1
|
Fujii Y, Nakatani T, Ousaka D, Oozawa S, Sasai Y, Kasahara S. Development of Antimicrobial Surfaces Using Diamond-like Carbon or Diamond-like Carbon-Based Coatings. Int J Mol Sci 2024; 25:8593. [PMID: 39201280 PMCID: PMC11354288 DOI: 10.3390/ijms25168593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
The medical device market is a high-growth sector expected to sustain an annual growth rate of over 5%, even in developed countries. Daily, numerous patients have medical devices implanted or inserted within their bodies. While medical devices have significantly improved patient outcomes, as foreign objects, their wider use can lead to an increase in device-related infections, thereby imposing a burden on healthcare systems. Multiple materials with significant societal impact have evolved over time: the 19th century was the age of iron, the 20th century was dominated by silicon, and the 21st century is often referred to as the era of carbon. In particular, the development of nanocarbon materials and their potential applications in medicine are being explored, although the scope of these applications remains limited. Technological innovations in carbon materials are remarkable, and their application in medicine is expected to advance greatly. For example, diamond-like carbon (DLC) has garnered considerable attention for the development of antimicrobial surfaces. Both DLC itself and its derivatives have been reported to exhibit anti-microbial properties. This review discusses the current state of DLC-based antimicrobial surface development.
Collapse
Affiliation(s)
- Yasuhiro Fujii
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama University, Okayama 700-8558, Japan
| | - Tatsuyuki Nakatani
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama 700-0005, Japan;
| | - Daiki Ousaka
- Department of Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Susumu Oozawa
- Division of Medical Safety Management, Safety Management Facility, Okayama University Hospital, Okayama University, Okayama 700-8558, Japan;
| | - Yasushi Sasai
- Department of Pharmacy, Gifu University of Medical Science, Kani 509-0293, Japan;
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| |
Collapse
|
2
|
Rachtanapun P, Sawangrat C, Kanthiya T, Thipchai P, Kaewapai K, Suhr J, Worajittiphon P, Tanadchangsaeng N, Wattanachai P, Jantanasakulwong K. Effect of Plasma Treatment on Bamboo Fiber-Reinforced Epoxy Composites. Polymers (Basel) 2024; 16:938. [PMID: 38611197 PMCID: PMC11013669 DOI: 10.3390/polym16070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Bamboo cellulose fiber (BF)-reinforced epoxy (EP) composites were fabricated with BF subjected to plasma treatment using argon (Ar), oxygen (O2), and nitrogen (N2) gases. Optimal mechanical properties of the EP/BF composites were achieved with BFs subjected to 30 min of plasma treatment using Ar. This is because Ar gas improved the plasma electron density, surface polarity, and BF roughness. Flexural strength and flexural modulus increased with O2 plasma treatment. Scanning electron microscopy images showed that the etching of the fiber surface with Ar gas improved interfacial adhesion. The water contact angle and surface tension of the EP/BF composite improved after 10 min of Ar treatment, owing to the compatibility between the BFs and the EP matrix. The Fourier transform infrared spectroscopy results confirmed a reduction in lignin after treatment and the formation of new peaks at 1736 cm-1, which indicated a reaction between epoxy groups of the EP and carbon in the BF backbone. This reaction improved the compatibility, mechanical properties, and water resistance of the composites.
Collapse
Affiliation(s)
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Thidarat Kanthiya
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Parichat Thipchai
- Nanoscience and Nanotechnology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kannikar Kaewapai
- Science and Technology Park (STeP), Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Jonghwan Suhr
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Gyeonggi-do, Republic of Korea
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Pitiwat Wattanachai
- Department of Civil Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
3
|
Taylor CS, Barnes J, Prasad Koduri M, Haq S, Gregory DA, Roy I, D'Sa RA, Curran J, Haycock JW. Aminosilane Functionalized Aligned Fiber PCL Scaffolds for Peripheral Nerve Repair. Macromol Biosci 2023; 23:e2300226. [PMID: 37364159 DOI: 10.1002/mabi.202300226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Silane modification is a simple and cost-effective tool to modify existing biomaterials for tissue engineering applications. Aminosilane layer deposition has previously been shown to control NG108-15 neuronal cell and primary Schwann cell adhesion and differentiation by controlling deposition of ─NH2 groups at the submicron scale across the entirety of a surface by varying silane chain length. This is the first study toreport depositing 11-aminoundecyltriethoxysilane (CL11) onto aligned Polycaprolactone (PCL) scaffolds for peripheral nerve regeneration. Fibers are manufactured via electrospinning and characterized using water contact angle measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Confirmed modified fibers are investigated using in vitro cell culture of NG108-15 neuronal cells and primary Schwann cells to determine cell viability, cell differentiation, and phenotype. CL11-modified fibers significantly support NG108-15 neuronal cell and Schwann cell viability. NG108-15 neuronal cell differentiation maintains Schwann cell phenotype compared to unmodified PCL fiber scaffolds. 3D ex vivo culture of Dorsal root ganglion explants (DRGs) confirms further Schwann cell migration and longer neurite outgrowth from DRG explants cultured on CL11 fiber scaffolds compared to unmodified scaffolds. Thus, a reproducible and cost-effective tool is reported to modify biomaterials with functional amine groups that can significantly improve nerve guidance devices and enhance nerve regeneration.
Collapse
Affiliation(s)
- Caroline S Taylor
- Department of Materials Science & Engineering, Kroto Research Institute, Broad Lane, Sheffield, S3 7HQ, UK
| | - Joseph Barnes
- Department of Mechanical, Materials and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool, L69 3GH, UK
| | - Manohar Prasad Koduri
- Department of Mechanical, Materials and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool, L69 3GH, UK
| | - Shamsal Haq
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - David A Gregory
- Department of Materials Science & Engineering, Kroto Research Institute, Broad Lane, Sheffield, S3 7HQ, UK
| | - Ipsita Roy
- Department of Materials Science & Engineering, Kroto Research Institute, Broad Lane, Sheffield, S3 7HQ, UK
| | - Raechelle A D'Sa
- Department of Mechanical, Materials and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool, L69 3GH, UK
| | - Judith Curran
- Department of Mechanical, Materials and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool, L69 3GH, UK
| | - John W Haycock
- Department of Materials Science & Engineering, Kroto Research Institute, Broad Lane, Sheffield, S3 7HQ, UK
| |
Collapse
|
4
|
Duplex Surface Modification of 304-L SS Substrates by an Electron-Beam Treatment and Subsequent Deposition of Diamond-like Carbon Coatings. COATINGS 2022. [DOI: 10.3390/coatings12030401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we present the results of the effect of duplex surface modification of 304-L stainless steel substrates by an electron-beam treatment (EBT) and subsequent deposition of diamond-like carbon coatings on the surface roughness and corrosion behavior. During the EBT process, the beam power was varied from 1000 to 1500 W. The successful deposition of the DLC coatings was confirmed by FTIR and Raman spectroscopy experiments. The results showed a presence of C–O, C=N, graphite-like sp2, and mixed sp2-sp3 C–C bond vibrations. The surface topography was studied by atomic force microscopy. The rise in the beam power leads to a decrease in the surface roughness of the deposited DLC coatings. The studies on the corrosion resistance of the samples have been performed using three electrochemical techniques: open circuit potential (OCP), cyclic voltammetry (polarization measurements), and non-destructive electrochemical impedance spectroscopy (EIS). The measured corrosion potentials suggest that these samples are corrosion-resistant even in a medium, containing corrosive agents such as chloride ions. It can be concluded that the most corrosion-resistant specimen is DLC coating deposited on electron-beam-treated 304-L SS substrate by a beam power of 1500 W.
Collapse
|
5
|
Riley PR, Joshi P, Azizi Machekposhti S, Sachan R, Narayan J, Narayan RJ. Enhanced Vapor Transmission Barrier Properties via Silicon-Incorporated Diamond-Like Carbon Coating. Polymers (Basel) 2021; 13:polym13203543. [PMID: 34685307 PMCID: PMC8537770 DOI: 10.3390/polym13203543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
In this study, we describe reducing the moisture vapor transmission through a commercial polymer bag material using a silicon-incorporated diamond-like carbon (Si-DLC) coating that was deposited using plasma-enhanced chemical vapor deposition. The structure of the Si-DLC coating was analyzed using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, selective area electron diffraction, and electron energy loss spectroscopy. Moisture vapor transmission rate (MVTR) testing was used to understand the moisture transmission barrier properties of Si-DLC-coated polymer bag material; the MVTR values decreased from 10.10 g/m2 24 h for the as-received polymer bag material to 6.31 g/m2 24 h for the Si-DLC-coated polymer bag material. Water stability tests were conducted to understand the resistance of the Si-DLC coatings toward moisture; the results confirmed the stability of Si-DLC coatings in contact with water up to 100 °C for 4 h. A peel-off adhesion test using scotch tape indicated that the good adhesion of the Si-DLC film to the substrate was preserved in contact with water up to 100 °C for 4 h.
Collapse
Affiliation(s)
- Parand R. Riley
- Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7907, USA; (P.R.R.); (P.J.); (J.N.)
| | - Pratik Joshi
- Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7907, USA; (P.R.R.); (P.J.); (J.N.)
| | - Sina Azizi Machekposhti
- Joint Department of Biomedical Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7115, USA;
| | - Ritesh Sachan
- Department of Mechanical Engineering, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jagdish Narayan
- Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7907, USA; (P.R.R.); (P.J.); (J.N.)
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, Centennial Campus, North Carolina State University, Raleigh, NC 27695-7115, USA;
- Correspondence:
| |
Collapse
|
6
|
Plasma Modification of Carbon Coating Produced by RF CVD on Oxidized NiTi Shape Memory Alloy under Glow-Discharge Conditions. MATERIALS 2021; 14:ma14174842. [PMID: 34500931 PMCID: PMC8432699 DOI: 10.3390/ma14174842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Our previous work has shown that for cardiac applications, combining low-temperature plasma oxidation with an amorphous carbon coating (a-C:N:H type) constitutes a prospective solution. In this study, a short-term modification by low-temperature oxygen plasma is proposed as an example and a method for shaping the topography and surface energy of the outer amorphous carbon coating, produced via the Radio-Frequency Chemical Vapour Deposition (RFCVD) method on NiTi alloy oxidized under glow-discharge conditions. This treatment alters the chemical composition of the outer zone of the surface layer. A slight increase is also noted in the surface roughness at the nanoscale. The contact angles were shown to increase by about 20% for water and 30% for diiodomethane, while the surface free energy decreased by ca. 11%. The obtained results indicate that even short-term contact with low-temperature plasma can shape the surface properties of the carbon coating, an outcome which shows potential in terms of its use in medical applications.
Collapse
|