1
|
Ausilio C, Lubrano C, Rana D, Matrone GM, Bruno U, Santoro F. Concealing Organic Neuromorphic Devices with Neuronal-Inspired Supported Lipid Bilayers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305860. [PMID: 38702931 PMCID: PMC11251551 DOI: 10.1002/advs.202305860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/16/2024] [Indexed: 05/06/2024]
Abstract
Neurohybrid systems have gained large attention for their potential as in vitro and in vivo platform to interrogate and modulate the activity of cells and tissue within nervous system. In this scenario organic neuromorphic devices have been engineered as bioelectronic platforms to resemble characteristic neuronal functions. However, aiming to a functional communication with neuronal cells, material synthesis, and surface engineering can yet be exploited for optimizing bio-recognition processes at the neuromorphic-neuronal hybrid interface. In this work, artificial neuronal-inspired lipid bilayers have been assembled on an electrochemical neuromorphic organic device (ENODe) to resemble post-synaptic structural and functional features of living synapses. Here, synaptic conditioning has been achieved by introducing two neurotransmitter-mediated biochemical signals, to induce an irreversible change in the device conductance thus achieving Pavlovian associative learning. This new class of in vitro devices can be further exploited for assembling hybrid neuronal networks and potentially for in vivo integration within living neuronal tissues.
Collapse
Affiliation(s)
- Chiara Ausilio
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaples80125Italy
- Dipartimento di ChimicaMateriali e Produzione IndustrialeUniversità di Napoli Federico IINaples80125Italy
| | - Claudia Lubrano
- Faculty of Electrical Engineering and Information TechnologyRWTH Aachen52072AachenGermany
- Institute of Biological Information Processing – BioelectronicsIBI‐3 Forschungszentrum Juelich52428JuelichGermany
| | - Daniela Rana
- Faculty of Electrical Engineering and Information TechnologyRWTH Aachen52072AachenGermany
- Institute of Biological Information Processing – BioelectronicsIBI‐3 Forschungszentrum Juelich52428JuelichGermany
| | - Giovanni Maria Matrone
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaples80125Italy
- Present address:
Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Ugo Bruno
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaples80125Italy
- Dipartimento di ChimicaMateriali e Produzione IndustrialeUniversità di Napoli Federico IINaples80125Italy
| | - Francesca Santoro
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaples80125Italy
- Faculty of Electrical Engineering and Information TechnologyRWTH Aachen52072AachenGermany
- Institute of Biological Information Processing – BioelectronicsIBI‐3 Forschungszentrum Juelich52428JuelichGermany
| |
Collapse
|
2
|
Bali K, McCoy R, Lu Z, Treiber J, Savva A, Kaminski CF, Salmond G, Salleo A, Mela I, Monson R, Owens RM. Multiparametric Sensing of Outer Membrane Vesicle-Derived Supported Lipid Bilayers Demonstrates the Specificity of Bacteriophage Interactions. ACS Biomater Sci Eng 2023. [PMID: 37137156 DOI: 10.1021/acsbiomaterials.3c00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The use of bacteriophages, viruses that specifically infect bacteria, as antibiotics has become an area of great interest in recent years as the effectiveness of conventional antibiotics recedes. The detection of phage interactions with specific bacteria in a rapid and quantitative way is key for identifying phages of interest for novel antimicrobials. Outer membrane vesicles (OMVs) derived from Gram-negative bacteria can be used to make supported lipid bilayers (SLBs) and therefore in vitro membrane models that contain naturally occurring components of the bacterial outer membrane. In this study, we employed Escherichia coli OMV derived SLBs and use both fluorescent imaging and mechanical sensing techniques to show their interactions with T4 phage. We also integrate these bilayers with microelectrode arrays (MEAs) functionalized with the conducting polymer PEDOT:PSS and show that the pore forming interactions of the phages with the SLBs can be monitored using electrical impedance spectroscopy. To highlight our ability to detect specific phage interactions, we also generate SLBs using OMVs derived from Citrobacter rodentium, which is resistant to T4 phage infection, and identify their lack of interaction with the phage. The work presented here shows how interactions occurring between the phages and these complex SLB systems can be monitored using a range of experimental techniques. We believe this approach can be used to identify phages that work against bacterial strains of interest, as well as more generally to monitor any pore forming structure (such as defensins) interacting with bacterial outer membranes, and thus aid in the development of next generation antimicrobials.
Collapse
Affiliation(s)
- Karan Bali
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Reece McCoy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Zixuan Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Jeremy Treiber
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - George Salmond
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Ioanna Mela
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | - Rita Monson
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
3
|
Bespalova M, Öz R, Westerlund F, Krishnan M. Single-Molecule Trapping and Measurement in a Nanostructured Lipid Bilayer System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13923-13934. [PMID: 36326814 PMCID: PMC9671048 DOI: 10.1021/acs.langmuir.2c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The repulsive electrostatic force between a biomolecule and a like-charged surface can be geometrically tailored to create spatial traps for charged molecules in solution. Using a parallel-plate system composed of silicon dioxide surfaces, we recently demonstrated single-molecule trapping and high precision molecular charge measurements in a nanostructured free energy landscape. Here we show that surfaces coated with charged lipid bilayers provide a system with tunable surface properties for molecular electrometry experiments. Working with molecular species whose effective charge and geometry are well-defined, we demonstrate the ability to quantitatively probe the electrical charge density of a supported lipid bilayer. Our findings indicate that the fraction of charged lipids in nanoslit lipid bilayers can be significantly different from that in the precursor lipid mixtures used to generate them. We also explore the temporal stability of bilayer properties in nanofluidic systems. Beyond their relevance in molecular measurement, such experimental systems offer the opportunity to examine lipid bilayer formation and wetting dynamics on nanostructured surfaces.
Collapse
Affiliation(s)
- Maria Bespalova
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OxfordOX1 3QZ, United Kingdom
| | - Robin Öz
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96Gothenburg, Sweden
| | - Fredrik Westerlund
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96Gothenburg, Sweden
| | - Madhavi Krishnan
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OxfordOX1 3QZ, United Kingdom
- The
Kavli Institute for Nanoscience Discovery, Sherrington Road, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
4
|
Ausilio C, Lubrano C, Mariano A, Santoro F. Negatively-charged supported lipid bilayers regulate neuronal adhesion and outgrowth. RSC Adv 2022; 12:30270-30277. [PMCID: PMC9590245 DOI: 10.1039/d2ra05147h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Primary cortical neurons were cultured on negatively charged supported lipid bilayers (SLBs). Such membranes demonstrated the potential effect of negative charges on neuronal growth and neurite branching and elongation.
Collapse
Affiliation(s)
- Chiara Ausilio
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Napoli, Italy
| | - Claudia Lubrano
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Napoli, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125, Naples, Italy
- Faculty of Electrical Engineering and Information Technology, RWTH Aachen, 52074, Germany
- Institute for Biological Information Processing-Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
| | - Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Napoli, Italy
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Napoli, Italy
- Faculty of Electrical Engineering and Information Technology, RWTH Aachen, 52074, Germany
- Institute for Biological Information Processing-Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
| |
Collapse
|
5
|
Tanaka R, Kafle A, Akamatsu M, Bhadani A, Sakai K, Kaise C, Kaneko T, Sakai H. Impact of Doping a Phytosteryl Sulfate on the Properties of Liposomes Made of Saturated and Unsaturated Phosphatidylcholines. J Oleo Sci 2021; 70:1093-1101. [PMID: 34248096 DOI: 10.5650/jos.ess21035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The size, dispersibility, and fluidity of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), POPC (1-palmitoy-2-oleoyl-sn-glycero-3-phosphocholine), and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) liposomes doped with β-sitosteryl sulfate (PSO4) were comparatively studied. In all three types of liposomes, PSO4 reduced sizes and enhanced the negative values of the ζ-potential. However, the effect on sizes quantitatively differed in the three cases in a manner dependent on their phase behaviors. PSO4 rigidified each type of membrane in its liquid crystalline phase and fluidized the gel phase. It enhanced the glucose trapping efficiency (TE) of both DPPC and DOPC liposomes. The TE of DPPC first increased with the increasing concentration of PSO4, then decreased gradually. On the other hand, in the case of DOPC, the TE increased significantly upon addition of PSO4, then remained nearly constant. Though the exact dependence of TE on the PSO4 concentration differed in the two cases, its effect, in each case, was more than the effect of β-sitosterol (POH). The ability of PSO4 for reducing the size and enhancing dispersibility and TE of liposomes can be useful for preparing cosmetics and pharmaceutical formulations.
Collapse
Affiliation(s)
- Risa Tanaka
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Ananda Kafle
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Avinash Bhadani
- Research Institute for Science and Technology, Tokyo University of Science
| | - Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science.,Research Institute for Science and Technology, Tokyo University of Science
| | - Chihiro Kaise
- Research Institute for Science and Technology, Tokyo University of Science.,L. V. M. C. Inc
| | - Teruhisa Kaneko
- Research Institute for Science and Technology, Tokyo University of Science.,L. V. M. C. Inc
| | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science.,Research Institute for Science and Technology, Tokyo University of Science
| |
Collapse
|
6
|
Lubrano C, Matrone GM, Iaconis G, Santoro F. New Frontiers for Selective Biosensing with Biomembrane-Based Organic Transistors. ACS NANO 2020; 14:12271-12280. [PMID: 33052643 PMCID: PMC8015208 DOI: 10.1021/acsnano.0c07053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biosensing plays vital roles in multiple fields, including healthcare monitoring, drug screening, disease diagnosis, and environmental pollution control. In recent years, transistor-based devices have been considered to be valid platforms for fast, low-cost sensing of diverse analytes. Without additional functionalization, however, these devices lack selectivity; several strategies have been developed for the direct immobilization of bioreceptors on the transistor surface to improve detection capabilities. In this scenario, organic transistors have gained attention for their abilities to be coupled to biological systems and to detect biomolecules. In this Perspective, we discuss recent developments in organic-transistor-based biosensors, highlighting how their coupling with artificial membranes provides a strategy to improve sensitivity and selectivity in biosensing applications. Looking at future applications, this class of biosensors represents a breakthrough starting point for implementing multimodal high-throughput screening platforms.
Collapse
Affiliation(s)
- Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80126 Naples, Italy
| | | | - Gennaro Iaconis
- Department
of Medicine, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
7
|
Redondo-Morata L, Losada-Pérez P, Giannotti MI. Lipid bilayers: Phase behavior and nanomechanics. CURRENT TOPICS IN MEMBRANES 2020; 86:1-55. [PMID: 33837691 DOI: 10.1016/bs.ctm.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid membranes are involved in many physiological processes like recognition, signaling, fusion or remodeling of the cell membrane or some of its internal compartments. Within the cell, they are the ultimate barrier, while maintaining the fluidity or flexibility required for a myriad of processes, including membrane protein assembly. The physical properties of in vitro model membranes as model cell membranes have been extensively studied with a variety of techniques, from classical thermodynamics to advanced modern microscopies. Here we review the nanomechanics of solid-supported lipid membranes with a focus in their phase behavior. Relevant information obtained by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) as complementary techniques in the nano/mesoscale interface is presented. Membrane morphological and mechanical characterization will be discussed in the framework of its phase behavior, phase transitions and coexistence, in simple and complex models, and upon the presence of cholesterol.
Collapse
Affiliation(s)
- Lorena Redondo-Morata
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Lille, France
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université Libre de Bruxelles, Brussels, Belgium
| | - Marina Inés Giannotti
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Svetlova A, Ellieroth J, Milos F, Maybeck V, Offenhäusser A. Composite Lipid Bilayers from Cell Membrane Extracts and Artificial Mixes as a Cell Culture Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8076-8084. [PMID: 31055920 DOI: 10.1021/acs.langmuir.9b00763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An artificial lipid bilayer is the closest possible model for the cell membrane. Despite that, current methods of lipid bilayer assembly and functionalization do not provide a satisfactory mimic of the cell-cell contact due to the inability to recreate an asymmetrical multicomponent system. In the current work, a method to produce an integrated solid-supported lipid bilayer combining natural extracts from cell membranes and artificially made lipid vesicles is proposed. This simple method allows delivery of transmembrane proteins and components of the extracellular matrix into the substrate. Biocompatibility of the composite natural/artificial lipid bilayers is evaluated by their interactions with the cardiomyocyte-like HL-1 cell line. Compared with fully artificial mixes, composite lipid bilayers allow cells to adhere and develop a morphologically more normal cytoskeleton.
Collapse
Affiliation(s)
- Anastasia Svetlova
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH , Wilhelm-Johnen Straße , 52425 Jülich , Germany
| | - Jana Ellieroth
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH , Wilhelm-Johnen Straße , 52425 Jülich , Germany
| | - Frano Milos
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH , Wilhelm-Johnen Straße , 52425 Jülich , Germany
| | - Vanessa Maybeck
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH , Wilhelm-Johnen Straße , 52425 Jülich , Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH , Wilhelm-Johnen Straße , 52425 Jülich , Germany
| |
Collapse
|
9
|
Pennacchio FA, Garma LD, Matino L, Santoro F. Bioelectronics goes 3D: new trends in cell–chip interface engineering. J Mater Chem B 2018; 6:7096-7101. [DOI: 10.1039/c8tb01737a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioelectronic platforms can be used for electrophysiology, monitoring and stimulating specific cellular functions.
Collapse
Affiliation(s)
- F. A. Pennacchio
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia
- Naples
- Italy
| | - L. D. Garma
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia
- Naples
- Italy
| | - L. Matino
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia
- Naples
- Italy
| | - F. Santoro
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia
- Naples
- Italy
| |
Collapse
|
10
|
Formation of planar unilamellar phospholipid membranes on oxidized gold substrate. Biointerphases 2016; 11:031017. [DOI: 10.1116/1.4963188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|