeley, 2162 Etcheverry Hall, #1740, Berkeley, CA 94720-1740, USA
| | - Yousuf Abubakr
- Department of Mechanical Engineering, University of California, Berkeley, 2162 Etcheverry Hall, #1740, Berkeley, CA 94720-1740, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, 5122 Etcheverry Hall, #1740, Berkeley, CA 94720-1740, USA; Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
6
|
Ristaniemi A, Šećerović A, Dischl V, Crivelli F, Heub S, Ledroit D, Weder G, Grad S, Ferguson SJ. Physiological and degenerative loading of bovine intervertebral disc in a bioreactor: A finite element study of complex motions. J Mech Behav Biomed Mater 2023; 143:105900. [PMID: 37201227 DOI: 10.1016/j.jmbbm.2023.105900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Intervertebral disc (IVD) degeneration and regenerative therapies are commonly studied in organ-culture experiments with uniaxial compressive loading. Recently, in our laboratory, we established a bioreactor system capable of applying loads in six degrees-of-freedom (DOF) to bovine IVDs, which replicates more closely the complex multi-axial loading of the IVD in vivo. However, the magnitudes of loading that are physiological (able to maintain cell viability) or mechanically degenerative are unknown for load cases combining several DOFs. This study aimed to establish physiological and degenerative levels of maximum principal strains and stresses in the bovine IVD tissue and to investigate how they are achieved under complex load cases related to common daily activities. The physiological and degenerative levels of maximum principal strains and stresses were determined via finite element (FE) analysis of bovine IVD subjected to experimentally established physiological and degenerative compressive loading protocols. Then, complex load cases, such as a combination of compression + flexion + torsion, were applied on the FE-model with increasing magnitudes of loading to discover when physiological and degenerative tissue strains and stresses were reached. When applying 0.1 MPa of compression and ±2-3° of flexion and ±1-2° of torsion the investigated mechanical parameters remained at physiological levels, but with ±6-8° of flexion in combination with ±2-4° of torsion, the stresses in the outer annulus fibrosus (OAF) exceeded degenerative levels. In the case of compression + flexion + torsion, the mechanical degeneration likely initiates at the OAF when loading magnitudes are high enough. The physiological and degenerative magnitudes can be used as guidelines for bioreactor experiments with bovine IVDs.
Collapse
Affiliation(s)
| | | | - Vincent Dischl
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Francesco Crivelli
- CSEM, Swiss Center for Electronics and Microtechnology, Alpnach, Switzerland
| | - Sarah Heub
- CSEM, Swiss Center for Electronics and Microtechnology, Neuchâtel, Switzerland
| | - Diane Ledroit
- CSEM, Swiss Center for Electronics and Microtechnology, Neuchâtel, Switzerland
| | - Gilles Weder
- CSEM, Swiss Center for Electronics and Microtechnology, Neuchâtel, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland; Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.
| | | |
Collapse
|
7
|
McKinley JP, Montes AR, Wang MN, Kamath AR, Jimenez G, Lim J, Marathe SA, Mofrad MRK, O’Connell GD. Design of a flexing organ-chip to model in situ loading of the intervertebral disc. BIOMICROFLUIDICS 2022; 16:054111. [PMID: 36330201 PMCID: PMC9625834 DOI: 10.1063/5.0103141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The leading cause of disability of all ages worldwide is severe lower back pain. To address this untreated epidemic, further investigation is needed into the leading cause of back pain, intervertebral disc degeneration. In particular, microphysiological systems modeling critical tissues in a degenerative disc, like the annulus fibrosus (AF), are needed to investigate the effects of complex multiaxial strains on AF cells. By replicating these mechanobiological effects unique to the AF that are not yet understood, we can advance therapies for early-stage degeneration at the cellular level. To this end, we designed, fabricated, and collected proof-of-concept data for a novel microphysiological device called the flexing annulus-on-a-chip (AoC). We used computational models and experimental measurements to characterize the device's ability to mimic complex physiologically relevant strains. As a result, these strains proved to be controllable, multi-directional, and uniformly distributed with magnitudes ranging from - 10 % to 12% in the axial, radial, and circumferential directions, which differ greatly from applied strains possible in uniaxial devices. Furthermore, after withstanding accelerated life testing (66 K cycles of 10% strain) and maintaining 2000 bovine AF cells without loading for more than three weeks the AoC proved capable of long-term cell culture. Additionally, after strain (3.5% strain for 75 cycles at 0.5 Hz) was applied to a monolayer of AF cells in the AoC, a population remained adhered to the channel with spread morphology. The AoC can also be tailored for other annular structures in the body such as cardiovascular vessels, lymphatic vessels, and the cervix.
Collapse
Affiliation(s)
- Jonathan P. McKinley
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Andre R. Montes
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Maple N. Wang
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Anuya R. Kamath
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Gissell Jimenez
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Jianhua Lim
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Siddharth A. Marathe
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Mohammad R. K. Mofrad
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Grace D. O’Connell
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|