1
|
Emerging Microfluidic and Biosensor Technologies for Improved Cancer Theranostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:461-495. [DOI: 10.1007/978-3-031-04039-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Nie J, Fu J, He Y. Hydrogels: The Next Generation Body Materials for Microfluidic Chips? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003797. [PMID: 33103353 DOI: 10.1002/smll.202003797] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Indexed: 05/27/2023]
Abstract
The integration of microfluidics with biomedical research is confronted with considerable limitations due to its body materials. With high content of water, hydrogels own superior biocompatibility and degradability. Can hydrogels become another material choice for the construction of microfluidic chips, particularly biofluidics? The present review aims to systematically establish the concept of hydrogel-based microfluidic chips (HMCs) and address three main concerns: i) why choosing hydrogels? ii) how to fabricate HMCs?, and iii) in which fields to apply HMCs? It is envisioned that hydrogels may be used increasingly as substitute for traditional materials and gradually act as the body material for microfluidic chips. The modifications of conventional process are highlighted to overcome issues arising from the incompatibility between the construction methods and hydrogel materials. Specifically targeting at the "soft and wet" hydrogels, an efficient flowchart of "i) high resolution template printing; ii) damage-free demolding; iii) twice-crosslinking bonding" is proposed. Accordingly, a broader microfluidic chip concept is proposed in terms of form and function. Potential biomedical applications of HMCs are discussed. This review also highlights the challenges arising from the material replacement, as well as the future directions of the proposed concept. Finally, the authors' viewpoints and perspectives for this emerging field are discussed.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
3
|
Correa SO, Luo X, Raub CB. Microfluidic fabrication of stable collagen microgels with aligned microstructure using flow-driven co-deposition and ionic gelation. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2020; 30:085002. [PMID: 37273664 PMCID: PMC10237176 DOI: 10.1088/1361-6439/ab8ebf] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The controlled biofabrication of stable, aligned collagen hydrogels within microfluidic devices is critically important to the design of more physiologically accurate, longer-cultured on-chip models of tissue and organs. To address this goal, collagen-alginate microgels were formed in a microfluidic channel by calcium crosslinking of a flowing collagen-alginate solution through a cross-channel chitosan membrane spanning a pore allowing ion diffusion but not convection. The gels formed within seconds as isolated islands in a single channel, and their growth was self-limiting. Total gel thickness was controlled by altering the concentration of calcium and collagen-alginate flow rate to reach an equilibrium of calcium diffusion and solution convection at the gel boundary, for a desired thickness of 30-200 μm. Additionally, less calcium and higher flow produced greater compression of the gel, with regions farther from the pore compressing more. An aligned, stable collagen network was demonstrated by collagen birefringence, circumferential texture orientation, and little change in gel dimensions with de-chelation of calcium from alginate by prolonged flow of EDTA in the channel. Resultant gels were most stable and only slightly asymmetric when formed from solutions containing 8 mg ml-1 collagen. Diffusion of 4 kDa and 70 kDa fluorescently-labeled dextran indicated size-dependent diffusion across the gel, and accessibility of the construct to appropriately-sized bioactive molecules. This work demonstrates the physicochemical parameter control of collagen gel formation in microfluidic devices, with utility toward on-chip models of dense extracellular matrix invasion, cancer growth and drug delivery to cells within dense extracellular matrix bodies.
Collapse
Affiliation(s)
- Santiago O Correa
- Department of Biomedical Engineering, Washington DC, United States of America
| | - Xiaolong Luo
- Department of Mechanical Engineering, Washington DC, United States of America
- These authors contributed equally to this work
| | - Christopher B Raub
- Department of Biomedical Engineering, Washington DC, United States of America
- These authors contributed equally to this work
| |
Collapse
|
4
|
Sergeeva A, Vikulina AS, Volodkin D. Porous Alginate Scaffolds Assembled Using Vaterite CaCO 3 Crystals. MICROMACHINES 2019; 10:E357. [PMID: 31146472 PMCID: PMC6630714 DOI: 10.3390/mi10060357] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
Abstract
Formulation of multifunctional biopolymer-based scaffolds is one of the major focuses in modern tissue engineering and regenerative medicine. Besides proper mechanical/chemical properties, an ideal scaffold should: (i) possess a well-tuned porous internal structure for cell seeding/growth and (ii) host bioactive molecules to be protected against biodegradation and presented to cells when required. Alginate hydrogels were extensively developed to serve as scaffolds, and recent advances in the hydrogel formulation demonstrate their applicability as "ideal" soft scaffolds. This review focuses on advanced porous alginate scaffolds (PAS) fabricated using hard templating on vaterite CaCO3 crystals. These novel tailor-made soft structures can be prepared at physiologically relevant conditions offering a high level of control over their internal structure and high performance for loading/release of bioactive macromolecules. The novel approach to assemble PAS is compared with traditional methods used for fabrication of porous alginate hydrogels. Finally, future perspectives and applications of PAS for advanced cell culture, tissue engineering, and drug testing are discussed.
Collapse
Affiliation(s)
- Alena Sergeeva
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.
| | - Anna S Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.
- School of Science and Technology, Nottingham Trent University, Clifton Lane,Nottingham NG11 8NS, UK.
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane,Nottingham NG11 8NS, UK.
| |
Collapse
|
5
|
Sarker M, Izadifar M, Schreyer D, Chen X. Influence of ionic crosslinkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D Bioplotted Hydrogel Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1126-1154. [DOI: 10.1080/09205063.2018.1433420] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Md. Sarker
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - David Schreyer
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
6
|
Hydrodynamic loading in concomitance with exogenous cytokine stimulation modulates differentiation of bovine mesenchymal stem cells towards osteochondral lineages. BMC Biotechnol 2016; 16:10. [PMID: 26830345 PMCID: PMC4736240 DOI: 10.1186/s12896-016-0240-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/18/2016] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are viewed as a having significant potential for tissue engineering and regenerative medicine therapies. Clinical implementation of MSCs, however, demands that their preparation be stable and reproducible. Given that environmental and bioprocessing parameters such as substrate stiffness, seeding densities, culture medium composition, and mechanical loading can result in undirected differentiation of the MSC population, the objective of this study was to systematically investigate how hydrodynamic loading influences the differentiation of bone marrow-derived mesenchymal stem cells (MSCs) towards the osteochondral lineages both in the presence and absence of exogenous, inductive factors. Methods Expanded bovine MSCs were suspended in 2.5 % agarose, cast in a custom mold, and placed into either static or one of two dynamic culture environments consisting of “high” and “low” magnitude shear conditions. Constructs were supplemented with varying concentrations (0, 1, 10, 100 ng/mL) of either TGF-β3 or BMP-2 throughout cultivation with tissue samples being collected following each week of culture. Results In the absence of exogenous supplementation, hydrodynamic loading had little effect on cell phenotype at either magnitude of stimulation. When cultures were supplemented with BMP-2 and TGF-β3, MSCs gene expression progressed towards the osteogenic and chondrogenic pathways, respectively. This progression was enhanced by the presence of hydrodynamic loading, particularly under high shear conditions, but may point the chondrogenic cultures down a hypertrophic path toward osteogenesis reminiscent of endochondral ossification if TGF-β3 supplementation is insufficient. Conclusions Moving forward, these results suggest bioprocessing conditions which minimize exposure of chondrogenic cultures to fluid shear stress to avoid undesirable differentiation of the MSC population. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0240-6) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
George SM, Moon H. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels. BIOMICROFLUIDICS 2015; 9:024116. [PMID: 25945142 PMCID: PMC4401805 DOI: 10.1063/1.4918377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/07/2015] [Indexed: 05/26/2023]
Abstract
Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels.
Collapse
Affiliation(s)
- Subin M George
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington , Arlington, Texas 76019, USA
| | - Hyejin Moon
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington , Arlington, Texas 76019, USA
| |
Collapse
|
8
|
Goldman SM, Barabino GA. Cultivation of agarose-based microfluidic hydrogel promotes the development of large, full-thickness, tissue-engineered articular cartilage constructs. J Tissue Eng Regen Med 2014; 11:572-581. [DOI: 10.1002/term.1954] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/23/2014] [Accepted: 07/16/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Stephen M. Goldman
- Interdisciplinary Bioengineering Graduate Program; Georgia Institute of Technology; Atlanta GA USA
- George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA USA
| | - Gilda A. Barabino
- Interdisciplinary Bioengineering Graduate Program; Georgia Institute of Technology; Atlanta GA USA
- Department of Biomedical Engineering; City College of New York; NY USA
| |
Collapse
|
9
|
Wang Y, Byrne JD, Napier ME, DeSimone JM. Engineering nanomedicines using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2012; 64:1021-30. [PMID: 22266128 PMCID: PMC3422739 DOI: 10.1016/j.addr.2012.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 12/24/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
Abstract
The ability to engineer particles has the potential to shift the paradigm in the creation of new medicines and diagnostics. Complete control over particle characteristics, such as size, shape, mechanical property, and surface chemistry, can enable rapid translation and facilitate the US Food and Drug Administration (FDA) approval of particle technologies for the treatment of cancer, infectious diseases, diabetes, and a host of other major illnesses. The incorporation of natural and artificial external stimuli to trigger the release of drugs enables exquisite control over the release profiles of drugs in a given environment. In this article, we examine several readily scalable top-down methods for the fabrication of shape-specific particles that utilize stimuli-responsive biomaterials for controlled drug delivery. Special attention is given to Particle Replication In Nonwetting Templates (PRINT®) technology and the application of novel triggered-release synthetic and natural polymers.
Collapse
Affiliation(s)
- Yapei Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - James D. Byrne
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary E. Napier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joseph M. DeSimone
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Eschelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Institute for Advanced Materials, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
- Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
10
|
Chen MCW, Gupta M, Cheung KC. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Biomed Microdevices 2010; 12:647-54. [PMID: 20237849 DOI: 10.1007/s10544-010-9417-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We demonstrate a microfluidic system for long-term tumor cell culture and drug testing. Three-dimensional cell culture is critical in characterizing anticancer treatments since it may provide a better model than monolayer culture of tumor cells. Breast tumor cells were encapsulated within alginate which was gelled in situ within the microchannels. Tumor spheroid formation was observed several days after cell seeding, and various concentrations of doxorubicin were applied to the encapsulated cell aggregates. Drug effects on cell viability and proliferation were measured. In future, hydrogel-based microfluidic devices can comprise part of systems which replace labor intensive screening platforms currently implemented in the laboratory, and they address a need for improving preclinical testing of cancer cell sensitivity to anti-cancer drugs.
Collapse
Affiliation(s)
- Michael C W Chen
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
11
|
Yu L, Chen MCW, Cheung KC. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. LAB ON A CHIP 2010; 10:2424-32. [PMID: 20694216 DOI: 10.1039/c004590j] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since it may provide a better model than monolayer culture of tumor cells. Moreover, continuous dynamic perfusion allows the establishment of long term cell culture and subsequent multicellular spheroid formation. A droplet-based microfluidic system was used to form alginate beads with entrapped breast tumor cells. After gelation, the alginate beads were trapped in microsieve structures for cell culture in a continuous perfusion system. The alginate environment permitted cell proliferation and the formation of multicellular spheroids was observed. The dose-dependent response of the tumor spheroids to doxorubicin, and anticancer drug, showed multicellular resistance compared to conventional monolayer culture. The microsieve structures maintain constant location of each bead in the same position throughout the device seeding process, cell proliferation and spheroid formation, treatment with drug, and imaging, permitting temporal and spatial tracking.
Collapse
Affiliation(s)
- Linfen Yu
- University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
12
|
Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF. Biofabrication to build the biology–device interface. Biofabrication 2010; 2:022002. [DOI: 10.1088/1758-5082/2/2/022002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Kini GC, Lai J, Wong MS, Biswal SL. Microfluidic formation of ionically cross-linked polyamine gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6650-6656. [PMID: 20078130 DOI: 10.1021/la903983y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this article, we discuss in situ polymer gelation in microfluidic channels from electrostatically mediated interactions when reactant streams of a linear cationic polymer (poly(allylamine hydrochloride, PAH) and a multivalent anion (sodium citrate) are subjected to shear flow. We find that the polyamine exhibits shear-thickening behavior as it is ionically cross-linked by citrate ions to form viscoelastic gel phases. These gels form at room temperature and remain stable and intact after the cessation of flow. Gelation is found to occur in the polymer stream and not the citrate stream because of an appreciably higher diffusivity of citrate ions when compared to the gel and PAH and because of laminar flow conditions in the microfluidic environment. Gel formation occurred when the pH of the PAH stream was below the PAH pK(a) value of 8.38 and when citrate was either in a disodium or trisodium state. The formation of aggregates, gels, and droplets was found to depend strongly on the charge ratio and flow conditions. The gelation of PAH begins with the formation of colloidal aggregates of PAH and citrate, which then combine under shear flow to form noncontinuous or continuous gels. Droplets of citrate can form within regions of continuous gels as excess citrate anions diffuse into the gel stream.
Collapse
Affiliation(s)
- Gautam C Kini
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | | | | | | |
Collapse
|
14
|
Chen MCW, Gupta M, Cheung KC. Hydrogel-based microfluidic systems for co-culture of cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:4848-51. [PMID: 19163802 DOI: 10.1109/iembs.2008.4650299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, in vivo cellular microenvironments are not well modeled using traditional cell culture methods. Microfluidic technology provides the tools to mimic in vivo environments for cell culture. We use alginate hydrogels to reversibly trap and release cells for incubation. The porous nature of alginate gels resembles the natural extracellular matrix and allows the transport of nutrients and waste. This property makes it an ideal cell trapping and culturing material. Here, we present reversible immobilization of human fetal lung fibroblasts (HFL1) and human hepatocellular liver carcinoma cell (Hep G2) inside microfluidic channels and demonstrate the possibility of co-culturing these two cell types within different alginate gel layers.
Collapse
Affiliation(s)
- Michael C W Chen
- University of British Columbia, Department of Electrical & Computer Engineering, Vancouver, V6T 1Z4, Canada.
| | | | | |
Collapse
|