1
|
Adolphs T, Bäumer M, Bosse F, Ravoo BJ, Peterson RE, Arlinghaus HF, Tyler BJ. ToF-SIMS Investigation of Environmental Effects on Analyte Migration in Matrix Coatings for Mass Spectrometry Imaging Using a Newly Developed Vapor Deposition System. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39392610 DOI: 10.1021/jasms.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
High resolution mass spectrometry images are of increasing importance in biological applications, such as the study of tissues and single cells. Two promising techniques for this are matrix-enhanced secondary ion mass spectrometry (ME-SIMS) and matrix-assisted laser desorption/ionization (MALDI). For both techniques, the sample of interest must be coated with a matrix prior to analysis, and analytes must migrate into the matrix. The mechanisms involved in this migration and the factors that influence the migration are poorly understood, which lead to difficulties with reproducibility. In this work, a sublimation matrix coater with an effusion cell and sample cooling was developed and built in-house for controlled physical vapor deposition. In this system, sample transfer between the coater and mass spectrometer is possible without breaking vacuum, which facilitates the study of environmental influences on analyte migration. The influence of exposure to ambient air on the migration of two analytes (a lipid and a peptide), which were coated with the matrix α-cyano-4-hydroxycinnamic acid (CHCA), was studied using 3D-SIMS imaging. Although the distribution of analyte in the matrix changed very little after 21 h of storage in vacuum, significant redistribution of the analyte was observed after exposure to ambient air. The magnitude of the effect was greater for the lipid than for the peptide. Further work is needed to determine the role of humidity in the redistribution process and the impact of analyte redistribution on MALDI measurements.
Collapse
Affiliation(s)
- Thorsten Adolphs
- Institute of Physics, University of Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Michael Bäumer
- Institute of Physics, University of Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Florian Bosse
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Richard E Peterson
- Institute of Physics, University of Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Institute of Physics, University of Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Bonnie J Tyler
- Institute of Physics, University of Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), University of Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| |
Collapse
|
2
|
Adolphs T, Heeger M, Bosse F, Ravoo BJ, Peterson RE, Arlinghaus HF, Tyler BJ. Matrix-Enhanced SIMS: The Influence of Primary Ion Species and Cluster Size on Ion Yield and Ion Yield Enhancement of Lipids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2211-2221. [PMID: 37713531 DOI: 10.1021/jasms.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Time-of-flight secondary ion mass spectrometry is one of the most promising techniques for label-free analysis of biomolecules with nanoscale spatial resolution. However, high-resolution imaging of larger biomolecules such as phospholipids and peptides is often hampered by low yields of molecular ions. Matrix-enhanced SIMS (ME-SIMS), in which an organic matrix is added to the sample, is one promising approach to enhancing the ion yield for biomolecules. Optimizing this approach has, however, been challenging because the processes involved in increasing the ion yield in ME-SIMS are not yet fully understood. In this work, the matrix α-cyano-4-hydroxycinnamic acid (HCCA) has been combined with cluster primary ion analysis to better understand the roles of proton donation and reduced fragmentation on lipid molecule ion yield. A model system consisting of 1:100 mol ratio dipalmitoylphosphatidylcholine (DPPC) in HCCA as well as an HCCA-coated mouse brain cryosection have been studied using a range of Bi and Ar cluster ions. Although the molecular ion yield increased with an increase in cluster ion size, the enhancement of the signals from intact lipid molecules decreased with an increase in cluster ion size for both the model system and the mouse brain. Additionally, in both systems, protonated molecular ions were significantly more enhanced than sodium and potassium cationized molecules for all of the primary ions utilized. For the model system, the DPPC molecular ion yield was increased by more than an order of magnitude for all of the primary ions studied, and fragmentation of DPPC was dramatically reduced. However, on the brain sample, even though the HCCA matrix reduced DPPC fragmentation for all of the primary ions studied, the matrix coating suppressed the ion yield for some lipids when the larger cluster primary ions were employed. This indicated insufficient migration of the lipids into the matrix coating, so that dilution by the matrix overpowered the enhancement effect. This study provides strong evidence that the HCCA matrix both enhances protonation and reduces fragmentation. For imaging applications, the ability of the analytes to migrate to the surface of the matrix coating is also a critical factor for useful signal enhancement. This work demonstrates that the HCCA matrix provides a softer desorption environment when using Bi cluster ions than that obtained using the large gas cluster ions studied alone, indicating the potential for improved high spatial resolution imaging with ME-SIMS.
Collapse
Affiliation(s)
- Thorsten Adolphs
- Institute of Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Marcel Heeger
- Institute of Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Florian Bosse
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität, Busso-Peus-Straße 10, 48149 Münster, Germany
- Organic Chemistry Institute, Westfälische Wilhelms-Universität, Corrensstrasse 36, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität, Busso-Peus-Straße 10, 48149 Münster, Germany
- Organic Chemistry Institute, Westfälische Wilhelms-Universität, Corrensstrasse 36, 48149 Münster, Germany
| | - Richard E Peterson
- Institute of Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Institute of Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Bonnie J Tyler
- Institute of Physics, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
3
|
Pohkrel Y, Adolphs T, Peterson RE, Allebrod U, Ravoo BJ, Arlinghaus HF, Tyler BJ. Influence of Matrix p Ka on Molecular Ion Formation in Matrix-Enhanced Secondary-Ion Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:218-226. [PMID: 36565282 DOI: 10.1021/jasms.2c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is one of the most important techniques for chemical imaging of nanomaterials and biological samples with high lateral resolution. However, low ionization efficiency limits the detection of many molecules at low concentrations or in very small volumes. One promising approach to increasing the sensitivity of the technique is by the addition of a matrix that promotes ionization and desorption of important analyte molecules. This approach is known as matrix-enhanced secondary-ion mass spectrometry (ME-SIMS). We have investigated the effect of matrix acidity on molecular ion formation in three different biomolecules. A series of cinnamic acid based matrixes that vary in acidity was employed to systematically investigate the influence of matrix acidity on analyte ion formation. The positive ion signal for all three biomolecules showed a strong increase for more acidic matrixes. The most acidic matrix was then vapor-deposited onto mouse brain sections. This led to significant enhancement of lipid signals from the brain. This work indicates that proton donation plays an important role in the formation of molecular ions in ME-SIMS.
Collapse
Affiliation(s)
- Yogesh Pohkrel
- Physikalisches Institut and Center for Soft Nanoscience, University of Münster, Wilhelm-Klemm-Straße 10, 48149Münster, Germany
| | - Thorsten Adolphs
- Physikalisches Institut and Center for Soft Nanoscience, University of Münster, Wilhelm-Klemm-Straße 10, 48149Münster, Germany
| | - Richard E Peterson
- Physikalisches Institut and Center for Soft Nanoscience, University of Münster, Wilhelm-Klemm-Straße 10, 48149Münster, Germany
| | - Ute Allebrod
- Organic Chemistry Institute and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - Heinrich F Arlinghaus
- Physikalisches Institut and Center for Soft Nanoscience, University of Münster, Wilhelm-Klemm-Straße 10, 48149Münster, Germany
| | - Bonnie J Tyler
- Physikalisches Institut and Center for Soft Nanoscience, University of Münster, Wilhelm-Klemm-Straße 10, 48149Münster, Germany
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|