1
|
Wańczura P, Mytych W, Bartusik-Aebisher D, Leksa D, Truszkiewicz A, Aebisher D. Visualization of Atherosclerotic Plaques Paired with Joheksol 350 (Omnipaque). Biomedicines 2025; 13:399. [PMID: 40002812 PMCID: PMC11853480 DOI: 10.3390/biomedicines13020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cardiovascular disease is one of the leading causes of death around the globe. Atherosclerosis, a chronic inflammatory blood vessel disease that takes years to develop, is its primary cause. Instability and further plaque buildup are caused by chronic inflammation, which creates the conditions for possible rupture. The visualization of arterial lesions in situ can enhance understanding of atherosclerosis progression and potentially improve experimental therapies. Conventional histology methods for assessing atherosclerotic lesions are robust but are destructive and may prevent further tissue analysis. Objectives: The objective of the current study was to evaluate a novel, nondestructive method for the visualization and characterization of atherosclerotic lesions. Methods and Results: Thus, we tested the hypothesis that MRI paired with an iodine-based radiopaque stain would effectively characterize atherosclerotic plaques in a manner comparable to routine histology while maintaining sample integrity and providing whole-volume data.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of Sciences, The Rzeszów University, 35-310 Rzeszów, Poland
| | - Wiktoria Mytych
- English Division Science Club, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Dawid Leksa
- Rzeszów Center for Vascular and Endovascular Surgery, 35-310 Rzeszów, Poland;
| | - Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
2
|
Liu Y, Valji K, Monsky W, Zheng C, Yang X. Optical imaging guidance in oncologic surgery and interventional oncology. Pharmacol Res 2025; 212:107612. [PMID: 39826822 DOI: 10.1016/j.phrs.2025.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Over recent decades, optical imaging (OI) has become an integral part of medical imaging, offering significant advantages over other modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI). OI is distinguished by its real-time imaging capability, cost-effectiveness, portability, absence of ionizing radiation, and high patient acceptability. The introduction of advanced optical dyes (including FDA-approved agents like indocyanine green, Cytalux, and Gleolan) has greatly enhanced its clinical utility. OI has shown clear benefits in the management of patients with cancer, originally by open surgery and now extending to minimally invasive, image-guided interventional procedures. This review highlights recent developments in OI for oncology, emphasizing its benefits for clinicians in guiding surgical and interventional procedures.
Collapse
Affiliation(s)
- Yiming Liu
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, USA; Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Karim Valji
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, USA
| | - Wayne Monsky
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, USA
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, USA.
| |
Collapse
|
3
|
Zhang X, Nan N, Tong X, Chen H, Zhang X, Li S, Zhang M, Gao B, Wang X, Song X, Chen D. Validation of biomechanical assessment of coronary plaque vulnerability based on intravascular optical coherence tomography and digital subtraction angiography. Quant Imaging Med Surg 2024; 14:1477-1492. [PMID: 38415169 PMCID: PMC10895097 DOI: 10.21037/qims-23-1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/28/2023] [Indexed: 02/29/2024]
Abstract
Background It has been suggested that biomechanical factors may influence plaque development. However, key determinants for assessing plaque vulnerability remain speculative. Methods In this study, a two-dimensional (2D) structural mechanical analysis and a three-dimensional (3D) fluid-structure interaction (FSI) analysis were conducted based on intravascular optical coherence tomography (IV-OCT) and digital subtraction angiography (DSA) data sets. In the 2D study, 103 IV-OCT slices were analyzed. An in-depth morpho-mechanic analysis and a weighted least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify the crucial features related to plaque vulnerability via the tuning parameter (λ). In the 3D study, the coronary model was reconstructed by fusing the IV-OCT and DSA data, and a FSI analysis was subsequently performed. The relationship between vulnerable plaque and wall shear stress (WSS) was investigated. Results The influential factors were selected using the minimum criteria (λ-min) and one-standard error criteria (λ-1se). In addition to the common vulnerable factor of the minimum fibrous cap thickness (FCTmin), four biomechanical factors were selected by λ-min, including the average/maximal displacements and average/maximal stress, and two biomechanical factors were selected by λ-1se, including the average/maximal displacements. Additionally, the positions of the vulnerable plaques were consistent with the sites of high WSS. Conclusions Functional indices are crucial for plaque status assessment. An evaluation based on biomechanical simulations might provide insights into risk identification and guide therapeutic decisions.
Collapse
Affiliation(s)
- Xuehuan Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Nan Nan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment, Beijing, China
| | - Xinyu Tong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Huyang Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Xuyang Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Shilong Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Mingduo Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment, Beijing, China
| | - Bingyu Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment, Beijing, China
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment, Beijing, China
| | - Duanduan Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Moulias A, Koros R, Papageorgiou A, Patrinos P, Spyropoulou P, Vakka A, Bozika M, Vasilagkos G, Apostolos A, Nastouli KM, Tsigkas G, Davlouros P. OCT Guidance in Bifurcation Percutaneous Coronary Intervention. Rev Cardiovasc Med 2023; 24:88. [PMID: 39077489 PMCID: PMC11264033 DOI: 10.31083/j.rcm2403088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 07/31/2024] Open
Abstract
Coronary bifurcation is defined by the European Bifurcation Consensus as a coronary artery stenosis adjacent to the origin of a significant side branch. Its anatomy is composed of 3 different segments: proximal main vessel, distal main vessel and side branch. Coronary artery bifurcation lesions are encountered in approximately 15-20% of all percutaneous coronary interventions and constitute a complex subgroup of lesions characterized by lower procedural success rates and higher rates of adverse outcomes. In recent years, a growing focus in the European and Japanese bifurcation club meetings has been the emerging role of intravascular imaging, in guiding successful bifurcation percutaneous coronary interventions (PCI). In this review we will present the main ways optical coherence tomography (OCT) can be used to improve outcomes during bifurcation PCI.
Collapse
Affiliation(s)
- Athanasios Moulias
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| | - Rafail Koros
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| | - Angeliki Papageorgiou
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| | - Panagiotis Patrinos
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| | - Panagiota Spyropoulou
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| | - Angeliki Vakka
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| | - Maria Bozika
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| | - Georgios Vasilagkos
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| | - Anastasios Apostolos
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| | | | - Grigorios Tsigkas
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| | - Periklis Davlouros
- Department of Cardiology, General University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Li Y, Moon S, Jiang Y, Qiu S, Chen Z. Intravascular polarization-sensitive optical coherence tomography based on polarization mode delay. Sci Rep 2022; 12:6831. [PMID: 35477738 PMCID: PMC9046432 DOI: 10.1038/s41598-022-10709-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/11/2022] [Indexed: 01/13/2023] Open
Abstract
Intravascular polarization-sensitive optical coherence tomography (IV-PSOCT) provides depth-resolved tissue birefringence which can be used to evaluate the mechanical stability of a plaque. In our previous study, we reported a new strategy to construct polarization-sensitive optical coherence tomography in a microscope platform. Here, we demonstrated that this technology can be implemented in an endoscope platform, which has many clinical applications. A conventional intravascular OCT system can be modified for IV-PSOCT by introducing a 12-m polarization-maintaining fiber-based imaging probe. Its two polarization modes separately produce OCT images of polarization detection channels spatially distinguished by an image separation of 2.7 mm. We experimentally validated our IV-PSOCT with chicken tendon, chicken breast, and coronary artery as the image samples. We found that the birefringent properties can be successfully visualized by our IV-PSOCT.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA
| | - Sucbei Moon
- Department of Physics, Kookmin University, Seoul, 02707, South Korea
| | - Yuchen Jiang
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA.,Department of Physics, Kookmin University, Seoul, 02707, South Korea
| | - Saijun Qiu
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA. .,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA. .,The Cardiovascular Innovation and Research Center, University of California, Irvine, , Irvine, CA, 92617, USA.
| |
Collapse
|
6
|
Abstract
Photoacoustic (PA) imaging is able to provide extremely high molecular
contrast while maintaining the superior imaging depth of ultrasound (US)
imaging. Conventional microscopic PA imaging has limited access to deeper tissue
due to strong light scattering and attenuation. Endoscopic PA technology enables
direct delivery of excitation light into the interior of a hollow organ or
cavity of the body for functional and molecular PA imaging of target tissue.
Various endoscopic PA probes have been developed for different applications,
including the intravascular imaging of lipids in atherosclerotic plaque and
endoscopic imaging of colon cancer. In this paper, the authors review
representative probe configurations and corresponding preclinical applications.
In addition, the potential challenges and future directions of endoscopic PA
imaging are discussed.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California Irvine,
Irvine, CA 92617, USA
| | - Gengxi Lu
- Roski Eye Institute, Keck School of Medicine, University of
Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Roski Eye Institute, Keck School of Medicine, University of
Southern California, Los Angeles, CA 90033, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California Irvine,
Irvine, CA 92617, USA
- The Edwards Lifesciences Center for Cardiovascular
Technology, University of California Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of
California Irvine, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
7
|
Canu M, Broisat A, Riou L, Vanzetto G, Fagret D, Ghezzi C, Djaileb L, Barone-Rochette G. Non-invasive Multimodality Imaging of Coronary Vulnerable Patient. Front Cardiovasc Med 2022; 9:836473. [PMID: 35282382 PMCID: PMC8907666 DOI: 10.3389/fcvm.2022.836473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerotic plaque rupture or erosion remain the primary mechanism responsible for myocardial infarction and the major challenge of cardiovascular researchers is to develop non-invasive methods of accurate risk prediction to identify vulnerable plaques before the event occurs. Multimodal imaging, by CT-TEP or CT-SPECT, provides both morphological and activity information about the plaque and cumulates the advantages of anatomic and molecular imaging to identify vulnerability features among coronary plaques. However, the rate of acute coronary syndromes remains low and the mechanisms leading to adverse events are clearly more complex than initially assumed. Indeed, recent studies suggest that the detection of a state of vulnerability in a patient is more important than the detection of individual sites of vulnerability as a target of focal treatment. Despite this evolution of concepts, multimodal imaging offers a strong potential to assess patient's vulnerability. Here we review the current state of multimodal imaging to identify vulnerable patients, and then focus on emerging imaging techniques and precision medicine.
Collapse
Affiliation(s)
- Marjorie Canu
- Department of Cardiology, University Hospital, Grenoble Alpes, Grenoble, France
| | - Alexis Broisat
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Laurent Riou
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Gerald Vanzetto
- Department of Cardiology, University Hospital, Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- French Alliance Clinical Trial, French Clinical Research Infrastructure Network, Paris, France
| | - Daniel Fagret
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- Department of Nuclear Medicine, University Hospital, Grenoble Alpes, Grenoble, France
| | - Catherine Ghezzi
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Loic Djaileb
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- Department of Nuclear Medicine, University Hospital, Grenoble Alpes, Grenoble, France
| | - Gilles Barone-Rochette
- Department of Cardiology, University Hospital, Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- French Alliance Clinical Trial, French Clinical Research Infrastructure Network, Paris, France
- *Correspondence: Gilles Barone-Rochette
| |
Collapse
|
8
|
Prasad K, Reddy S S, Kaur J, Rao k R, Kumar S, Kadiyala V, Ram Kashyap J, Panwar G. Gender-based in vivo comparison of culprit plaque characteristics and plaque microstructures using optical coherence tomography in acute coronary syndrome. J Cardiovasc Thorac Res 2021; 13:277-284. [PMID: 35047132 PMCID: PMC8749362 DOI: 10.34172/jcvtr.2021.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: Women perform worse after acute coronary syndrome (ACS) than men. The reason for these differences is unclear. The aim was to ascertain gender differences in the culprit plaque characteristics in ACS.
Methods: Patients with ACS undergoing percutaneous coronary intervention for the culprit vessel underwent optical coherence tomography (OCT) imaging. Culprit plaque was identified as lipid rich,fibrous, and calcific plaque. Mechanisms underlying ACS are classified as plaque rupture, erosion,or calcified nodule. A lipid rich plaque along with thin-cap fibroatheroma (TCFA) was a vulnerable plaque. Plaque microstructures including cholesterol crystals, macrophages, and microvessels were noted.
Results: A total of 52 patients were enrolled (men=29 and women=23). Baseline demographic features were similar in both the groups except men largely were current smokers (P <0.001). Plaque morphology,men vs. women: lipid rich 88.0% vs. 90.5%; fibrous 4% vs 0%; calcific 8.0% vs. 9.5% (P = 0.64). Of the ACS mechanisms in males versus females; plaque rupture (76.9 % vs. 50 %), plaque erosion (15.4 % vs.40 %) and calcified nodule (7.7 % vs. 10 %) was noted (P = 0.139). Fibrous cap thickness was (50.19 ±11.17 vs. 49.00 ± 10.71 mm, P = 0.71) and thin-cap fibroatheroma (96.2% vs. 95.0%, P = 1.0) in men and women respectively. Likewise no significant difference in presence of macrophages (42.3 % vs. 30%, P = 0.76), microvessels (73.1% vs. 60 %, P = 0.52) and cholesterol crystals (92.3% vs. 80%, P = 0.38).
Conclusion: No significant gender-based in-vivo differences could be discerned in ACS patients’ culprit plaques morphology, characteristics, and underlying mechanisms.
Collapse
Affiliation(s)
- Krishna Prasad
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sreeniavs Reddy S
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Jaspreet Kaur
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Raghavendra Rao k
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Suraj Kumar
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Vikas Kadiyala
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Jeet Ram Kashyap
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Garima Panwar
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| |
Collapse
|
9
|
Aguirre AD, Arbab-Zadeh A, Soeda T, Fuster V, Jang IK. Optical Coherence Tomography of Plaque Vulnerability and Rupture: JACC Focus Seminar Part 1/3. J Am Coll Cardiol 2021; 78:1257-1265. [PMID: 34531027 PMCID: PMC9851427 DOI: 10.1016/j.jacc.2021.06.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 01/21/2023]
Abstract
Plaque rupture is the most common cause of acute coronary syndromes and sudden cardiac death. Characteristics and pathobiology of vulnerable plaques prone to plaque rupture have been studied extensively over 2 decades in humans using optical coherence tomography (OCT), an intravascular imaging technique with micron scale resolution. OCT studies have identified key features of plaque vulnerability and described the in vivo characteristics and spatial distribution of thin cap fibroatheromas as major precursors to plaque rupture. In addition, OCT data supports the evolving understanding of coronary heart disease as a panvascular process associated with inflammation. In the setting of high atherosclerotic burden, plaque ruptures often occur at multiple sites in the coronary arteries, and plaque progression and healing are dynamic processes modulated by systemic risk factors. This review details major investigations with intravascular OCT into the biology and clinical implications of plaque vulnerability and plaque rupture.
Collapse
Affiliation(s)
- Aaron D. Aguirre
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Armin Arbab-Zadeh
- Department of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Tsunenari Soeda
- Department of Cardiology, Nara Medical University, Nara, Japan
| | - Valentin Fuster
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Kyung Hee University, Seoul, South Korea
| |
Collapse
|
10
|
Jelly ET, Kwun J, Schmitz R, Farris AB, Steelman ZA, Sudan DL, Knechtle SJ, Wax A. Optical coherence tomography of small intestine allograft biopsies using a handheld surgical probe. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210108R. [PMID: 34561973 PMCID: PMC8461564 DOI: 10.1117/1.jbo.26.9.096008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE The current gold standard for monitoring small intestinal transplant (IT) rejection is endoscopic visual assessment and biopsy of suspicious lesions; however, these lesions are only superficially visualized by endoscopy. Invasive biopsies provide a coarse sampling of tissue health without depicting the true presence and extent of any pathology. Optical coherence tomography (OCT) presents a potential alternative approach with significant advantages over traditional white-light endoscopy. AIM The aim of our investigation was to evaluate OCT performance in distinguishing clinically relevant morphological features associated with IT graft failure. APPROACH OCT was applied to evaluate the small bowel tissues of two rhesus macaques that had undergone IT of the ileum. The traditional assessment from routine histological observation was compared with OCT captured using a handheld surgical probe during the days post-transplant and subsequently was compared with histophaology. RESULTS The reported OCT system was capable of identifying major biological landmarks in healthy intestinal tissue. Following IT, one nonhuman primate (NHP) model suffered a severe graft ischemia, and the second NHP graft failed due to acute cellular rejection. OCT images show visual evidence of correspondence with histological signs of IT rejection. CONCLUSIONS Results suggest that OCT imaging has significant potential to reveal morphological changes associated with IT rejection and to improve patient outcomes overall.
Collapse
Affiliation(s)
- Evan T. Jelly
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Jean Kwun
- Duke University Medical Center, Duke Transplant Center, Department of Surgery, Durham, United States
| | - Robin Schmitz
- Duke University Medical Center, Duke Transplant Center, Department of Surgery, Durham, United States
| | - Alton B. Farris
- Emory University, Department of Pathology, Atlanta, Georgia, United States
| | - Zachary A. Steelman
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Debra L. Sudan
- Duke University Medical Center, Duke Transplant Center, Department of Surgery, Durham, United States
| | - Stuart J. Knechtle
- Duke University Medical Center, Duke Transplant Center, Department of Surgery, Durham, United States
| | - Adam Wax
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| |
Collapse
|
11
|
Sung JH, Chang JH. Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3907. [PMID: 34198822 PMCID: PMC8201242 DOI: 10.3390/s21113907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Intravascular ultrasound (IVUS) is a valuable imaging modality for the diagnosis of atherosclerosis. It provides useful clinical information, such as lumen size, vessel wall thickness, and plaque composition, by providing a cross-sectional vascular image. For several decades, IVUS has made remarkable progress in improving the accuracy of diagnosing cardiovascular disease that remains the leading cause of death globally. As the quality of IVUS images mainly depends on the performance of the IVUS transducer, various IVUS transducers have been developed. Therefore, in this review, recently developed mechanically rotating IVUS transducers, especially ones exploiting piezoelectric ceramics or single crystals, are discussed. In addition, this review addresses the history and technical challenges in the development of IVUS transducers and the prospects of next-generation IVUS transducers.
Collapse
Affiliation(s)
| | - Jin-Ho Chang
- Department of Information and Communication Engineering, Deagu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
12
|
Balaji A, Kelsey LJ, Majeed K, Schultz CJ, Doyle BJ. Coronary artery segmentation from intravascular optical coherence tomography using deep capsules. Artif Intell Med 2021; 116:102072. [PMID: 34020750 DOI: 10.1016/j.artmed.2021.102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
The segmentation and analysis of coronary arteries from intravascular optical coherence tomography (IVOCT) is an important aspect of diagnosing and managing coronary artery disease. Current image processing methods are hindered by the time needed to generate expert-labelled datasets and the potential for bias during the analysis. Therefore, automated, robust, unbiased and timely geometry extraction from IVOCT, using image processing, would be beneficial to clinicians. With clinical application in mind, we aim to develop a model with a small memory footprint that is fast at inference time without sacrificing segmentation quality. Using a large IVOCT dataset of 12,011 expert-labelled images from 22 patients, we construct a new deep learning method based on capsules which automatically produces lumen segmentations. Our dataset contains images with both blood and light artefacts (22.8 %), as well as metallic (23.1 %) and bioresorbable stents (2.5 %). We split the dataset into a training (70 %), validation (20 %) and test (10 %) set and rigorously investigate design variations with respect to upsampling regimes and input selection. We show that our developments lead to a model, DeepCap, that is on par with state-of-the-art machine learning methods in terms of segmentation quality and robustness, while using as little as 12 % of the parameters. This enables DeepCap to have per image inference times up to 70 % faster on GPU and up to 95 % faster on CPU compared to other state-of-the-art models. DeepCap is a robust automated segmentation tool that can aid clinicians to extract unbiased geometrical data from IVOCT.
Collapse
Affiliation(s)
- Arjun Balaji
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| | - Kamran Majeed
- Department of Cardiology, Royal Perth Hospital, Perth, Australia; School of Medicine, The University of Western Australia, Perth, Australia; University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Carl J Schultz
- Department of Cardiology, Royal Perth Hospital, Perth, Australia; School of Medicine, The University of Western Australia, Perth, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, UK.
| |
Collapse
|
13
|
Schade DS, Burchiel S, Eaton RP. A Pathophysiologic Primary Prevention Review of Aspirin Administration to Prevent Cardiovascular Thrombosis. Endocr Pract 2021; 26:787-793. [PMID: 33471648 DOI: 10.4158/ep-2020-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/19/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Cardiovascular disease is the leading metabolic cause of mortality in the United States. Among current therapies, low-dose aspirin has been shown to reduce cardiovascular thrombosis. However, aspirin also causes major complications (hemorrhagic stroke and gastrointestinal bleeding). The American Heart Association recommends that aspirin only be prescribed for "high-risk" individuals. No guidelines are available as to the duration of aspirin therapy. METHODS A reasonable approach to aspirin administration is to determine the appropriateness of aspirin therapy based on the pathophysiology of coronary artery thrombosis. It suggests that the coronary artery calcium (CAC) score be used as the basis for determining "high risk." This score was shown to accurately predict future cardiovascular events. The greater the CAC score, the greater the extent of coronary artery atherosclerotic plaque and future cardiovascular risk. RESULTS A CAC score >400 places an individual at very-high 10-year risk for an atherosclerotic event. Since aggressive medical therapy initiates stabilization of unstable atherosclerotic plaques within 1 month and reversal within 2 years, this treatment significantly reduces the risk of the individual for a cardiovascular event. Thus, most individuals aged <75 years with a CAC score of >400 should receive aspirin therapy for a maximum of 2 years. CONCLUSION Utilization of a CAC score greatly simplifies the decision of whom to treat with aspirin and for what duration. Importantly, focusing on two factors (hemorrhage and plaque stabilization) is easily understood by both the physician and the patient. ABBREVIATIONS CAC = coronary artery calcium; CVD = cardiovascular disease; LDL = low-density lipoprotein; OCT = optical coherence tomography.
Collapse
Affiliation(s)
- David S Schade
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Division of Endocrinology.
| | - Scott Burchiel
- University of New Mexico Health Sciences Center, Department of Pharmaceutical Sciences, Albuquerque, New Mexico
| | - R Philip Eaton
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Division of Endocrinology
| |
Collapse
|
14
|
Muller J, Madder R. OCT-NIRS Imaging for Detection of Coronary Plaque Structure and Vulnerability. Front Cardiovasc Med 2020; 7:90. [PMID: 32582767 PMCID: PMC7287010 DOI: 10.3389/fcvm.2020.00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
A combination optical coherence tomography and near-infrared spectroscopy (OCT-NIRS) coronary imaging system is being developed to improve the care of coronary patients. While stenting has improved, complications continue to occur at the stented site and new events are caused by unrecognized vulnerable plaques. An OCT-NIRS device has potential to improve secondary prevention by optimizing stenting and by identifying vulnerable patients and vulnerable plaques. OCT is already in widespread use world-wide to optimize coronary artery stenting. It provides automated lumen detection and can identify features of coronary plaques not accurately identified by angiography or intravascular ultrasound. The ILUMIEN IV study, to be completed in 2022, will determine if OCT-guided stenting will yield better clinical outcomes than angiographic guidance alone. While the superb spatial resolution of OCT enables the identification of many plaque structural features, the detection by OCT of lipids, an important component of vulnerable plaques, is limited by suboptimal specificity and interobserver agreement. In contrast, NIRS has been extensively validated for lipid-rich plaque detection against the gold-standard of histology and is the only FDA-approved method to identify coronary lipids. Studies in patients have demonstrated that NIRS detects lipid in culprit lesions causing coronary events. In 2019, the positive results of the prospective Lipid-Rich Plaque Study led to FDA approval of NIRS for detection of high-risk plaques and patients. The complementarity of OCT for plaque structure and NIRS for plaque composition led to the sequential performance of NIRS and OCT imaging in patients. NIRS identified lipid while OCT determined the thickness of the cap over the lipid pool. The positive results obtained with OCT and NIRS imaging led to development of a prototype combined OCT-NIRS catheter that can provide co-registered OCT and NIRS data in a single pullback. The data will provide structural and chemical information likely to improve stenting and deliver more accurate identification of vulnerable plaques and vulnerable patients. More precise diagnosis will then lead to OCT-NIRS guided treatment trials to improve secondary prevention. Success in secondary prevention will then facilitate development of improved primary prevention with invasive imaging and effective treatment of patients identified by non-invasive methods.
Collapse
Affiliation(s)
- James Muller
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ryan Madder
- Spectrum Health, Grand Rapids, MI, United States
| |
Collapse
|
15
|
Franchi F, Olthoff M, Krier J, Noble C, Al-Hijji M, Ramaswamy V, Witt T, Burke M, Benscoter M, Lerman A, Sandhu GS, Rodriguez-Porcel M. A Metabolic Intravascular Platform to Study FDG Uptake in Vascular Injury. Cardiovasc Eng Technol 2020; 11:328-336. [PMID: 32002814 DOI: 10.1007/s13239-020-00457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/24/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Metabolic alterations underlie many pathophysiological conditions, and their understanding is critical for the development of novel therapies. Although the assessment of metabolic changes in vivo has been historically challenging, recent developments in molecular imaging have allowed us to study novel metabolic research concepts directly in the living subject, bringing us closer to patients. However, in many instances, there is need for sensors that are in close proximity to the organ under investigation, for example to study vascular metabolism. METHODS In this study, we developed and validated a metabolic detection platform directly in the living subject under an inflammatory condition. The signal collected by a scintillating fiber is amplified using a photomultiplier tube and decodified by an in-house tunable analysis platform. For in vivo testing, we based our experiments on the metabolic characteristics of macrophages, cells closely linked to inflammation and avid for glucose and its analog 18F-fluorodeoxyglucose (18F-FDG). The sensor was validated in New Zealand rabbits, in which inflammation was induced by either a) high cholesterol (HC) diet for 16 weeks or b) vascular balloon endothelial denudation followed by HC diet. RESULTS There was no difference in weight, hemodynamics, blood pressure, or heart rate between the groups. Vascular inflammation was detected by the metabolic sensor (Inflammation: 0.60 ± 0.03 AU vs. control: 0.48 ± 0.03 AU, p = 0.01), even though no significant inflammation/atherosclerosis was detected by intravascular ultrasound, underscoring the high sensitivity of the system. These findings were confirmed by the presence of macrophages on ex vivo aortic tissue staining. CONCLUSION In this study, we validated a tunable very sensitive metabolic sensor platform that can be used for the detection of vascular metabolism, such as inflammation. This sensor can be used not only for the detection of macrophage activity but, with alternative probes, it could allow the detection of other pathophysiological processes.
Collapse
Affiliation(s)
- F Franchi
- Department of Cardiovascular Medicine, Mayo Clinic School of Medicine Rochester, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA.
| | - M Olthoff
- Department of Cardiovascular Medicine, Mayo Clinic School of Medicine Rochester, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - J Krier
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine Rochester, Rochester, MN, 55902, USA
| | - C Noble
- Department of Cardiovascular Medicine, Mayo Clinic School of Medicine Rochester, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - M Al-Hijji
- Department of Cardiovascular Medicine, Mayo Clinic School of Medicine Rochester, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - V Ramaswamy
- Department of Cardiovascular Medicine, Mayo Clinic School of Medicine Rochester, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - T Witt
- Department of Cardiovascular Medicine, Mayo Clinic School of Medicine Rochester, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - M Burke
- Division of Engineering, Mayo Clinic School of Medicine Rochester, Rochester, MN, 55902, USA
| | - M Benscoter
- Division of Engineering, Mayo Clinic School of Medicine Rochester, Rochester, MN, 55902, USA
| | - A Lerman
- Department of Cardiovascular Medicine, Mayo Clinic School of Medicine Rochester, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - G S Sandhu
- Department of Cardiovascular Medicine, Mayo Clinic School of Medicine Rochester, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA
| | - M Rodriguez-Porcel
- Department of Cardiovascular Medicine, Mayo Clinic School of Medicine Rochester, Mayo Clinic, 200 First St SW, Rochester, MN, 55902, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine Rochester, Rochester, MN, 55902, USA
| |
Collapse
|
16
|
Fragiotta S, Fernández-Avellaneda P, Breazzano MP, Curcio CA, Leong BCS, Kato K, Yannuzzi LA, Freund KB. The Fate and Prognostic Implications of Hyperreflective Crystalline Deposits in Nonneovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2019; 60:3100-3109. [PMID: 31323680 DOI: 10.1167/iovs.19-26589] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore patterns of disease progression in nonneovascular age-related macular degeneration (AMD) associated with hyperreflective crystalline deposits (HCDs) in the sub-retinal pigment epithelium-basal laminar space. Methods Retrospective review of medical records, multimodal imaging, and longitudinal eye-tracked near-infrared reflectance (NIR) and optical coherence tomography (OCT) spanning ≥2 years. NIR/OCT images were analyzed with ImageJ software to identify HCD morphology and location. Associated macular complications were reviewed from the time of HCD detection to the most recent follow-up, using NIR/OCT. Results Thirty-three eyes with HCDs from 33 patients (mean age: 72 ± 7.5 years) had 46.7 months (95% confidence limits: 33.7, 59.6) of serial eye-tracked NIR/OCT follow-up. Baseline best-corrected visual acuity (BCVA) was 0.44 logMAR (Snellen equivalent 20/55). At a mean of 11.3 months (3.1, 19.6) after HCD detection, 31/33 (93.9%) eyes had developed macular complications including de novo areas of complete retinal pigment epithelium and outer retinal atrophy (cRORA) in 21/33 (64%) eyes, enlargement of preexisting cRORA in 4/33 (12%) eyes, and incident macular neovascularization in 3/33 (9%) eyes. Movement and clearance of HCDs in 9/33 (27%) eyes was associated with enlargement of preexisting cRORA (r = 0.44, P = 0.02). BCVA at the last follow-up visit had decreased to 0.72 logMAR (20/105). Conclusions Eyes with nonneovascular AMD demonstrating HCDs are at risk for vision loss due to macular complications, particularly when movement and clearance of these structures appear on multimodal imaging. HCD reflectivity and dynamism may be amenable to automated recognition and analysis to assess cellular activity related to drusen end-stages.
Collapse
Affiliation(s)
- Serena Fragiotta
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, United States.,Department of Medico-Surgical Sciences and Biotechnologies, U.O.S.D. Ophthalmology, Sapienza University of Rome, Rome, Italy
| | - Pedro Fernández-Avellaneda
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, Basurto University Hospital, Bilbao, Spain
| | - Mark P Breazzano
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, New York University School of Medicine, New York, New York, United States.,Columbia University College of Physicians and Surgeons, Harkness Eye Institute, New York, New York, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Science, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, United States
| | - Belinda C S Leong
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, United States
| | - Kenneth Kato
- Vitreous Retina Macula Consultants of New York, New York, New York, United States
| | - Lawrence A Yannuzzi
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, New York University School of Medicine, New York, New York, United States.,Columbia University College of Physicians and Surgeons, Harkness Eye Institute, New York, New York, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, New York University School of Medicine, New York, New York, United States.,Columbia University College of Physicians and Surgeons, Harkness Eye Institute, New York, New York, United States
| |
Collapse
|
17
|
Choi SSS, Lashkari B, Mandelis A, Weyers JJ, Boyes A, Foster SF, Alves-Kotzev N, Courtney B. Interference-free Detection of Lipid-laden Atherosclerotic Plaques by 3D Co-registration of Frequency-Domain Differential Photoacoustic and Ultrasound Radar Imaging. Sci Rep 2019; 9:12400. [PMID: 31455883 PMCID: PMC6712001 DOI: 10.1038/s41598-019-48896-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/15/2019] [Indexed: 11/13/2022] Open
Abstract
As lipid composition of atherosclerotic plaques is considered to be one of the primary indicators for plaque vulnerability, a diagnostic modality that can sensitively evaluate their necrotic core is highly desirable in atherosclerosis imaging. In this regard, intravascular photoacoustic (IVPA) imaging is an emerging plaque detection modality that provides lipid-specific chemical information of arterial walls. Within the near-infrared window, a 1210-nm optical source is usually chosen for IVPA applications because lipid exhibits a strong absorption peak at that wavelength. However, other arterial tissues also show some degree of absorption near 1210 nm and generate undesirable interfering PA signals. In this study, a novel wavelength-modulated Intravascular Differential Photoacoustic Radar (IV-DPAR) modality was introduced as an interference-free detection technique for a more accurate and reliable diagnosis of plaque progression. By using two low-power continuous-wave laser diodes in a differential manner, IV-DPAR could efficiently suppress undesirable absorptions and system noise, while dramatically improving system sensitivity and specificity to cholesterol, the primary ingredient of plaque necrotic core. When co-registered with intravascular ultrasound imaging, IV-DPAR could sensitively locate and characterize the lipid contents of plaques in human atherosclerotic arteries, regardless of their size and depth.
Collapse
Affiliation(s)
- Sung Soo Sean Choi
- Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto, ON, M5S3G8, Canada
| | - Bahman Lashkari
- Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto, ON, M5S3G8, Canada
| | - Andreas Mandelis
- Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto, ON, M5S3G8, Canada.
| | - Jill J Weyers
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, M4N3M5, Canada
| | - Aaron Boyes
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, M4N3M5, Canada
| | - Stuart F Foster
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, M4N3M5, Canada
| | | | - Brian Courtney
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, ON, M4N3M5, Canada
- Conavi Medical Inc., North York, ON, M3B2V1, Canada
| |
Collapse
|
18
|
Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J Cardiovasc Dev Dis 2019; 6:jcdd6030026. [PMID: 31357630 PMCID: PMC6787609 DOI: 10.3390/jcdd6030026] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Plaque development and rupture are hallmarks of atherosclerotic vascular disease. Despite current therapeutic developments, there is an unmet necessity in the prevention of atherosclerotic vascular disease. It remains a challenge to determine at an early stage if atherosclerotic plaque will become unstable and vulnerable. The arrival of molecular imaging is receiving more attention, considering it allows for a better understanding of the biology of human plaque and vulnerabilities. Various plaque therapies with common goals have been tested in high-risk patients with cardiovascular disease. In this work, the process of plaque instability, along with current technologies for sensing and predicting high-risk plaques, is debated. Updates on potential novel therapeutic approaches are also summarized.
Collapse
|
19
|
Choi SSS, Lashkari B, Mandelis A, Son J, Alves-Kotzev N, Foster SF, Harduar M, Courtney B. Frequency-domain differential photoacoustic radar: theory and validation for ultrasensitive atherosclerotic plaque imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 31197987 PMCID: PMC6977017 DOI: 10.1117/1.jbo.24.6.066003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 05/10/2023]
Abstract
Lipid composition of atherosclerotic plaques is considered to be highly related to plaque vulnerability. Therefore, a specific diagnostic or imaging modality that can sensitively evaluate plaques' necrotic core is desirable in atherosclerosis imaging. In this regard, intravascular photoacoustic (IVPA) imaging is an emerging plaque detection technique that provides lipid-specific chemical information from an arterial wall with great optical contrast and long acoustic penetration depth. While, in the near-infrared window, a 1210-nm optical source is usually chosen for IVPA applications since lipids exhibit a strong absorption peak at that wavelength, the sensitivity problem arises in the conventional single-ended systems as other arterial tissues also show some degree of absorption near that spectral region, thereby generating undesirably interfering photoacoustic (PA) signals. A theory of the high-frequency frequency-domain differential photoacoustic radar (DPAR) modality is introduced as a unique detection technique for accurate and molecularly specific evaluation of vulnerable plaques. By assuming two low-power continuous-wave optical sources at ∼1210 and ∼970 nm in a differential manner, DPAR theory and the corresponding simulation/experiment studies suggest an imaging modality that is only sensitive and specific to the spectroscopically defined imaging target, cholesterol.
Collapse
Affiliation(s)
- Sung Soo Sean Choi
- University of Toronto, Center for Advanced Diffusion-Wave and Photoacoustic Technologies, Department of Mechanical and Industrial Engineering, Toronto, Ontario, Canada
| | - Bahman Lashkari
- University of Toronto, Center for Advanced Diffusion-Wave and Photoacoustic Technologies, Department of Mechanical and Industrial Engineering, Toronto, Ontario, Canada
| | - Andreas Mandelis
- University of Toronto, Center for Advanced Diffusion-Wave and Photoacoustic Technologies, Department of Mechanical and Industrial Engineering, Toronto, Ontario, Canada
| | - Jungik Son
- Sunnybrook Research Institute, Physical Sciences Department, Toronto, Ontario, Canada
| | - Natasha Alves-Kotzev
- Sunnybrook Research Institute, Physical Sciences Department, Toronto, Ontario, Canada
| | - Stuart F. Foster
- Sunnybrook Research Institute, Physical Sciences Department, Toronto, Ontario, Canada
| | | | - Brian Courtney
- Sunnybrook Research Institute, Physical Sciences Department, Toronto, Ontario, Canada
- Conavi Medical, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Wells WA, Thrall M, Sorokina A, Fine J, Krishnamurthy S, Haroon A, Rao B, Shevchuk MM, Wolfsen HC, Tearney GJ, Hariri LP. In Vivo and Ex Vivo Microscopy: Moving Toward the Integration of Optical Imaging Technologies Into Pathology Practice. Arch Pathol Lab Med 2018; 143:288-298. [PMID: 30525931 DOI: 10.5858/arpa.2018-0298-ra] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The traditional surgical pathology assessment requires tissue to be removed from the patient, then processed, sectioned, stained, and interpreted by a pathologist using a light microscope. Today, an array of alternate optical imaging technologies allow tissue to be viewed at high resolution, in real time, without the need for processing, fixation, freezing, or staining. Optical imaging can be done in living patients without tissue removal, termed in vivo microscopy, or also in freshly excised tissue, termed ex vivo microscopy. Both in vivo and ex vivo microscopy have tremendous potential for clinical impact in a wide variety of applications. However, in order for these technologies to enter mainstream clinical care, an expert will be required to assess and interpret the imaging data. The optical images generated from these imaging techniques are often similar to the light microscopic images that pathologists already have expertise in interpreting. Other clinical specialists do not have this same expertise in microscopy, therefore, pathologists are a logical choice to step into the developing role of microscopic imaging expert. Here, we review the emerging technologies of in vivo and ex vivo microscopy in terms of the technical aspects and potential clinical applications. We also discuss why pathologists are essential to the successful clinical adoption of such technologies and the educational resources available to help them step into this emerging role.
Collapse
Affiliation(s)
- Wendy A Wells
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael Thrall
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anastasia Sorokina
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jeffrey Fine
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Savitri Krishnamurthy
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Attiya Haroon
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Babar Rao
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria M Shevchuk
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Herbert C Wolfsen
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Guillermo J Tearney
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lida P Hariri
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
21
|
Schneider H, Steigerwald-Otremba AS, Häfer M, Krause F, Scholz M, Haak R. Is Optical Coherence Tomography a Potential Tool to Evaluate Marginal Adaptation of Class III/IV Composite Restorations In Vivo? Oper Dent 2018; 44:242-253. [PMID: 30517066 DOI: 10.2341/17-192-c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Margin analysis of Class III and IV composite restorations in vitro and in vivo occurred by scanning electron microscopy (SEM) and optical coherence tomography (OCT). The results were compared and related to clinical evaluation. METHODS AND MATERIALS Eight Class III composite restorations were imaged in vitro using OCT and SEM. The margins were analyzed quantitatively. OCT signals were verified by assignment to the criteria perfect margin, gap, and positive/negative ledge. In vivo quantitative margin analysis of Class III/IV composite restorations made of the micro-hybrid composite Venus combined with the self-etch adhesive iBond Gluma inside (1-SE) or etch-and-rinse adhesive Gluma Comfort Bond (2-ER) (all Heraeus Kulzer) was carried out using OCT and SEM after 90 months of clinical function. The results were compared with clinical evaluation (US Public Health Service criteria; marginal integrity, marginal discoloration). RESULTS In vitro, the correlation between OCT and SEM was high for all four margin criteria (Kendall tau b [τb] correlation: 0.64-0.92, pi≤0.026), with no significant differences between OCT and SEM (pi≥0.63). In vivo, a moderate correlation was observed (τb: 0.38-0.45, pi<0.016). Clinically, the cumulative failure rate in the criterion marginal integrity was higher for the 1-SE group (baseline 90 M, p=0.011). Similarly, OCT and SEM detected higher percentages of the criterion gap in the 1-SE group (p: 0.027/0.002), in contrast to perfect margin. Both, gap and perfect margin ranged widely between 0.0% and 88.7% (OCT) and between 0.0% and 89.0% (SEM). CONCLUSION Despite the positive selection bias after 90 months with only a few patients left, quantitative margin analysis allows for differentiation between the two adhesives at this specific date. OCT in particular offers the possibility to evaluate marginal integrity directly in vivo.
Collapse
|
22
|
Li J, Fejes P, Lorenser D, Quirk BC, Noble PB, Kirk RW, Orth A, Wood FM, Gibson BC, Sampson DD, McLaughlin RA. Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes. Sci Rep 2018; 8:14789. [PMID: 30287830 PMCID: PMC6172275 DOI: 10.1038/s41598-018-32407-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/05/2018] [Indexed: 01/12/2023] Open
Abstract
Miniaturised optical coherence tomography (OCT) fibre-optic probes have enabled high-resolution cross-sectional imaging deep within the body. However, existing OCT fibre-optic probe fabrication methods cannot generate miniaturised freeform optics, which limits our ability to fabricate probes with both complex optical function and dimensions comparable to the optical fibre diameter. Recently, major advances in two-photon direct laser writing have enabled 3D printing of arbitrary three-dimensional micro/nanostructures with a surface roughness acceptable for optical applications. Here, we demonstrate the feasibility of 3D printing of OCT probes. We evaluate the capability of this method based on a series of characterisation experiments. We report fabrication of a micro-optic containing an off-axis paraboloidal total internal reflecting surface, its integration as part of a common-path OCT probe, and demonstrate proof-of-principle imaging of biological samples.
Collapse
Affiliation(s)
- Jiawen Li
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia. .,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Peter Fejes
- Optical + Biomedical Engineering Lab, University of Western Australia, Perth, WA, 6009, Australia
| | | | - Bryden C Quirk
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Peter B Noble
- Centre for Neonatal Research and Education, The University of Western Australia, Perth, WA, 6009, Australia.,School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Rodney W Kirk
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Antony Orth
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, VIC, 3000, Australia
| | - Fiona M Wood
- School of Surgery, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brant C Gibson
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, VIC, 3000, Australia
| | - David D Sampson
- Optical + Biomedical Engineering Lab, University of Western Australia, Perth, WA, 6009, Australia.,Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Perth, WA, 6009, Australia.,The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Robert A McLaughlin
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
23
|
A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomography. SENSORS 2018; 18:s18051540. [PMID: 29757246 PMCID: PMC5981871 DOI: 10.3390/s18051540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/30/2022]
Abstract
A novel Mach-Zehnder interferometer using eccentric-core fiber (ECF) design for optical coherence tomography (OCT) is proposed and demonstrated. Instead of the commercial single-mode fiber (SMF), the ECF is used as one interference arm of the implementation. Because of the offset location of the eccentric core, it is sensitive to directional bending and the optical path difference (OPD) of two interference arms can be adjusted with high precision. The birefringence of ECF is calculated and experimentally measured, which demonstrates the polarization sensitivity of the ECF proposed in the paper is similar to that of SMF. Such a structure can replace the reference optical delay line to form an all-fiber passive device. A mirror is used as a sample for analyzing the ECF bending responses of the system. Besides, four pieces of overlapping glass slides as sample are experimentally measured as well.
Collapse
|
24
|
Fang L, Wang C, Li S, Yan J, Chen X, Rabbani H. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 29188661 DOI: 10.1117/1.jbo.22.11.116011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/08/2017] [Indexed: 05/07/2023]
Abstract
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.
Collapse
Affiliation(s)
- Leyuan Fang
- Hunan University, College of Electrical and Information Engineering, Changsha, China
| | - Chong Wang
- Hunan University, College of Electrical and Information Engineering, Changsha, China
| | - Shutao Li
- Hunan University, College of Electrical and Information Engineering, Changsha, China
| | - Jun Yan
- Hunan University, College of Electrical and Information Engineering, Changsha, China
| | - Xiangdong Chen
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Department of Ophthalmology,, China
| | - Hossein Rabbani
- Isfahan University of Medical Sciences, Medical Image and Signal Processing Research Center, Isfahan, Iran
| |
Collapse
|
25
|
Detection of spontaneous coronary artery spasm with optical coherence tomography in a patient with acute coronary syndrome. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2017; 18:7-9. [DOI: 10.1016/j.carrev.2017.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 11/23/2022]
|
26
|
Bouma BE, Villiger M, Otsuka K, Oh WY. Intravascular optical coherence tomography [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2660-2686. [PMID: 28663897 PMCID: PMC5480504 DOI: 10.1364/boe.8.002660] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/03/2023]
Abstract
Shortly after the first demonstration of optical coherence tomography for imaging the microstructure of the human eye, work began on developing systems and catheters suitable for intravascular imaging in order to diagnose and investigate atherosclerosis and potentially to monitor therapy. This review covers the driving considerations of the clinical application and its constraints, the major engineering milestones that enabled the current, high-performance commercial imaging systems, the key studies that laid the groundwork for image interpretation, and the clinical research that traces intravascular optical coherence tomography (OCT) from early human pilot studies to current clinical trials.
Collapse
Affiliation(s)
- Brett E Bouma
- Harvard Medical School and Massachusetts General Hospital, Boston, MA 02171, USA
- Institute for Medical Engineering and Science, Cambridge, MA, 02139, USA
| | - Martin Villiger
- Harvard Medical School and Massachusetts General Hospital, Boston, MA 02171, USA
| | - Kenichiro Otsuka
- Harvard Medical School and Massachusetts General Hospital, Boston, MA 02171, USA
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
- KI for Health Science and Technology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
27
|
Varna M, Xuan HV, Fort E. Gold nanoparticles in cardiovascular imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1470] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/01/2017] [Accepted: 02/25/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Mariana Varna
- Institut LangevinESPCI Paris, CNRS, PSL Research UniversityParisFrance
- Institut Galien Paris‐Sud UMR 8612, CNRSUniversité Paris‐Sud/Paris‐Saclay Faculté de PharmacieChâtenay‐MalabryFrance
| | - Hoa V. Xuan
- Institut LangevinESPCI Paris, CNRS, PSL Research UniversityParisFrance
- Faculty of Physics and TechnologyThai Nguyen University of Science (TNUS)Thai NguyenVietnam
| | - Emmanuel Fort
- Institut LangevinESPCI Paris, CNRS, PSL Research UniversityParisFrance
| |
Collapse
|
28
|
Azinfar L, Ravanfar M, Wang Y, Zhang K, Duan D, Yao G. High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography. JOURNAL OF BIOPHOTONICS 2017; 10:231-241. [PMID: 26663698 DOI: 10.1002/jbio.201500229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 05/18/2023]
Abstract
The biomechanical properties of artery are primarily determined by the fibrous structures in the vessel wall. Many vascular diseases are associated with alternations in the orientation and alignment of the fibrous structure in the arterial wall. Knowledge on the structural features of the artery wall is crucial to our understanding of the biology of vascular diseases and the development of novel therapies. Optical coherence tomography (OCT) and polarization-sensitive OCT have shown great promise in imaging blood vessels due to their high resolution, fast acquisition, good imaging depth, and large field of view. However, the feasibility of using OCT based methods for imaging fiber orientation and distribution in the arterial wall has not been investigated. Here we show that the optical polarization tractography (OPT), a technology developed from Jones matrix OCT, can reveal the fiber orientation and alignment in the bovine common carotid artery. The fiber orientation and alignment data obtained in OPT provided a robust contrast marker to clearly resolve the intima and media boundary of the carotid artery wall. Optical polarization tractography can visualize fiber orientation and alignment in carotid artery.
Collapse
Affiliation(s)
- Leila Azinfar
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | | | - Yuanbo Wang
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Keqing Zhang
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA
| | - Gang Yao
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
29
|
Spiliopoulos S, Kitrou P, Katsanos K, Karnabatidis D. FD-OCT and IVUS intravascular imaging modalities in peripheral vasculature. Expert Rev Med Devices 2017; 14:127-134. [PMID: 28064551 DOI: 10.1080/17434440.2017.1280391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intra-Vascular Ultra-Sound (IVUS) and Frequency Domain-Optical Coherence Tomography (FD-OCT), in vivo, intra-vascular, imaging modalities, widely used in the field of coronary disease, have been recently implemented in peripheral endovascular procedures, for procedural assessment, plaque characterization and determination of predictors of treatment outcomes. Their unique characteristics have also been used in order to provide additional features and improve the performance of re-entry devices and atherotomes. Areas covered: Present review focuses on available literature regarding these two promising imaging technologies in the peripheral vasculature, highlighting the added value produced by their use in endovascular therapy, their limitations and their utilization in new endovascular devices. Authors also provide their future perspective and the possible benefits in understanding vascular behavior and lesion characterization in peripheral endovascular interventions. Expert commentary: By providing both quantitative but also qualitative data on vessel and lesion morphology, intravascular imaging modalities offer a valid solution for endovascular treatment evaluation and outcome presentation homogeneity.
Collapse
Affiliation(s)
- S Spiliopoulos
- a 2nd Department of Radiology, Division of Interventional Radiology , Attikon University General Hospital , Athens , Greece
| | - P Kitrou
- b Interventional Radiology Department , Patras University Hospital , Patras , Greece
| | - K Katsanos
- b Interventional Radiology Department , Patras University Hospital , Patras , Greece
- c Interventional Radiology Department , Guy's and St Thomas Hospitals, NHS Foundation Trust , London , UK
| | - D Karnabatidis
- b Interventional Radiology Department , Patras University Hospital , Patras , Greece
| |
Collapse
|
30
|
Coronary Atherosclerosis T 1-Weighed Characterization With Integrated Anatomical Reference: Comparison With High-Risk Plaque Features Detected by Invasive Coronary Imaging. JACC Cardiovasc Imaging 2016; 10:637-648. [PMID: 27743950 DOI: 10.1016/j.jcmg.2016.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The aim of this work is the development of coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) technique and the validation by comparison with high-risk plaque features (HRPF) observed on intracoronary optical coherence tomography (OCT) and invasive coronary angiography. BACKGROUND T1-weighted cardiac magnetic resonance with or without contrast media has been used for characterizing coronary atherosclerosis showing promising prognostic value. Several limitations include: 1) coverage is limited to proximal coronary segments; 2) spatial resolution is low and often anisotropic; and 3) a separate magnetic resonance angiography acquisition is needed to localize lesions. METHODS CATCH acquired dark-blood T1-weighted images and bright-blood anatomical reference images in an interleaved fashion. Retrospective motion correction with 100% respiratory gating efficiency was achieved. Reference control subjects (n = 13) completed both pre- and post-contrast scans. Stable angina patients (n = 30) completed pre-contrast scans, among whom 26 eligible patients also completed post-contrast scans. After cardiac magnetic resonance, eligible patients (n = 22) underwent invasive coronary angiography and OCT for the interrogation of coronary atherosclerosis. OCT images were assessed and scored for HRPF (lipid-richness, macrophages, cholesterol crystals, and microvessels) by 2 experienced analysts blinded to magnetic resonance results. RESULTS Per-subject analysis showed none of the 13 reference control subjects had coronary hyperintensive plaques (CHIP) in either pre-contrast or post-contrast CATCH. Five patients had CHIP on pre-contrast CATCH and 5 patients had CHIP on post-contrast CATCH. Patients with CHIP had greater lipid abnormality than those without. Per-segment analysis showed elevated pre- and post-contrast plaque to myocardium signal ratio in the lesions with HRPF versus those without. Positive correlation was observed between plaque to myocardium signal ratio and OCT HRPF scoring. CHIP on pre-contrast CATCH were associated with significantly higher stenosis level than non-CHIP on invasive coronary angiography. CONCLUSIONS CATCH provided accelerated whole heart coronary plaque characterization with simultaneously acquired anatomical reference. CHIP detected by CATCH showed positive association with high-risk plaque features on invasive imaging studies.
Collapse
|
31
|
Gubarkova EV, Dudenkova VV, Feldchtein FI, Timofeeva LB, Kiseleva EB, Kuznetsov SS, Shakhov BE, Moiseev AA, Gelikonov VM, Gelikonov GV, Vitkin A, Gladkova ND. Multi-modal optical imaging characterization of atherosclerotic plaques. JOURNAL OF BIOPHOTONICS 2016; 9:1009-1020. [PMID: 26604168 DOI: 10.1002/jbio.201500223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 05/08/2023]
Abstract
We combined cross-polarization optical coherence tomography (CP OCT) and non-linear microscopy based on second harmonic generation (SHG) and two-photon-excited fluorescence (2PEF) to assess collagen and elastin fibers and other vascular structures in the development of atherosclerosis, including identification of vulnerable plaques, which remains an important clinical problem and imaging application. CP OCT's ability to visualize tissue birefringence and cross-scattering adds new information about the microstructure and composition of the plaque. However its interpretation can be ambiguous, because backscattering contrast may have a similar appearance to the birefringence related fringes. Our results represent a step towards minimally invasive characterization and monitoring of different stages of atherosclerosis, including vulnerable plaques. CP OCT image of intimal thickening in the human coronary artery. The dark stripe in the cross-polarization channel (arrow) is a polarization fringe related to the phase retardation between two eigen polarization states. It is histologically located in the area of the lipid pool, however this stripe is a polarization artifact, rather than direct visualization of the lipid pool.
Collapse
Affiliation(s)
- Ekaterina V Gubarkova
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia.
| | - Varvara V Dudenkova
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
- N.I. Lobachevsky State University of Nizhny Novgorod, 603950, 23 Gagarin St., Nizhny Novgorod, Russia
| | - Felix I Feldchtein
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Lidia B Timofeeva
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Elena B Kiseleva
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Sergei S Kuznetsov
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Boris E Shakhov
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Alexander A Moiseev
- Institute of Applied Physics RAS, 603950 Ulyanov St., 46, Nizhny Novgorod, Russia
| | - Valentin M Gelikonov
- Institute of Applied Physics RAS, 603950 Ulyanov St., 46, Nizhny Novgorod, Russia
| | - Gregory V Gelikonov
- Institute of Applied Physics RAS, 603950 Ulyanov St., 46, Nizhny Novgorod, Russia
| | - Alex Vitkin
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Ontario, M5G 2M9, Canada
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Natalia D Gladkova
- Nizhny Novgorod State Medical Academy, 603005 Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| |
Collapse
|
32
|
Xia S, Huang Y, Peng S, Wu Y, Tan X. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:2912-26. [PMID: 27570687 PMCID: PMC4986803 DOI: 10.1364/boe.7.002912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 05/27/2023]
Abstract
Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise.
Collapse
Affiliation(s)
- Shaoyan Xia
- School of Optoelectronics, Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Yong Huang
- School of Optoelectronics, Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Shizhao Peng
- School of Optoelectronics, Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Yanfeng Wu
- School of Optoelectronics, Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Xiaodi Tan
- School of Optoelectronics, Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| |
Collapse
|
33
|
Brown AJ, Jaworski C, Corrigan JP, de Silva R, Bennett MR, Mahmoudi M, Hoole SP, West NEJ. Optical coherence tomography imaging of coronary atherosclerosis is affected by intraobserver and interobserver variability. J Cardiovasc Med (Hagerstown) 2016; 17:368-73. [PMID: 26406395 DOI: 10.2459/jcm.0000000000000304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Optical coherence tomography (OCT) has emerged as a novel imaging modality that allows plaque classification through identification of features including lipid, calcification and fibrous cap. However, subtle changes in light attenuation as the optical beam traverses the plaque in vivo are challenging to interpret and data on strength of observer agreement are minimal. Thus, we sought to assess both the intra and interobserver variability for plaque composition/classification using OCT. METHODS OCT imaging was performed in 50 patients prior to percutaneous coronary intervention. Analysis was performed offline by two independent, experienced OCT operators. Target lesion luminal dimensions and plaque composition were assessed at minimal luminal area (MLA) and at five 1-mm longitudinal intervals proximal and distal to the MLA. An OCT thin-capped fibroatheroma (OCT-TCFA) was defined as greater than 90 degree lipid arc with minimal fibrous cap thickness less than 0.85 μm. RESULTS Overall, 540 frames of OCT were included and exceptional consistency was seen for all measures of luminal geometry [all intraclass correlation coefficients (ICC) >0.97, P < 0.001]. Intraobserver agreements for calcification and lipid arc were strong (both ICC >0.84, P < 0.001), whereas interobserver agreement was higher for calcium (ICC 0.76) than lipid (ICC 0.69). Interobserver agreement of minimal fibrous cap thickness was moderate (ICC 0.52, 95% confidence interval 0.45-0.58, P < 0.001], but improved as cap thickness decreased. Overall, intra and interobserver agreements for OCT-defined plaque classification were strong (K = 0.86 and 0.71, respectively). CONCLUSION Luminal dimensions and plaque compositional features identified by OCT are minimally affected by observer variability, permitting dependable plaque classification.
Collapse
Affiliation(s)
- Adam J Brown
- aDepartment of Interventional Cardiology, Papworth Hospital NHS Trust bDepartment of Cardiovascular Medicine, University of Cambridge cPlaqueTec Limited, Cambridge dDepartment of Cardiovascular Medicine, University of Surrey, Surrey, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li J, Chen Z. Integrated intravascular ultrasound and optical coherence tomography technology: a promising tool to identify vulnerable plaques [INVITED PAPER]. JOURNAL OF BIOMEDICAL PHOTONICS & ENGINEERING 2016; 1. [PMID: 28966987 DOI: 10.18287/jbpe-2015-1-4-209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Heart attack is mainly caused by the rupture of a vulnerable plaque. IVUS-OCT is a novel medical imaging modality that provides opportunities for accurate assessment of vulnerable plaques in vivo in patients. IVUS provides deep penetration to image the whole necrotic core while OCT enables accurate measurement of the fibrous cap of a plaque owing to its high resolution. In this paper, the authors describe the fundamentals, the technical designs and the applications of IVUS-OCT technology. Results from cadaver specimens are summarized, which indicated the complementary nature of OCT and IVUS for assessment of vulnerable plaques, plaque composition, and stent-tissue interactions. Furthermore, previously reported in vivo animal experiments are reviewed to assess the clinical adaptability of IVUS-OCT. Future directions for this technology are also discussed in this review.
Collapse
Affiliation(s)
- Jiawen Li
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| |
Collapse
|
35
|
Hoffmann T, Boese A, Glaßer S, Skalej M, Beuing O. Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2015. [DOI: 10.1515/cdbme-2015-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Evaluation of the vascular stent position, shape and correct expansion has a high relevance in therapy and diagnosis. Hence, the wall apposition in vessel areas with differing diameters and the appearance of torsions or structural defects of the implant body caused by catheter based device dropping are of special interest. Neurovascular implants like braided flow diverter and laser cut stents consist of metal struts and wires with diameters of about 40 µm. Depending on the implants material composition, visibility is poor with conventional 2D X-ray fluoroscopic and radiographic imaging. The metal structures of the implants also lead to artifacts in 3D X-ray images and can hamper the assessment of the device position. We investigated intravascular optical coherence tomography (OCT) as a new imaging tool for the evaluation of the vascular stent position, its shape and its correct expansion for 3 different vascular implants.
Collapse
Affiliation(s)
- Thomas Hoffmann
- Department of Neuroradiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel Boese
- Department of Medical Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Sylvia Glaßer
- Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Skalej
- Department of Neuroradiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Oliver Beuing
- Department of Neuroradiology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
36
|
Dai N, Lu S, Li X, Xu Y, Li W. Application of fractional flow reserve and optical coherence tomography examinations in a patient presenting with recurrent angina: a case report. J Med Case Rep 2015; 9:182. [PMID: 26307058 PMCID: PMC4550013 DOI: 10.1186/s13256-015-0664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022] Open
Abstract
Introduction We present the different roles of fractional flow reserve and optical coherence tomography in guiding treatment in a patient with recurrent chest pain. Case presentation A 66-year-old Chinese woman presented to our department for the third time for her recurrent chest pain. Her physical examination was unremarkable; her previous two angiography examinations indicated that there was a stenosis of 50 to 70% in her proximal left anterior descending coronary artery. Optimal medical therapy was applied, but her symptoms did not disappear. Coronary angiography was conducted again after admission, accompanied by fractional flow reserve and optical coherence tomography. A lesion of 50 to 70% in her left anterior descending coronary artery was detected in an angiogram as before; her fractional flow reserve measure was a negative result of 0.88. However, a plaque rupture was found at the location of the lesion in the optical coherence tomography imaging. A stent was implanted in her left anterior descending coronary artery; she made no complaint of chest pain during follow-up of 1.5 years after her discharge. Conclusions Fractional flow reserve is considered the “gold standard” to detect ischemia-causing lesions and provide hemodynamic information of a stenosis. However, lack of structural information of a stenosis limits the application of fractional flow reserve and coronary pressure may lie sometimes. We should choose the best strategy for patients according to different examinations and patients’ symptoms, never a single test.
Collapse
Affiliation(s)
- Neng Dai
- Cardiology Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - ShaoTang Lu
- Cardiology Department, DongTai People's Hospital, DongTai, Jiangsu Province, China.
| | - XianKai Li
- Cardiology Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - YaWei Xu
- Cardiology Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - WeiMing Li
- Cardiology Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
The Onion Sign in Neovascular Age-Related Macular Degeneration Represents Cholesterol Crystals. Ophthalmology 2015; 122:2316-26. [PMID: 26298717 DOI: 10.1016/j.ophtha.2015.07.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To investigate the frequency, natural evolution, and histologic correlates of layered, hyperreflective, subretinal pigment epithelium (sub-RPE) lines, known as the onion sign, in neovascular age-related macular degeneration (AMD). DESIGN Retrospective observational cohort study and experimental laboratory study. PARTICIPANTS Two hundred thirty eyes of 150 consecutive patients with neovascular AMD and 40 human donor eyes with histopathologic diagnosis of neovascular AMD. METHODS Spectral-domain optical coherence tomography (SD OCT), near-infrared reflectance (NIR), color fundus images, and medical charts were reviewed. Donor eyes underwent multimodal ex vivo imaging, including SD OCT, before processing for high-resolution histologic analysis. MAIN OUTCOME MEASURES Presence of layered, hyperreflective sub-RPE lines, qualitative analysis of their change in appearance over time with SD OCT, histologic correlates of these lines, and associated findings within surrounding tissues. RESULTS Sixteen of 230 eyes of patients (7.0%) and 2 of 40 donor eyes (5.0%) with neovascular AMD had layered, hyperreflective sub-RPE lines on SD OCT imaging. These appeared as refractile, yellow-gray exudates on color imaging and as hyperreflective lesions on NIR. In all 16 patient eyes, the onion sign persisted in follow-up for up to 5 years, with fluctuations in the abundance of lines and association with intraretinal hyperreflective foci. Patients with the onion sign disproportionately were taking cholesterol-lowering medications (P=0.025). Histologic analysis of 2 donor eyes revealed that the hyperreflective lines correlated with clefts created by extraction of cholesterol crystals during tissue processing. The fluid surrounding the crystals contained lipid, yet was distinct from oily drusen. Intraretinal hyperreflective foci correlated with intraretinal RPE and lipid-filled cells of probable monocytic origin. CONCLUSIONS Persistent and dynamic, the onion sign represents sub-RPE cholesterol crystal precipitation in an aqueous environment. The frequency of the onion sign in neovascular AMD in a referral practice and a pathology archive is 5% to 7%. Associations include use of cholesterol-lowering medication and intraretinal hyperreflective foci attributable to RPE cells and lipid-filled cells of monocyte origin.
Collapse
|
38
|
Experimental investigation of intravascular OCT for imaging of intracranial aneurysms. Int J Comput Assist Radiol Surg 2015; 11:231-41. [DOI: 10.1007/s11548-015-1275-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
39
|
Suter MJ, Kashiwagi M, Gallagher KA, Nadkarni SK, Asanani N, Tanaka A, Conditt GB, Tellez A, Milewski K, Kaluza GL, Granada JF, Bouma BE, Tearney GJ. Optimizing flushing parameters in intracoronary optical coherence tomography: an in vivo swine study. Int J Cardiovasc Imaging 2015; 31:1097-106. [PMID: 25922149 DOI: 10.1007/s10554-015-0668-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/20/2015] [Indexed: 11/26/2022]
Abstract
Intracoronary optical frequency domain imaging (OFDI), requires the displacement of blood for clear visualization of the artery wall. Radiographic contrast agents are highly effective at displacing blood however, may increase the risk of contrast-induced nephropathy. Flushing media viscosity, flow rate, and flush duration influence the efficiency of blood displacement necessary for obtaining diagnostic quality OFDI images. The aim of this work was to determine the optimal flushing parameters necessary to reliably perform intracoronary OFDI while reducing the volume of administered radiographic contrast, and assess the influence of flushing media choice on vessel wall measurements. 144 OFDI pullbacks were acquired together with synchronized EKG and intracoronary pressure wire recordings in three swine. OFDI images were graded on diagnostic quality and quantitative comparisons of flushing efficiency and intracoronary cross-sectional area with and without precise refractive index calibration were performed. Flushing media with higher viscosities resulted in rapid and efficient blood displacement. Media with lower viscosities resulted in increased blood-media transition zones, reducing the pullback length of diagnostic quality images obtained. Flushing efficiency was found to increase with increases in flow rate and duration. Calculations of lumen area using different flushing media were significantly different, varying up to 23% (p < 0.0001). This error was eliminated with careful refractive index calibration. Flushing media viscosity, flow rate, and flush duration influence the efficiency of blood displacement necessary for obtaining diagnostic quality OFDI images. For patients with sensitivity to contrast, to reduce the risk of contrast induced nephrotoxicity we recommend that intracoronary OFDI be conducted with flushing solutions containing little or no radiographic contrast. In addition, our findings show that careful refractive index compensation should be performed, taking into account the specific contrast agent used, in order to obtain accurate intravascular OFDI measurements.
Collapse
Affiliation(s)
- Melissa J Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gargesha M, Shalev R, Prabhu D, Tanaka K, Rollins AM, Costa M, Bezerra HG, Wilson DL. Parameter estimation of atherosclerotic tissue optical properties from three-dimensional intravascular optical coherence tomography. J Med Imaging (Bellingham) 2015; 2:016001. [PMID: 26158087 DOI: 10.1117/1.jmi.2.1.016001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/25/2014] [Indexed: 01/17/2023] Open
Abstract
We developed robust, three-dimensional methods, as opposed to traditional A-line analysis, for estimating the optical properties of calcified, fibrotic, and lipid atherosclerotic plaques from in vivo coronary artery intravascular optical coherence tomography clinical pullbacks. We estimated attenuation [Formula: see text] and backscattered intensity [Formula: see text] from small volumes of interest annotated by experts in 35 pullbacks. Some results were as follows: noise reduction filtering was desirable, parallel line (PL) methods outperformed individual line methods, root mean square error was the best goodness-of-fit, and [Formula: see text]-trimmed PL ([Formula: see text]-T-PL) was the best overall method. Estimates of [Formula: see text] were calcified ([Formula: see text]), fibrotic ([Formula: see text]), and lipid ([Formula: see text]), similar to those in the literature, and tissue classification from optical properties alone was promising.
Collapse
Affiliation(s)
- Madhusudhana Gargesha
- Case Western Reserve University , Department of Biomedical Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ronny Shalev
- Case Western Reserve University , Department of Electrical Engineering and Computer Science, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - David Prabhu
- Case Western Reserve University , Department of Biomedical Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Kentaro Tanaka
- University Hospitals Case Medical Center , Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, 11100 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Andrew M Rollins
- Case Western Reserve University , Department of Biomedical Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marco Costa
- University Hospitals Case Medical Center , Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, 11100 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Hiram G Bezerra
- University Hospitals Case Medical Center , Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, 11100 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - David L Wilson
- Case Western Reserve University , Department of Biomedical Engineering, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States ; Case Western Reserve University , Department of Radiology, 11100 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
41
|
Ličev L, Krumnikl M, Škuta J, Babiuch M, Farana R. Advances in the development of an imaging device for plaque measurement in the area of the carotid artery. BIOTECHNOL BIOTEC EQ 2014; 28:355-359. [PMID: 26740760 PMCID: PMC4686974 DOI: 10.1080/13102818.2014.910362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/28/2014] [Indexed: 11/08/2022] Open
Abstract
This paper describes the advances in the development and subsequent testing of an imaging device for three-dimensional ultrasound measurement of atherosclerotic plaque in the carotid artery. The embolization from the atherosclerotic carotid plaque is one of the most common causes of ischemic stroke and, therefore, we consider the measurement of the plaque as extremely important. The paper describes the proposed hardware for enhancing the standard ultrasonic probe to provide a possibility of accurate probe positioning and synchronization with the cardiac activity, allowing the precise plaque measurements that were impossible with the standard equipment. The synchronization signal is derived from the output signal of the patient monitor (electrocardiogram (ECG)), processed by a microcontroller-based system, generating the control commands for the linear motion moving the probe. The controlling algorithm synchronizes the movement with the ECG waveform to obtain clear images not disturbed by the heart activity.
Collapse
Affiliation(s)
- Lačezar Ličev
- Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava , Ostrava-Poruba , Czech Republic
| | - Michal Krumnikl
- Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava , Ostrava-Poruba , Czech Republic
| | - Jaromír Škuta
- Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava , Ostrava-Poruba , Czech Republic
| | - Marek Babiuch
- Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava , Ostrava-Poruba , Czech Republic
| | - Radim Farana
- Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava , Ostrava-Poruba , Czech Republic
| |
Collapse
|
42
|
Barlis P, van Soest G, Serruys PW, Regar E. Intracoronary optical coherence tomography and the evaluation of stents. Expert Rev Med Devices 2014; 6:157-67. [DOI: 10.1586/17434440.6.2.157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Kubo T, Akasaka T. Recent advances in intracoronary imaging techniques: focus on optical coherence tomography. Expert Rev Med Devices 2014; 5:691-7. [DOI: 10.1586/17434440.5.6.691] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takashi Kubo
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8509, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
44
|
Specific somatostatin receptor II expression in arterial plaque: 68Ga-DOTATATE autoradiographic, immunohistochemical and flow cytometric studies in apoE-deficient mice. Atherosclerosis 2013; 230:33-9. [DOI: 10.1016/j.atherosclerosis.2013.06.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
|
45
|
Rosa GM, Bauckneht M, Masoero G, Mach F, Quercioli A, Seitun S, Balbi M, Brunelli C, Parodi A, Nencioni A, Vuilleumier N, Montecucco F. The vulnerable coronary plaque: update on imaging technologies. Thromb Haemost 2013; 110:706-22. [PMID: 23803753 DOI: 10.1160/th13-02-0121] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/01/2013] [Indexed: 12/21/2022]
Abstract
Several studies have been carried out on vulnerable plaque as the main culprit for ischaemic cardiac events. Historically, the most important diagnostic technique for studying coronary atherosclerotic disease was to determine the residual luminal diameter by angiographic measurement of the stenosis. However, it has become clear that vulnerable plaque rupture as well as thrombosis, rather than stenosis, triggers most acute ischaemic events and that the quantification of risk based merely on severity of the arterial stenosis is not sufficient. In the last decades, substantial progresses have been made on optimisation of techniques detecting the arterial wall morphology, plaque composition and inflammation. To date, the use of a single technique is not recommended to precisely identify the progression of the atherosclerotic process in human beings. In contrast, the integration of data that can be derived from multiple methods might improve our knowledge about plaque destabilisation. The aim of this narrative review is to update evidence on the accuracy of the currently available non-invasive and invasive imaging techniques in identifying components and morphologic characteristics associated with coronary plaque vulnerability.
Collapse
Affiliation(s)
- Gian Marco Rosa
- Fabrizio Montecucco, MD, PhD, Division of Cardiology, Faculty of Medicine, Geneva University Hospital, Avenue de la Roseraie 64, 1211 Geneva 4, Switzerland, Tel.: +41 22 372 71 92, Fax: +41 22 382 72 45, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li J, Li X, Jing J, Mohar D, Raney A, Mahon S, Brenner M, Zhou Q, Patel P, Shung KK, Chen Z. Integrated intravascular optical coherence tomography (OCT) - ultrasound (US) catheter for characterization of atherosclerotic plaques in vivo. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:3175-8. [PMID: 23366600 DOI: 10.1109/embc.2012.6346639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A miniature integrated intravascular optical coherence tomography (OCT) - ultrasound (US) catheter for real-time imaging of atherosclerotic plaques has been developed, providing high resolution and deep tissue penetration at the same time. This catheter, with an outer diameter of 1.18mm, is suitable for imaging in human coronary arteries. The first in vivo 3D imaging of atherosclerotic microstructure in a rabbit abdominal aorta obtained by an integrated OCT-US catheter is presented. In addition, in vitro imaging of cadaver coronary arteries were conducted to demonstrate the imaging capabilities of this integrated catheter to classify different atherosclerotic plaque types.
Collapse
Affiliation(s)
- Jiawen Li
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hariri LP, Mino-Kenudson M, Mark EJ, Suter MJ. In vivo optical coherence tomography: the role of the pathologist. Arch Pathol Lab Med 2013. [PMID: 23194041 DOI: 10.5858/arpa.2012-0252-sa] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Optical coherence tomography (OCT) is a nondestructive, high-resolution imaging modality, providing cross-sectional, architectural images at near histologic resolutions, with penetration depths up to a few millimeters. Optical frequency domain imaging is a second-generation OCT technology that has equally high resolution with significantly increased image acquisition speeds and allows for large area, high-resolution tissue assessments. These features make OCT and optical frequency domain imaging ideal imaging techniques for surface and endoscopic imaging, specifically when tissue is unsafe to obtain and/or suffers from biopsy sampling error. This review focuses on the clinical impact of OCT in coronary, esophageal, and pulmonary imaging and the role of the pathologist in interpreting high-resolution OCT images as a complement to standard tissue pathology.
Collapse
Affiliation(s)
- Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, Boston, USA.
| | | | | | | |
Collapse
|
48
|
Doherty JR, Dumont DM, Trahey GE, Palmeri ML. Acoustic radiation force impulse imaging of vulnerable plaques: a finite element method parametric analysis. J Biomech 2012; 46:83-90. [PMID: 23122224 DOI: 10.1016/j.jbiomech.2012.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/22/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Plaque rupture is the most common cause of complications such as stroke and coronary heart failure. Recent histopathological evidence suggests that several plaque features, including a large lipid core and a thin fibrous cap, are associated with plaques most at risk for rupture. Acoustic Radiation Force Impulse (ARFI) imaging, a recently developed ultrasound-based elasticity imaging technique, shows promise for imaging these features noninvasively. Clinically, this could be used to distinguish vulnerable plaques, for which surgical intervention may be required, from those less prone to rupture. In this study, a parametric analysis using Finite Element Method (FEM) models was performed to simulate ARFI imaging of five different carotid artery plaques across a wide range of material properties. It was demonstrated that ARFI imaging could resolve the softer lipid pool from the surrounding, stiffer media and fibrous cap and was most dependent upon the stiffness of the lipid pool component. Stress concentrations due to an ARFI excitation were located in the media and fibrous cap components. In all cases, the maximum Von Mises stress was<1.2 kPa. In comparing these results with others investigating plaque rupture, it is concluded that while the mechanisms may be different, the Von Mises stresses imposed by ARFI imaging are orders of magnitude lower than the stresses associated with blood pressure.
Collapse
Affiliation(s)
- Joshua R Doherty
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
49
|
Li X, Samnick S, Lapa C, Israel I, Buck AK, Kreissl MC, Bauer W. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors. EJNMMI Res 2012; 2:52. [PMID: 23016793 PMCID: PMC3475087 DOI: 10.1186/2191-219x-2-52] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/17/2012] [Indexed: 12/31/2022] Open
Abstract
Background Ga-[1,4,7,10-tetraazacyclododecane-N,N′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) positron emission tomography (PET) is commonly used for the visualization of somatostatin receptor (SSTR)-positive neuroendocrine tumors. SSTR is also known to be expressed on macrophages, which play a major role in inflammatory processes in the walls of coronary arteries and large vessels. Therefore, imaging SSTR expression has the potential to visualize vulnerable plaques. We assessed 68Ga-DOTATATE accumulation in large vessels in comparison to 18F-2-fluorodeoxyglucose (FDG) uptake, calcified plaques (CPs), and cardiovascular risk factors. Methods Sixteen consecutive patients with neuroendocrine tumors or thyroid cancer underwent both 68Ga-DOTATATE and 18F-FDG PET/CT for staging or restaging purposes. Detailed clinical data, including common cardiovascular risk factors, were recorded. For a separate assessment, they were divided into a high-risk and a low-risk group. In each patient, we calculated the maximum target-to-background ratio (TBR) of eight arterial segments. The correlation of the TBRmean of both tracers with risk factors including plaque burden was assessed. Results The mean TBR of 68Ga-DOTATATE in all large arteries correlated significantly with the presence of CPs (r = 0.52; p < 0.05), hypertension (r = 0.60; p < 0.05), age (r = 0.56; p < 0.05), and uptake of 18F-FDG (r = 0.64; p < 0.01). There was one significant correlation between 18F-FDG uptake and hypertension (0.58; p < 0.05). Out of the 37 sites with the highest focal 68Ga-DOTATATE uptake, 16 (43.2%) also had focal 18F-FDG uptake. Of 39 sites with the highest 18F-FDG uptake, only 11 (28.2%) had a colocalized 68Ga-DOTATATE accumulation. Conclusions In this series of cancer patients, we found a stronger association of increased 68Ga-DOTATATE uptake with known risk factors of cardiovascular disease as compared to 18F-FDG, suggesting a potential role for plaque imaging in large arteries. Strikingly, we found that focal uptake of 68Ga-DOTATATE and 18F-FDG does not colocalize in a significant number of lesions.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nuclear Medicine, University of Wuerzburg, Oberdürrbacher Str, 6, Wuerzburg, D-97080, Germany. --wuerzburg.de
| | | | | | | | | | | | | |
Collapse
|
50
|
Maurovich-Horvat P, Schlett CL, Alkadhi H, Nakano M, Stolzmann P, Vorpahl M, Scheffel H, Tanaka A, Warger WC, Maehara A, Ma S, Kriegel MF, Kaple RK, Seifarth H, Bamberg F, Mintz GS, Tearney GJ, Virmani R, Hoffmann U. Differentiation of early from advanced coronary atherosclerotic lesions: systematic comparison of CT, intravascular US, and optical frequency domain imaging with histopathologic examination in ex vivo human hearts. Radiology 2012; 265:393-401. [PMID: 23012461 DOI: 10.1148/radiol.12111891] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To establish an ex vivo experimental setup for imaging coronary atherosclerosis with coronary computed tomographic (CT) angiography, intravascular ultrasonography (US), and optical frequency domain imaging (OFDI) and to investigate their ability to help differentiate early from advanced coronary plaques. MATERIALS AND METHODS All procedures were performed in accordance with local and federal regulations and the Declaration of Helsinki. Approval of the local Ethics Committee was obtained. Overall, 379 histologic cuts from nine coronary arteries from three donor hearts were acquired, coregistered among modalities, and assessed for the presence and composition of atherosclerotic plaque. To assess the discriminatory capacity of the different modalities in the detection of advanced lesions, c statistic analysis was used. Interobserver agreement was assessed with the Cohen κ statistic. RESULTS Cross sections without plaque at coronary CT angiography and with fibrous plaque at OFDI almost never showed advanced lesions at histopathologic examination (odds ratio [OR]: 0.02 and 0.06, respectively; both P<.0001), while mixed plaque at coronary CT angiography, calcified plaque at intravascular US, and lipid-rich plaque at OFDI were associated with advanced lesions (OR: 2.49, P=.0003; OR: 2.60, P=.002; and OR: 31.2, P<.0001, respectively). OFDI had higher accuracy for discriminating early from advanced lesions than intravascular US and coronary CT angiography (area under the receiver operating characteristic curve: 0.858 [95% confidence interval {CI}: 0.802, 0.913], 0.631 [95% CI: 0.554, 0.709], and 0.679 [95% CI: 0.618, 0.740]; respectively, P<.0001). Interobserver agreement was excellent for OFDI and coronary CT angiography (κ=0.87 and 0.85, respectively) and was good for intravascular US (κ=0.66). CONCLUSION Systematic and standardized comparison between invasive and noninvasive modalities for coronary plaque characterization in ex vivo specimens demonstrated that coronary CT angiography and intravascular US are reasonably associated with plaque composition and lesion grading according to histopathologic findings, while OFDI was strongly associated. These data may help to develop initial concepts of sequential imaging strategies to identify patients with advanced coronary plaques.
Collapse
Affiliation(s)
- Pál Maurovich-Horvat
- Cardiac MR PET CT Program of the Department of Radiology, Cardiology Division, and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 165 Cambridge St, Suite 400, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|