1
|
Takahashi T, Sato F, Shinkai K. The Effects of Antimicrobial Photodynamic Therapy Used to Sterilize Carious Dentin on Rat Dental Pulp Tissue. Dent J (Basel) 2023; 11:283. [PMID: 38132421 PMCID: PMC10743003 DOI: 10.3390/dj11120283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) used to sterilize carious dentin may irritate pulp tissues because of tissue-penetrating laser and singlet oxygen generation. This study aimed to assess the effects of aPDT on rat pulp tissues. A cavity formed in a rat maxillary first molar was treated with aPDT. The combined photosensitizer and laser irradiation conditions in the aPDT groups were as follows: methylene blue and 100 mW for 60 s, brilliant blue (BB) and 100 mW for 60 s, BB and 50 mW for 120 s, and BB and 200 mW for 30 s. Each cavity was treated with an all-in-one adhesive and filled with flowable resin. aPDT was not applied for the control. In each group, the rats were sacrificed on postoperative days 1 and 14, and thin sections of the treated teeth were prepared. Pulp tissue disorganization (PTD), inflammatory cell infiltration (ICI), and tertiary dentin formation (TDF) were evaluated. At 1-day evaluation, there were significant differences between the aPDT group and controls with respect to PTD and ICI (p < 0.01); 14 days later, almost all specimens showed tertiary dentin formation. The application of aPDT caused reversible damage to the rat pulp, while in the long term, healing occurred with the formation of tertiary dentin.
Collapse
Affiliation(s)
- Tenyu Takahashi
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan;
| | - Fumiaki Sato
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan;
| | - Koichi Shinkai
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan;
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan;
| |
Collapse
|
2
|
Yanten N, Vilches S, Palavecino CE. Photodynamic therapy for the treatment of Pseudomonas aeruginosa infections: A scoping review. Photodiagnosis Photodyn Ther 2023; 44:103803. [PMID: 37709240 DOI: 10.1016/j.pdpdt.2023.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a Gram-negative bacillus that causes superficial and deep infections, which can be minor to life-threatening. Recently, P. aeruginosa has gained significant relevance due to the increased incidence of multidrug-resistant (MDR) strains that complicate antibiotic treatment. Due to MDR strains, alternative therapies, such as antimicrobial photodynamic therapy (PDT), are presented as a good option to treat nonsystemic infections. PDT combines a photosensitizer agent (PS), light, and oxygen to generate free radicals that destroy bacterial structures such as the envelope, matrix, and genetic material. This work aimed to identify the development stage of the PDT applied to P. aeruginosa to conclude which research stage should be emphasized more. METHODS Systematic bibliographic search in various public databases was performed. Related articles were identified using keywords, and relevant ones were selected using inclusion and exclusion criteria according to the PRISMA protocol. RESULTS We found 29 articles that meet the criteria, constituting a good body of evidence associated with using PDT against P. aeruginosa in vitro and less developed for in vivo research. CONCLUSIONS We conclude that PDT could become an effective adjunct to antimicrobial therapy against P. aeruginosa. This effectiveness depends on the PS used and the location of the infection. Many PS already demonstrated efficacy in PDT, but the evidence is supported significantly by in vitro and very few in vivo studies. Therefore, we conclude that further research efforts should focus on demonstrating the safety and efficacy of these PSs in vivo in animal infection models.
Collapse
Affiliation(s)
- Nicolas Yanten
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile
| | - Selene Vilches
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile.
| |
Collapse
|
3
|
Gomes BPFA, Aveiro E, Kishen A. Irrigants and irrigation activation systems in Endodontics. Braz Dent J 2023; 34:1-33. [PMID: 37909632 PMCID: PMC10642269 DOI: 10.1590/0103-6440202305577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 11/03/2023] Open
Abstract
Root canal infections are typically polymicrobial and involve strong bacterial interactions. The goal of endodontic treatment is to remove infected content from the root canal system to allow the healing of a pre-existing periapical lesion or to prevent infection of the periradicular tissues. Instrumentation alone is not capable of touching all of the root canal walls. Therefore, the irrigation process is an essential step in the endodontic treatment. However, due to the complex anatomy of the root canal system, this cleaning is very challenging. Although syringe and needle irrigation associated with the use of chemical substances is still the most used method, it does not guarantee optimal cleaning of the root canals. As a result, not only alternative irrigating substances but also numerous activation systems - which are technologies that aim to optimize the action of irrigating substances, both chemically and physically - have been developed. This work aimed to review the characteristics of both classic and current alternatives of irrigating substances and irrigation activation systems.
Collapse
Affiliation(s)
- Brenda P. F. A. Gomes
- Department of Restorative Dentistry, Division of Endodontics,
Piracicaba Dental School - State University of Campinas, UNICAMP, Brazil
| | - Emelly Aveiro
- Department of Restorative Dentistry, Division of Endodontics,
Piracicaba Dental School - State University of Campinas, UNICAMP, Brazil
| | - Anil Kishen
- Department of Dentistry, University of Toronto, Canada
| |
Collapse
|
4
|
Wang Y, Li Y, Huang S, Huang J, Huang X. An easily achievable strategy to promote the penetration of methylene blue into dentinal tubules. Photodiagnosis Photodyn Ther 2023; 41:103237. [PMID: 36496126 DOI: 10.1016/j.pdpdt.2022.103237] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND One critical issue that impairs the therapeutic effects of antimicrobial photodynamic therapy (aPDT) in root canal disinfection is the insufficient penetration of photosensitizer into dentinal tubules. Therefore, this study aimed to compare the treatments in enhancing photosensitizers' penetrability for aPDT in root canal therapy. METHODS Thirty premolars with a single root canal were randomly divided into three groups (n = 10), using Methylene blue (MB) as a photosensitizer and treated with different approaches: sonic-assisted diffusing group, ultrasonic-assisted diffusing group and the control without treatment. All specimens were observed by stereomicroscope to measure the penetration depth of MB into dentinal tubules. RESULTS Both sonic and ultrasonic treatments substantially improved the penetrability of MB. The former achieved a deeper penetration depth than the latter did in the same region of root (P<0.05). Regarding the dye penetration depths at different root regions, the control group showed a declining trend from coronal to apical. In contrast, the penetration depths of sonic and ultrasonic-assisted diffusing groups from highest to lowest were middle > coronal > apical (P<0.05). CONCLUSIONS This study showed that both sonic and ultrasonic treatments remarkably promoted MB's penetration depth into dentinal tubules. Maximum penetration was achieved when treated with a sonic approach.
Collapse
Affiliation(s)
- Yanhuang Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Yijun Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Shan Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Jing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China.
| |
Collapse
|
5
|
Teed C, Hussein H, Kishen A. Synchronized Microbubble Photodynamic Activation to Disinfect Minimally Prepared Root Canals. J Endod 2023; 49:198-204. [PMID: 36509168 DOI: 10.1016/j.joen.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The purpose of this study was to evaluate the antimicrobial efficacy of a novel irrigation strategy using synchronized microbubble photodynamic activation (SYMPA) in a minimally prepared single canal. METHODS Single-canal mandibular incisors were inoculated with Enterococcus faecalis for 3 weeks and randomly allocated to 4 groups based on the irrigation protocols: (1) control (saline), (2) conventional needle irrigation (CI), (3) ultrasonic-assisted irrigation (UI), and (4) irrigation with SYMPA. The first 3 groups were instrumented to size 25.07v (WaveOne Gold Primary; Dentsply Sirona, Johnson City, TN), and the SYMPA group was minimally prepared to size 20.07v (WaveOne Gold Small, Dentsply Sirona). The apical 5 mm was resected for microbiological assessment using the culture technique (colony-forming unit), adenosine-5'-triphosphate-based viability assay (relative luminescence units), and the percentage of live bacteria using confocal laser scanning microscopy. RESULTS Log colony-forming units from the UI (2.37 ± 0.66) and SYMPA (2.21 ± 0.86) groups showed a reduction compared with the control (5.16 ± 0.75) and CI (4.08 ± 1.19) groups. Relative luminescence unit reduction was significant for UI (619.08 ± 352.78) and SYMPA (415.25 ± 329.51) compared with the control (1213.2 ± 880.03) (P < .05). The percentage of live bacteria was significantly lower in the UI and SYMPA groups compared with the control and CI groups. Although higher microbial reduction was observed in SYMPA compared with UI, there was no statistical significance (P > .05). CONCLUSION SYMPA in minimally prepared canals showed significant antimicrobial efficacy. The novel irrigation strategy using SYMPA could be an effective disinfection strategy for minimally prepared root canals.
Collapse
Affiliation(s)
- Christine Teed
- MSc Endodontics Program, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Hebatullah Hussein
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Department of Endodontics, Faculty of Dentistry, Ain-Shams University, Cairo, Egypt
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Bezerra DT, La Selva A, Cecatto RB, Deana AM, Prates RA, Bussadori SK, Mesquita-Ferrari RA, Motta LJ, Fernandes KPS, Martimbianco ALC, Frochot C, Pereira BJ, Rossi F, Mimica MJ, Horliana ACRT. Antimicrobial Photodynamic Therapy in the Nasal Decolonization of Maintenance Hemodialysis Patients: A Pilot Randomized Trial. Am J Kidney Dis 2022; 81:528-536.e1. [PMID: 36396084 DOI: 10.1053/j.ajkd.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE & OBJECTIVE Infections are an important cause of mortality among patients receiving maintenance hemodialysis. Staphylococcus aureus is a frequent etiological agent, and previous nasal colonization is a risk factor for infection. Repeated antimicrobial decolonization reduces infection in this population but can induce antibiotic resistance. We compared photodynamic therapy, a promising bactericidal treatment that does not induce resistance, to mupirocin treatment among nasal carriers of S aureus. STUDY DESIGN Randomized controlled pilot study. SETTING & PARTICIPANTS 34 patients receiving maintenance hemodialysis who had nasal carriage of S aureus. INTERVENTIONS Patients were randomly assigned to decolonization with a single application of photodynamic therapy (wavelength of 660nm, 400mW/cm2, 300 seconds, methylene blue 0.01%) or with a topical mupirocin regimen (twice a day for 5 days). OUTCOME Nasal swabs were collected at time 0 (when the carrier state was identified), directly after treatment completion, 1 month after treatment, and 3 months after treatment. Bacterial isolates were subjected to proteomic analysis to identify the species present, and antimicrobial susceptibility was characterized. RESULTS All 17 participants randomized to photodynamic therapy and 13 of 17 (77%) randomized to mupirocin were adherent to treatment. Directly after treatment was completed, 12 participants receiving photodynamic therapy (71%) and 13 participants treated with mupirocin (77%) had cultures that were negative for S aureus (risk ratio, 0.92 [95% CI, 0.61-1.38]; P=0.9). Of the patients who had negative cultures directly after completion of photodynamic therapy, 67% were recolonized within 3 months. There were no adverse events in the photodynamic therapy group. LIMITATIONS Testing was restricted to assessing nasal colonization; infectious complications were not assessed. CONCLUSIONS Photodynamic therapy is a feasible approach to treating nasal carriage of S aureus. Future larger studies should be conducted to determine whether photodynamic therapy is equivalent to the standard of care with mupirocin. FUNDING Government grant (National Council for Scientific and Technological Development process 3146682020-9). TRIAL REGISTRATION Registered at ClinicalTrials.gov with study number NCT04047914.
Collapse
Affiliation(s)
- Daniella Teixeira Bezerra
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Andreia La Selva
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Rebeca Boltes Cecatto
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Alessandro Melo Deana
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Renato Araujo Prates
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil; Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil; Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Lara Jansiski Motta
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | | | - Céline Frochot
- Le Laboratoire Réactions et Génie des Procédés, University of Lorraine, CNRS, Nancy, France
| | - Benedito Jorge Pereira
- Renal Division, Internal Medicine, Clinical Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Flávia Rossi
- Clinical Microbiology Laboratory, Clinical Hospital, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcelo Jenne Mimica
- Discipline of Microbiology, Department of Pathological Sciences, Santa Casa de São Paulo School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
7
|
Shao L, Majumder S, Liu Z, Xu K, Dai R, George S. Light activation of gold nanorods but not gold nanospheres enhance antibacterial effect through photodynamic and photothermal mechanisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 231:112450. [PMID: 35500384 DOI: 10.1016/j.jphotobiol.2022.112450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
Plasmonic nanomaterials of gold and silver have been reported to have antibacterial effect. In this study, three gold nanomaterials (NMs) of different aspect rations (Gold nanospheres (AuNSs, aspect ratio 1), and two gold nanorods (AuNRs636, aspect ratio 2.79; AuNRs772, aspect ratio 3.42)) and silver nanoparticles (AgNPs) were synthesized, characterized and the effect of incandescent light on their antibacterial properties were examined. Bacterial inactivation during photoinactivation of nanomaterials and antibacterial mechanisms (biotic ROS, membrane potential, membrane damage) were investigated using Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Salmonella enterica serovar Typhimurium, and methicillin-resistant S. aureus. The results indicated that AuNSs had no antibacterial activity in the tested concentration (0.49-250 μg/mL), while AuNR636 and AuNRs772 showed significant bactericidal effect on all tested bacteria. Notably, AuNRs636 presented higher antibacterial effect than AuNRs772, which could result from higher surface reactivity of AuNRs636 owing to higher dangling bonds. Further studies showed that AuNRs but not AuNSs generated hydroxyl radicals (·OH) (photodynamic effect) and photothermal effect when exposed to incandescent light. The combined photodynamic and photothermal effect resulted in bacterial inactivation through cell membrane damage, lowering of cell membrane potential and DNA degradation. In summary, this investigation showed that Au NRs but not Au NSs exhibit photodynamic and photothermal effects suggesting the potential of fabricating material surfaces with Au NRs for photoactivated bacterial inactivation.
Collapse
Affiliation(s)
- Lele Shao
- McGill University, Department of Food and Agricultural Chemistry, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada; China Agricultural University, College of Food Science and Nutritional Engineering, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Satwik Majumder
- McGill University, Department of Food and Agricultural Chemistry, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| | - Ziruo Liu
- McGill University, Department of Food and Agricultural Chemistry, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| | - Ke Xu
- McGill University, Department of Food and Agricultural Chemistry, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| | - Ruitong Dai
- China Agricultural University, College of Food Science and Nutritional Engineering, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Saji George
- McGill University, Department of Food and Agricultural Chemistry, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
8
|
Figueiredo-Godoi LMA, Garcia MT, Pinto JG, Ferreira-Strixino J, Faustino EG, Pedroso LLC, Junqueira JC. Antimicrobial Photodynamic Therapy Mediated by Fotenticine and Methylene Blue on Planktonic Growth, Biofilms, and Burn Infections of Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:antibiotics11050619. [PMID: 35625263 PMCID: PMC9137570 DOI: 10.3390/antibiotics11050619] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is considered a promising alternative strategy to control Acinetobacter baumannii infections. In this study, we evaluated the action of aPDT mediated by a new photosensitizer derivative from chlorin e-6 (Fotoenticine—FTC) on A. baumannii, comparing its effects with methylene blue (MB). For this, aPDT was applied on A. baumannii in planktonic growth, biofilms, and burn infections in Galleria mellonella. The absorption of FTC and MB by bacterial cells was also evaluated using microscopic and spectrophotometric analysis. The results of planktonic cultures showed that aPDT reduced the number of viable cells compared to the non-treated group for the reference and multidrug-resistant A. baumannii strains. These reductions varied from 1.4 to 2 log10 CFU for FTC and from 2 log10 CFU to total inhibition for MB. In biofilms, aPDT with MB reduced 3.9 log10 CFU of A. baumannii, whereas FTC had no effect on the cell counts. In G. mellonella, only MB-mediated aPDT had antimicrobial activity on burn injuries, increasing the larvae survival by 35%. Both photosensitizers were internalized by bacterial cells, but MB showed a higher absorption compared to FTC. In conclusion, MB had greater efficacy than FTC as a photosensitizer in aPDT against A. baumannii.
Collapse
Affiliation(s)
- Lívia M. A. Figueiredo-Godoi
- Institute of Science and Technology (ICT), São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil; (M.T.G.); (E.G.F.); (L.L.C.P.); (J.C.J.)
- Correspondence:
| | - Maíra T. Garcia
- Institute of Science and Technology (ICT), São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil; (M.T.G.); (E.G.F.); (L.L.C.P.); (J.C.J.)
| | - Juliana G. Pinto
- Photobiology Applied to Health (Photobios), University of Vale of Paraiba/UNIVAP, São José dos Campos, São Paulo 12244-000, Brazil; (J.G.P.); (J.F.-S.)
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (Photobios), University of Vale of Paraiba/UNIVAP, São José dos Campos, São Paulo 12244-000, Brazil; (J.G.P.); (J.F.-S.)
| | - Eliseu Gabriel Faustino
- Institute of Science and Technology (ICT), São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil; (M.T.G.); (E.G.F.); (L.L.C.P.); (J.C.J.)
| | - Lara Luise Castro Pedroso
- Institute of Science and Technology (ICT), São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil; (M.T.G.); (E.G.F.); (L.L.C.P.); (J.C.J.)
| | - Juliana C. Junqueira
- Institute of Science and Technology (ICT), São Paulo State University (Unesp), São José dos Campos, São Paulo 12245-000, Brazil; (M.T.G.); (E.G.F.); (L.L.C.P.); (J.C.J.)
| |
Collapse
|
9
|
Alves DRS, Decucio DDA, Alencar AHGD, Estrela CRDA, Souza JBD, Pinheiro ALB, Estrela C. Effect of low-power diode laser on infected root canals. Braz Dent J 2022; 33:8-17. [PMID: 35766720 DOI: 10.1590/0103-6440202204999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the effect of photodynamic therapy (PDT) on infected root canals. Twenty-one human teeth were selected, and 18 were infected by E. faecalis for 60 days. The antimicrobial strategies tested were: G1. Root canal preparation (RCP) using Niquel-Titanium (NiTi) rotary instruments, 2.5% NaOCl, and final irrigation with 17% EDTA, followed by PDT with methylene blue photosensitizer and laser diode low power; G2. RCP using stainless steel files and the same irrigation and PDT protocols as G1; G3. Same RCP protocol as G1 without PDT; G4. Only irrigation with 2.5% NaOCl; G5. Same PDT protocol as G1 without RCP; G6. Negative control; G7. Positive control. Samples for microbiological tests were collected initially (S1), after RCP (S2), and after PDT (S3). Subsequently, the roots were sectioned and prepared for Scanning Electron Microscopy (SEM) analysis. Bacterial growth was analyzed according to the turbidity of the culture medium, followed by spectrophotometric optical density (nm). The effect of PDT on the dentinal structure was evaluated at magnifications 1,600X and 5,000X and described qualitatively. The Wilcoxon test was used for the comparisons from the same specimens, and the Mann-Whitney test was used to compare groups ((=5%). Bacteria were found in all experimental groups' microbiological samples (S1, S2 and S3). The optical density of culture media was lower in S2 than in S1 of G1, 2, 3, and 4 (p> 0.05). After PDT (S3) in G1 and 2, there was an additional reduction in optical density of the culture medium, respectively (p>0.05). In Group 5, the analysis of culture media at S2 revealed an increase in optical density compared to S1(p>0.05). In SEM images of G1, 2, and 5, dentin with melting and recrystallization areas were evidenced. After preparation of the root canal with the rotary system or manually associated with 2.5% NaOCl, PDT was not able to completely eliminate E. faecalis present in the root canal.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlos Estrela
- Faculty of Dentistry, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
10
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
11
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
12
|
Sivieri-Araujo G, Strazzi-Sahyon HB, Jacomassi DP, Dos Santos PH, Cintra LTA, Kurachi C, Bagnato VS. Effects of methylene blue and curcumin photosensitizers on the color stability of endodontically treated intraradicular dentin. Photodiagnosis Photodyn Ther 2021; 37:102650. [PMID: 34838697 DOI: 10.1016/j.pdpdt.2021.102650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Photodynamic therapy with photosensitizers can reduce the microbial load. However, few studies have evaluated the effects of photosensitizers on the color stability of endodontically treated intraradicular dentin. This in vitro study investigated the effects of methylene blue and curcumin photosensitizers used in photodynamic therapy on the color stability of intraradicular dentin. METHODS Sixty human incisors were divided into three experimental groups according to the photosensitizer solutions used and their concentrations: methylene blue (25 mg/L), curcumin (1000 mg/L), and curcumin (1500 mg/L). The color stability of endodontically treated intraradicular dentin was evaluated using a portable reflectance spectrophotometer before and after the samples been storage in 2 mL of the photosensitizer solutions during 5 min (n = 20). Color stability data were subjected to a normality test, and statistical analysis was performed using the one-way analysis of variance and Tukey least significant difference test (α = 0.05). RESULTS Samples treated with 25 mg/L methylene blue photosensitizer showed a higher level of color alteration than those stored in 1000 mg/L curcumin (p = .03322). However, there was no significant difference in the color alteration profiles between the samples treated with 25 mg/L methylene blue and 1500 mg/L curcumin (p = .36428). Furthermore, there was no difference in the color alteration profiles between the dentin samples immersed in 1000 mg/L and 1500 mg/L curcumin photosensitizer solutions (p = .45321). CONCLUSIONS Methylene blue and curcumin photosensitizers influenced the color stability of endodontically treated intraradicular dentin, and this color alteration exceeded the clinical acceptability threshold. Samples treated with 25 mg/L methylene blue showed the highest level of color alteration.
Collapse
Affiliation(s)
- Gustavo Sivieri-Araujo
- Department of Preventive and Restorative Dentistry, Discipline of Endodontics, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil.
| | - Henrico Badaoui Strazzi-Sahyon
- Department of Dental Materials and Prosthodontics, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil.
| | - Denis Pablo Jacomassi
- Optic Group, Physics Institute of São Carlos - IFSC, University of São Paulo - USP, São Carlos, SP, Brazil.
| | - Paulo Henrique Dos Santos
- Department of Dental Materials and Prosthodontics, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil.
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, Discipline of Endodontics, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil.
| | - Cristina Kurachi
- Optic Group, Physics Institute of São Carlos - IFSC, University of São Paulo - USP, São Carlos, SP, Brazil.
| | - Vanderlei Salvador Bagnato
- Optic Group, Physics Institute of São Carlos - IFSC, University of São Paulo - USP, São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Effect of Smear Layer on Penetration Depth of Methylene Blue and Curcumin into Root Dentinal Tubules. JOURNAL OF RESEARCH IN DENTAL AND MAXILLOFACIAL SCIENCES 2021. [DOI: 10.52547/jrdms.6.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Harada N, Masuda K, Nakamura JI, Uyama H. Fabrication and evaluation of durable, optically clear, and self-disinfecting films. Polym J 2021. [DOI: 10.1038/s41428-021-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Effect of Photosensitization Mediated by Curcumin on Carotenoid and Aflatoxin Content in Different Maize Varieties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mycotoxins are naturally occurring toxins produced by certain types of fungi that contaminate food and feed, posing serious health risks to human and livestock. This study evaluated the combination of blue light with curcumin to inactivate Aspergillus flavus spores, its effect on aflatoxin B1 (AFB1) production and maintaining carotenoid content in three maize varieties. The study was first conducted in vitro, and the spore suspensions (104 CFU·mL−1) were treated with four curcumin concentrations (25 and 50 µM in ethanol, 1000 and 1250 µM in propylene glycol) and illuminated at different light doses from 0 to 130.3 J·cm−2. The photoinactivation efficiency was light-dose dependent with the highest photoinactivation of 2.3 log CFU·mL−1 achieved using 1000 µM curcumin at 104.2 J·cm−2. Scanning electron microscopy revealed cell wall deformations as well as less density in photosensitized cells. Photosensitization of maize kernels gave rise to a complete reduction in the viability of A. flavus and therefore inhibition of AFB1 production, while no significant (p > 0.05) effect was observed using either light or curcumin. Moreover, photosensitization did not affect the carotenoids in all the studied maize varieties. The results suggest that photosensitization is a green alternative preservation technique to decontaminate maize kernels and reduce consumer exposure to AFB1 without any effect on carotenoid content.
Collapse
|
16
|
Shahmoradi S, Shariati A, Zargar N, Yadegari Z, Asnaashari M, Amini SM, Darban-Sarokhalil D. Antimicrobial effects of selenium nanoparticles in combination with photodynamic therapy against Enterococcus faecalis biofilm. Photodiagnosis Photodyn Ther 2021; 35:102398. [PMID: 34133959 DOI: 10.1016/j.pdpdt.2021.102398] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Selenium Nanoparticles (SeNPs) were reported as an agent that may enhance the effectiveness of Photodynamic Antimicrobial Chemotherapy (PACT). This in vitro study evaluates the effect of SeNPs on the efficacy of Methylene Blue (MB)-induced PACT against the biofilm formated in 96-well plates and the dentine tubule biofilm of Enterococcus faecalis. METHODS Chitosan coated SeNPs were synthesized using chemical reduction method and were characterized by Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS). Twenty-four-hour biofilms of E. faecalis were developed on 96-well plates and treated with SeNPs, MB, and Light-Emitting Diode (LED). Also, three-week biofilms of E. faecalis were formed on 67 specimens of dentinal tubules, and the antibacterial effects of MB+SeNPs on these biofilms were studied. RESULTS The average hydrodynamic diameter of SeNPs was 80/3 nm according to DLS measurement. The combined use of MB and SeNPs significantly reduced Colony-Forming Units (CFUs) of one-day-old E. faecalis biofilms in comparison with the control group (P value < 0.05). Besides, combination therapy had the most antibacterial effect on root canal E. faecalis biofilms at both 200 and 400 µm depths of dentine tubules (P value < 0.001). Of note, about 50% of human fibroblast cells survived at a concentration of 128 µg/ml of SeNPs, compared to the control group. CONCLUSION The results demonstrated that the photodynamic therapy modified by SeNPs could be an effective disinfection alternative to the destruction of E. faecalis biofilms and root canal treatment.
Collapse
Affiliation(s)
- Samane Shahmoradi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Zargar
- School of Dentistry, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Zahra Yadegari
- Department of Dental Biomaterials, Dental school, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Asnaashari
- Department of Endodontics, Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran university of medical sciences, Tehran, Iran.
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Rapacka-Zdończyk A, Woźniak A, Michalska K, Pierański M, Ogonowska P, Grinholc M, Nakonieczna J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne) 2021; 8:642609. [PMID: 34055830 PMCID: PMC8149737 DOI: 10.3389/fmed.2021.642609] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Photodynamic inactivation of microorganisms (aPDI) is an excellent method to destroy antibiotic-resistant microbial isolates. The use of an exogenous photosensitizer or irradiation of microbial cells already equipped with endogenous photosensitizers makes aPDI a convenient tool for treating the infections whenever technical light delivery is possible. Currently, aPDI research carried out on a vast repertoire of depending on the photosensitizer used, the target microorganism, and the light delivery system shows efficacy mostly on in vitro models. The search for mechanisms underlying different responses to photodynamic inactivation of microorganisms is an essential issue in aPDI because one niche (e.g., infection site in a human body) may have bacterial subpopulations that will exhibit different susceptibility. Rapidly growing bacteria are probably more susceptible to aPDI than persister cells. Some subpopulations can produce more antioxidant enzymes or have better performance due to efficient efflux pumps. The ultimate goal was and still is to identify and characterize molecular features that drive the efficacy of antimicrobial photodynamic inactivation. To this end, we examined several genetic and biochemical characteristics, including the presence of individual genetic elements, protein activity, cell membrane content and its physical properties, the localization of the photosensitizer, with the result that some of them are important and others do not appear to play a crucial role in the process of aPDI. In the review, we would like to provide an overview of the factors studied so far in our group and others that contributed to the aPDI process at the cellular level. We want to challenge the question, is there a general pattern of molecular characterization of aPDI effectiveness? Or is it more likely that a photosensitizer-specific pattern of molecular characteristics of aPDI efficacy will occur?
Collapse
Affiliation(s)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Klaudia Michalska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
18
|
Harada N, Kataoka M, Nakanosho M, Uyama H. Penetration of Singlet Oxygen into Films with Oxygen Permeability Coefficient Close to that of Skin. Photochem Photobiol 2021; 97:971-979. [PMID: 33973245 DOI: 10.1111/php.13446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022]
Abstract
Although its antiviral and antibacterial functions help prevent infection, singlet oxygen (1 O2 )-which is generated by the action of light on an endogenous photosensitizer-is cytotoxic. In the present study, we investigated the ability of 1 O2 -generated by the action of visible light on a photosensitizer-to penetrate skin. We used two polymer films with oxygen permeability coefficients similar to that of skin-i.e. cellulose acetate (CA) and ethyl cellulose (EC). Both films contained 1,3-diphenylisobenzofuran (DPBF), which was used as an 1 O2 probe. 1 O2 generated externally did not permeate the films by mere contact. Therefore, we conclude that the potential for 1 O2 to penetrate the skin is very low, and films that generate 1 O2 are safe and useful for preventing infections by contact. We also proved that 1 O2 can move between the layers of integrated polymer films when they are joined together.
Collapse
Affiliation(s)
- Nobuyuki Harada
- Nippon Shokubai Research Alliance Laboratories, Osaka University, Osaka, Japan
| | - Mika Kataoka
- Nippon Shokubai Research Alliance Laboratories, Osaka University, Osaka, Japan
| | | | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
TOPALOĞLU AVŞAR N, BAKAY E, KOLKIRAN A. Photodynamic action of chlorin e6 against methicillin resistant staphylococcus aureus with the aid of ethanol. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2020. [DOI: 10.25000/acem.740365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
20
|
Sarker RR, Tsunoi Y, Haruyama Y, Ichiki Y, Sato S, Nishidate I. Combined Addition of Ethanol and Ethylenediaminetetraacetic Acid Enhances Antibacterial and Antibiofilm Effects in Methylene Blue-Mediated Photodynamic Treatment against Pseudomonas aeruginosa In Vitro. Photochem Photobiol 2020; 97:600-606. [PMID: 33230825 DOI: 10.1111/php.13358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
Antimicrobial photodynamic treatment (aPDT) for infection with drug-resistant bacteria has received much attention. For P. aeruginosa, however, efficient formation of biofilms and the nature of Gram-negative bacteria often limit the efficacy of aPDT. In this study, we investigated the effects of ethanol and ethylenediaminetetraacetic acid (EDTA) as additives on bacterial viability, biofilm biomass, and structures of bacteria and biofilms in methylene blue (MB)-mediated aPDT in vitro. Matured P. aeruginosa biofilms were incubated with 32-µm MB solutions with different concentrations of additives and then illuminated with 665-nm light from an LED array. The combined addition of 10% ethanol and 10 mm EDTA to MB resulted in significantly greater bactericidal effects than those of MB alone and of MB with 10% ethanol or 10 mm EDTA. Crystal violet assays showed significant reductions in biofilm biomass by aPDT with addition of both ethanol and EDTA compared to that in the case of aPDT with MB alone. Scanning electron microscopy showed broken bacterial cells and reduction in the cell density and amount of biofilm under those conditions. Ethanol addition alone did not improve aPDT efficacy. Reduced amount of biofilm by EDTA addition would have improved the transportation of MB and ethanol to bacteria.
Collapse
Affiliation(s)
- Roma Rani Sarker
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan.,Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Yasuyuki Tsunoi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Yasue Haruyama
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Yayoi Ichiki
- Central Research Laboratory, National Defense Medical College, Tokorozawa, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Izumi Nishidate
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
21
|
Chitosan enhances the antimicrobial photodynamic inactivation mediated by Photoditazine® against Streptococcus mutans. Photodiagnosis Photodyn Ther 2020; 32:102001. [DOI: 10.1016/j.pdpdt.2020.102001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
|
22
|
Er Karaoğlu G, Uğur Ydın Z, Erdönmez D, Göl C, Durmuş M. Efficacy of antimicrobial photodynamic therapy administered using methylene blue, toluidine blue and tetra 2-mercaptopyridine substituted zinc phthalocyanine in root canals contaminated with Enterococcusaecalis. Photodiagnosis Photodyn Ther 2020; 32:102038. [PMID: 33010484 DOI: 10.1016/j.pdpdt.2020.102038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Traditional chemomechanical treatment procedures are an indispensable part of endodontic treatment, however, additional treatment approaches such as antimicrobial photodynamic therapy (aPDT) may also be recommended for the elimination of residual microorganisms. In this study, the disinfection efficiency of aPDT performed using methylene blue (MB), toluidine blue (TB), and tetra 2-mercaptopyridine substituted zinc phthalocyanine (TM-ZnPc) was compared in the roots contaminated with Enterococcus faecalis (E. faecalis). MATERIALS AND METHODS Forty-nine teeth with a single root and canal were included in this study. The roots were sterilized, and inoculated with E. faecalis. The roots were kept in an incubator for 30 days to form the biofilm. Forty-five teeth were prepared up to the F3 file of the ProTaperNext system under 2.5 % NaOCL irrigation. The samples were divided into three groups according to the type of used photosensitizer (PS) (n = 15); MB (313 μM), TB (327 μM), and TM-ZnPc (6μM). All PSs were irradiation with a light-emitting diode (LED) lamp (630 nm, 2-4 mW/cm²) for the 60 s. Two microbiological samples of the intracanal content were taken (one before and one immediately after additional aPDT in all groups) using sterile paper points. The colony-forming units per milliliter (CFU/mL) were calculated after 24 h of incubation at 37 °C. RESULTS After all aPDT protocols, intracanal bacterial load decreased significantly compared to the amount after chemomechanical preparation (P < 0.05). No significant difference in the reduction in intracanal bacterial load was found between the PSs (P < 0.05). CONCLUSIONS In the current study, the aPDT protocol performed with TM-ZnPc provided similar antimicrobial efficacy, although it was used at a lower concentration compared to MB and TB. Therefore, the use of TM-ZnPc in intra-canal disinfection in endodontics seems promising.
Collapse
Affiliation(s)
- Gamze Er Karaoğlu
- Department of Endodontics, Faculty of Dentistry, Bolu Abant Izzet Baysal University Bolu, Turkey
| | - Zeliha Uğur Ydın
- Department of Endodontics, Faculty of Dentistry, Bolu Abant Izzet Baysal University Bolu, Turkey.
| | - Demet Erdönmez
- Department of Biology, Faculty of Arts and Science, Aksaray University, Aksaray, Turkey
| | - Cem Göl
- Bolu Abant Izzet Baysal University, Innovative Food Technologies Development Application and Research Center, Bolu, Turkey
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, Kocaeli, Turkey
| |
Collapse
|
23
|
Vendramini Y, Salles A, Portella FF, Brew MC, Steier L, de Figueiredo JAP, Bavaresco CS. Antimicrobial effect of photodynamic therapy on intracanal biofilm: A systematic review of in vitro studies. Photodiagnosis Photodyn Ther 2020; 32:102025. [PMID: 32987169 DOI: 10.1016/j.pdpdt.2020.102025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (A-PDT), is one of the adjunctive therapies developed to improve the effectiveness of root canal disinfection.. The aim of this study was to analyze the antimicrobial effect of PDT on intracanal biofilm. METHODS Two reviewers conducted a literature search in PubMed, MEDLINE, Lilacs, SciELO, EMBASE and Google Scholar using the following search strategy: photochemotherapy "[Mesh] OR (photodynamic therapy) AND" dental plaque "[Mesh] OR (dental biofilm) AND (root canal). The following data were collected: publication year, author's name, study site, type of study, participant number, type of photosensitizer, type of laser, method of data collection, application time and results. Study quality was assessed using the Methodological Index for Non-Randomized Studies (MINORS). RESULTS After selection based on title, abstract and full text, 27 studies were included in this systematic review. PDT reduced bacterial viability in most studies when combined with conventional endodontic techniques. CONCLUSION PDT reduced bacterial counts in most studies, especially when used as an adjunct to the conventional endodontic technique to treat refractory infection. However, PDT effects on in vitro bacterial biofilm were not accurately quantified because of the numerous biases in the studies reviewed.
Collapse
Affiliation(s)
- Yasmin Vendramini
- Brazilian Lutheran University, ULBRA, Dental School, Av. Farroupila, 8001 Bairro São José, Canoas, RS, CEP 92425-020, Brazil
| | - Alexandre Salles
- Serra Gaúcha University Center, FSG, Dental School, R. Os Dezoito Do Forte, 2366 São Pelegrino, Caxias do Sul, RS, CEP 95020-472, Brazil
| | - Fernando Freitas Portella
- Brazilian Lutheran University, ULBRA, Dental School, Av. Farroupila, 8001 Bairro São José, Canoas, RS, CEP 92425-020, Brazil
| | - Myrian Camara Brew
- Brazilian Lutheran University, ULBRA, Dental School, Av. Farroupila, 8001 Bairro São José, Canoas, RS, CEP 92425-020, Brazil
| | - Liviu Steier
- University of Pennsylvania, Dental School, Department of Preventive and Restorative Sciences, 240 S 40th St, Philadelphia, PA, 19104, USA
| | - José Antonio Poli de Figueiredo
- Federal University of Rio Grande do Sul, UFRGS, Institute of Health Basic Sciences, ICBS R, Sarmento Leite 500 sala 134, Farroupilha, Porto Alegre, RS, CEP 90050-170, Brazil.
| | - Caren Serra Bavaresco
- Brazilian Lutheran University, ULBRA, Dental School, Av. Farroupila, 8001 Bairro São José, Canoas, RS, CEP 92425-020, Brazil
| |
Collapse
|
24
|
Evaluation of effect of two different functionalized nanoparticle photodynamic therapy on nanohardness of root dentin-An in vitro study. Photodiagnosis Photodyn Ther 2020; 31:101856. [PMID: 32579909 DOI: 10.1016/j.pdpdt.2020.101856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate the effect of functionalized nanoparticle photodynamic therapy on Nano hardness of root dentin METHODOLOGY: Fifty single rooted lower premolars were decoronated and sectioned into two halves. Then the samples were embedded horizontally in to the acrylic resin to expose the dentin surface. Baseline nanohardness was done at midroot level using a Nanohardness tester. Exposed dentin surfaces were immersed in the following irrigating solutions Post treatment nanohardness testing was done and results were analyzed statistically RESULTS: In general, all the samples in their respective groups had significant change in nanohardness following immersion in irrigant solutions except in NaOCl + EDTA and saline group. CSRB-np and PLGA-MBnp showed increased nanohardness (P = 0.005 and P = 0.007 respectively). Whereas NaOCl + EDTA + CHX showed decrease in nanohardness (P = 0.04). With regards to Modulus of elasticity (MOE), CSRB-np showed significant difference (P = 0.002) compared to the other groups. MOE increased in CSRB-np and PLGA-MBnp while it decreased in all the other groups. CONCLUSION In this study, the improvement of nanohardness and modulus of elasticity following the immersion of root dentin in CSRB-np solution was demonstrated.
Collapse
|
25
|
Hussein H, Kishen A. Antibiofilm and Immune Response of Engineered Bioactive Nanoparticles for Endodontic Disinfection. J Clin Med 2020; 9:E730. [PMID: 32182743 PMCID: PMC7141246 DOI: 10.3390/jcm9030730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
The biological aim of root canal treatment is to facilitate periapical tissue healing following endodontic therapy. This study aimed to develop an organotypic infected root canal model to understand the interaction of bacterial biofilm with macrophages and study the therapeutic effect of engineered bioactive chitosan nanoparticles (CSnp) on macrophages. Ex-vivo experiments were conducted in two phases; Phase-1: Enterococcus faecalis biofilms (two and six weeks old) developed in organotypic root canal model were used to characterize residual biofilm after conventional chemical treatment alone and combined with CSnp utilizing Confocal Laser Scanning Microscopy, Scanning Electron Microscopy and colony-forming units from pulverized dentin. Phase-2: The interaction of post-treatment biofilm and RAW macrophages was evaluated regarding pro/anti-inflammatory markers, cell viability and spreading at 24, 48 and 72 h. Compared to conventionally disinfected six-week-old biofilm, CSnp resulted in less viable bacteria (p < 0.01). Scanning electron micrographs demonstrated disruption of the biofilm. CSnp exhibited less residual bacterial load in pulverized dentin (p < 0.001). Macrophage interaction with CSnp-treated biofilm reduced proinflammatory markers (nitric oxide, TNF-α, IL-1β, and IL-6), increased anti-inflammatory marker (TGF-β1) and enhanced cell survival and spreading over time (p < 0.01 at 72 h). Engineered chitosan nanoparticles concurrently inactivated biofilm and altered the inflammatory response of macrophages that would promote healing.
Collapse
Affiliation(s)
- Hebatullah Hussein
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- School of Graduate Studies, University of Toronto, Toronto, ON M5G 1G6, Canada
- Department of Dentistry, Mount Sinai Health System, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
26
|
Zhang W, Zhang G, Wang W, Sun H, Du Q, Li X, Ge X, Li C. Modulation of release mechanisms of methylene blue (MB) monomers and dimers from silica-MB@shellac synthesized by antisolvent crystallization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110309. [PMID: 31761185 DOI: 10.1016/j.msec.2019.110309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/01/2022]
Abstract
Release behaviors of drugs from drug deliveries are crucial for the enhancement of therapy efficiency, reduction of toxicity and patient compliance. Herein, antisolvent crystallization is employed to coat methlyene blue (MB)-loaded silica by shellac precipitation (silica-MB@shellac), which is simultaneously induced by outward diffusion of H+ ions from particular silica-MB. The encapsulation of shellac shell on silica-MB modulates the aggregation state of MB, which endows silica-MB@shellac a decreased MB's thermal stability, enhanced photoluminescence intensity, improved stability against in vitro reduction by ascorbic acid and retained photodynamic therapy activity. From the absorbance of MB supernatant obtained during incubation, the concentrations of MB monomers and dimers are determined via a non-linear regression analysis to investigate the influence of shellac coating on MB's release mechanisms from silica-MB@shellac. According to the simulated models, small diffusion constants of MB are caused by limited diffusion through shellac shells with high compaction degrees. These are observed for samples synthesized under high supersaturation degree during antisolvent crystallization. High degree of supersaturation is achieved through increasing shellac concentration, additive amount and dropping rate of antisolvent, as well as decreasing pH values of aqueous buffers as antisolvent. Furthermore, a combined mechanism of Fickian diffusion and Case-IΙ relaxation is proposed to describe the release behaviors of MB monomer and dimers from silica-MB@shellac. Therefore, this work may shed light on the encapsulation method of polymer on drug-loaded powders and the control of aggregation states of photosensitizers to promote the photoluminescence intensity, photodynamic therapy efficiency and controlled release behaviors.
Collapse
Affiliation(s)
- Wei Zhang
- School of Materials Science and Engineering, Shandong University of Technology, 255049, Shandong, PR China
| | - Guangli Zhang
- School of Materials Science and Engineering, Shandong University of Technology, 255049, Shandong, PR China
| | - Wenhao Wang
- School of Materials Science and Engineering, Shandong University of Technology, 255049, Shandong, PR China
| | - Haibin Sun
- School of Materials Science and Engineering, Shandong University of Technology, 255049, Shandong, PR China
| | - Qingyang Du
- School of Materials Science and Engineering, Shandong University of Technology, 255049, Shandong, PR China
| | - Xiaowei Li
- School of Materials Science and Engineering, Shandong University of Technology, 255049, Shandong, PR China
| | - Xiaolu Ge
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, 255049, PR China
| | - Chengfeng Li
- School of Materials Science and Engineering, Shandong University of Technology, 255049, Shandong, PR China.
| |
Collapse
|
27
|
Jiao Y, Tay FR, Niu LN, Chen JH. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci 2019; 11:28. [PMID: 31570700 PMCID: PMC6802668 DOI: 10.1038/s41368-019-0062-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023] Open
Abstract
Effective control of oral biofilm infectious diseases represents a major global challenge. Microorganisms in biofilms exhibit increased drug tolerance compared with planktonic cells. The present review covers innovative antimicrobial strategies for controlling oral biofilm-related infections published predominantly over the past 5 years. Antimicrobial dental materials based on antimicrobial agent release, contact-killing and multi-functional strategies have been designed and synthesized for the prevention of initial bacterial attachment and subsequent biofilm formation on the tooth and material surface. Among the therapeutic approaches for managing biofilms in clinical practice, antimicrobial photodynamic therapy has emerged as an alternative to antimicrobial regimes and mechanical removal of biofilms, and cold atmospheric plasma shows significant advantages over conventional antimicrobial approaches. Nevertheless, more preclinical studies and appropriately designed and well-structured multi-center clinical trials are critically needed to obtain reliable comparative data. The acquired information will be helpful in identifying the most effective antibacterial solutions and the most optimal circumstances to utilize these strategies.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, the 7th Medical Center of PLA General Hospital, Beijing, PR China
| | - Franklin R Tay
- Department of Endodontics, the Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, PR China.
| | - Ji-Hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
28
|
Diogo P, F Faustino MA, P M S Neves MG, Palma PJ, P Baptista I, Gonçalves T, Santos JM. An Insight into Advanced Approaches for Photosensitizer Optimization in Endodontics-A Critical Review. J Funct Biomater 2019; 10:E44. [PMID: 31575005 PMCID: PMC6963755 DOI: 10.3390/jfb10040044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Apical periodontitis is a biofilm-mediated disease; therefore, an antimicrobial approach is essential to cure or prevent its development. In the quest for efficient strategies to achieve this objective, antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to classical endodontic irrigation solutions and antibiotics. The aim of the present critical review is to summarize the available evidence on photosensitizers (PSs) which has been confirmed in numerous studies from diverse areas combined with several antimicrobial strategies, as well as emerging options in order to optimize their properties and effects that might be translational and useful in the near future in basic endodontic research. Published data notably support the need for continuing the search for an ideal endodontic photosensitizer, that is, one which acts as an excellent antimicrobial agent without causing toxicity to the human host cells or presenting the risk of tooth discoloration. The current literature on experimental studies mainly relies on assessment of mixed disinfection protocols, combining approaches which are already available with aPDT as an adjunct therapy. In this review, several approaches concerning aPDT efficiency are appraised, such as the use of bacteriophages, biopolymers, drug and light delivery systems, efflux pump inhibitors, negative pressure systems, and peptides. The authors also analyzed their combination with other approaches for aPDT improvement, such as sonodynamic therapy. All of the aforementioned techniques have already been tested, and we highlight the biological challenges of each formulation, predicting that the collected information may encourage the development of other effective photoactive materials, in addition to being useful in endodontic basic research. Moreover, special attention is dedicated to studies on detailed conditions, aPDT features with a focus on PS enhancer strategies, and the respective final antimicrobial outcomes. From all the mentioned approaches, the two which are most widely discussed and which show the most promising outcomes for endodontic purposes are drug delivery systems (with strong development in nanoparticles) and PS solubilizers.
Collapse
Affiliation(s)
- Patrícia Diogo
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
- FMUC, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal.
| | - M Amparo F Faustino
- QOPNA & LAQV-REQUIMTE and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Graça P M S Neves
- QOPNA & LAQV-REQUIMTE and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paulo J Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
- FMUC, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal.
| | - Isabel P Baptista
- FMUC, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal.
- Institute of Periodontology, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
| | - Teresa Gonçalves
- FMUC, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal.
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João Miguel Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
- FMUC, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal.
| |
Collapse
|
29
|
Maliszewska I, Wróbel J, Wanarska E, Podhorodecki A, Matczyszyn K. Synergistic effect of methylene blue and biogenic gold nanoparticles against Enterococcus faecalis. Photodiagnosis Photodyn Ther 2019; 27:218-226. [DOI: 10.1016/j.pdpdt.2019.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
|
30
|
Schalch TO, Palmieri M, Longo PL, Braz-Silva PH, Tortamano IP, Michel-Crosato E, Mayer MPA, Jorge WA, Bussadori SK, Pavani C, Negreiros RM, Horliana ACRT. Evaluation of photodynamic therapy in pericoronitis: Protocol of randomized, controlled, double-blind study. Medicine (Baltimore) 2019; 98:e15312. [PMID: 31027098 PMCID: PMC6831272 DOI: 10.1097/md.0000000000015312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Pericoronitis is a common disease in the eruption phase of third molars, sometimes debilitating, with an impact on the quality of life. The most indicated treatment in the initial phase is the irrigation for cleanliness of the region. In order to reduce the chances of systemic dissemination of the infection and antibiotics use, it is mandatory to test effective treatments in the initial phase of pericoronitis avoiding the evolution of the infectious disease. Photodynamic therapy (PDT) is an interesting alternative because it is an effective antimicrobial treatment that is easy to perform and does not select bacterial resistance. The methylene blue (MB) used in PDT has been studied in an oral formulation, which optimizes the formation of monomers increasing its antimicrobial action. OBJECTIVE The aim of this study is to evaluate the effectiveness of PDT with MB in an astringent vehicle in pericoronitis on the initial phase in healthy patients through microbiological, clinical, and immune response. The impact of pericoronitis on oral health-related quality of life (OHRQoL) of these patients will also be evaluated. METHOD In this randomized, controlled, double-blind clinical bioequivalence protocol, 64 healthy patients with pericoronitis will be evaluated. Patients will be randomized into the positive control group (G1) (n = 32): irrigation with sterile saline and PDT (conventional MB at 0.005% concentration and irradiation with low intensity laser λ = 660 nm, 9J per point and radiant exposure of 318 J/cm), and the experimental group (G2) (n = 32): treatment identical to G1, however, MB will be delivered in a new formulation for oral use. Microbiological analysis will be performed by RT-PCR for the bacterium Tannerella forsythia. Gingival crevicular fluid and saliva will be collected to evaluate cytokines by Luminex assay (Luminex Corporation, Austin, TX). The pain (visual analogue scale), swelling and buccal opening (digital caliper), and OHRQoL will also be evaluated through the OHIP-14 questionnaire. The variables will be evaluated in T1 (baseline), T2 (immediately after PDT), and T3 (4th day after PDT). Registration: clinicaltrials.gov NCT03576105. Registered in July 2018.
Collapse
Affiliation(s)
- Tânia Oppido Schalch
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho, UNINOVE
| | - Michelle Palmieri
- Department of Stomatology, School of Dentistry, University of São Paulo
| | | | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of São Paulo
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo
| | | | | | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho, UNINOVE
| | - Christiane Pavani
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho, UNINOVE
| | - Renata Matalon Negreiros
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho, UNINOVE
| | | |
Collapse
|
31
|
Adjunctive antimicrobial photodynamic therapy using methylene blue/ethanol formulation in experimental periodontitis in diabetic rats: short-term results. Lasers Med Sci 2019; 34:1253-1260. [PMID: 30737587 DOI: 10.1007/s10103-019-02733-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/21/2019] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the effect of an MB experimental formulation (ethanol 20%) in aPDT used as an adjuvant to scaling and root planing (SRP) in the periodontal treatment of diabetic rats. Forty male Wistar rats received streptozotocin-intraperitonial injections to induce diabetes. After 14 days, 5 animals were allocated in the non-ligate group (NLG), and 35 animals received ligature at the first right mandibular molar to induce periodontitis. After 7 days, the ligature was removed and the animals were randomized into 4 groups: LG (without treatment, n = 5), SRPG (SRP, n = 10), aPDTW (SRP+aPDT-MB/water, n = 10), and aPDTEt (SRP + aPDT-MB/water/ethanol/carboxymethylcellulose, n = 10). Animals were euthanized after 7 days. Data of bone loss (BL) area, degree of inflammatory cell response, and collagen fibers percentages were statistically analyzed (p < 0.05). Percentage of animals that presented mild and severe inflammatory infiltrate was 10% and 40% for SRPG, 20% and 30% for aPDTW, and 50% and 0% for aPDTEt, respectively. BL area (mm2) was statistically higher in the LG (0.39 ± 0.15) than NLG (0.05 ± 0.02). aPDTEt showed the lowest value of BL (0.08 ± 0.03), followed by aPDTW (0.21 ± 0.15) and SRPG (0.31 ± 0.18). Statistical differences were verified between aPDTEt and SRPG. In relation to the LG, aPDTEt, aPDTW, and SRPG recovered the equivalent 80%, 46%, and 20% of the BL. aPDTEt showed collagen content statistically higher than SRPG and LG, and presented higher mean values than NLG (p > 0.05). Our findings showed aPDTEt presented promising results. aPDT using MB/ethanol can have potential as an adjunctive periodontal treatment in diabetics.
Collapse
|
32
|
Yoo YJ, Perinpanayagam H, Oh S, Kim AR, Han SH, Kum KY. Endodontic biofilms: contemporary and future treatment options. Restor Dent Endod 2019; 44:e7. [PMID: 30834229 PMCID: PMC6387897 DOI: 10.5395/rde.2019.44.e7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
Apical periodontitis is a biofilm-mediated infection. The biofilm protects bacteria from host defenses and increase their resistance to intracanal disinfecting protocols. Understanding the virulence of these endodontic microbiota within biofilm is essential for the development of novel therapeutic procedures for intracanal disinfection. Both the disruption of biofilms and the killing of their bacteria are necessary to effectively treat apical periodontitis. Accordingly, a review of endodontic biofilm types, antimicrobial resistance mechanisms, and current and future therapeutic procedures for endodontic biofilm is provided.
Collapse
Affiliation(s)
- Yeon-Jee Yoo
- Department of Conservative Dentistry, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Hiran Perinpanayagam
- Division of Restorative Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Soram Oh
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - A-Reum Kim
- Department of Oral Microbiology and Immunology, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Korea
| | - Seung-Hyun Han
- Department of Oral Microbiology and Immunology, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Korea
| | - Kee-Yeon Kum
- Department of Conservative Dentistry, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
33
|
Plotino G, Grande NM, Mercade M. Photodynamic therapy in endodontics. Int Endod J 2018; 52:760-774. [PMID: 30548497 DOI: 10.1111/iej.13057] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 12/06/2018] [Indexed: 01/14/2023]
Abstract
Photodynamic therapy (PDT) is a treatment modality that was initiated in 1900; however, it was not until the last decade that PDT regained attention for its several favourable features during the treatment of microbial infections in endodontics. Recently, several papers advocated its use for root canal treatment. The concept of photodynamic inactivation requires microbial exposure to either exogenous or endogenous photosensitizer molecules, followed by visible light energy, typically wavelengths in the red/near-infrared region that cause the excitation of the photosensitizers resulting in the production of singlet oxygen and other reactive oxygen species that react with intracellular components and consequently produce cell inactivation and death. Recently, PDT has been suggested as a promising effective adjunct to standard antimicrobial intracanal cleaning and shaping for the treatment of periapical lesions. Current publications tested PDT in terms of bacterial load reduction in vivo, in vitro and ex vivo, showing promising results. The purpose of this article was to review the existing literature on PDT in the endodontic field regarding its mechanism of action, photosensitizers and light sources, limitations and clinical procedures. Although positive results have been demonstrated in vitro, there are considerably fewer in vivo investigations. In conclusion, more in vivo studies are needed on the use of antimicrobial PDT in root canal treatment.
Collapse
Affiliation(s)
| | - N M Grande
- Catholic University of Sacred Heart, Rome, Italy
| | - M Mercade
- Department of Dentistry, Universitat de Barcelona, Barcelona, Spain.,Researcher IDIBELL Institute, Barcelona, Spain
| |
Collapse
|
34
|
Zhou K, Li C, Chen D, Pan Y, Tao Y, Qu W, Liu Z, Wang X, Xie S. A review on nanosystems as an effective approach against infections of Staphylococcus aureus. Int J Nanomedicine 2018; 13:7333-7347. [PMID: 30519018 PMCID: PMC6233487 DOI: 10.2147/ijn.s169935] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic bacteria and hazardous for the health of human beings and livestock globally. The characteristics like biofilm forming, facultative intracellular survival, and growing resistance of S. aureus pose a great challenge to its use in therapy. Nanoparticles are considered as a promising way to overcome the infections’ therapeutic problems caused by S. aureus. In this paper, the present progress and challenges of nanoparticles in the treatment of S. aureus infection are focused on stepwise. First, the survival and infection mechanism of S. aureus are analyzed. Second, the treatment challenges posed by S. aureus are provided, which is followed by the third step including the advantages of nanoparticles in improving the penetration and accumulation ability of their payload antibiotics into cell, inhibiting S. aureus biofilm formation, and enhancing the antibacterial activity against resistant isolates. Finally, the challenges and future perspective of nanoparticles for S. aureus infection therapy are introduced. This review will help the readers to realize that the nanosystems can effectively fight against the S. aureus infection by inhibiting biofilm formation, enhancing intracellular delivery, and improving activity against methicillin-resistant S. aureus and small colony variant phenotypes as well as aim to help researchers looking for more efficient nano-systems to combat the S. aureus infections.
Collapse
Affiliation(s)
- Kaixiang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Chao Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Xiaofang Wang
- Animal Husbandry and Veterinary Institute of Hebei Province, Baoding, Hebei, China,
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| |
Collapse
|
35
|
Gomes BPFDA, Herrera DR. Etiologic role of root canal infection in apical periodontitis and its relationship with clinical symptomatology. Braz Oral Res 2018; 32:e69. [PMID: 30365610 DOI: 10.1590/1807-3107bor-2018.vol32.0069] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Evidence shows the polymicrobial etiology of endodontic infections, in which bacteria and their products are the main agents for the development, progression, and dissemination of apical periodontitis. Microbial factors in necrotic root canals (e.g., endotoxin) may spread into apical tissue, evoking and supporting a chronic inflammatory load. Thus, apical periodontitis is the result of the complex interplay between microbial factors and host defense against invasion of periradicular tissues. This review of the literature aims to discuss the complex network between endodontic infectious content and host immune response in apical periodontitis. A better understanding of the relationship of microbial factors with clinical symptomatology is important to establish appropriate therapeutic procedures for a more predictable outcome of endodontic treatment.
Collapse
Affiliation(s)
| | - Daniel Rodrigo Herrera
- Universidade Estadual de Campinas -Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| |
Collapse
|
36
|
Ali IAA, Neelakantan P. Light Activated Disinfection in Root Canal Treatment-A Focused Review. Dent J (Basel) 2018; 6:E31. [PMID: 29996523 PMCID: PMC6162728 DOI: 10.3390/dj6030031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Light activated disinfection (LAD) is a strategy for optimizing root canal disinfection by using a highly-selective, targeted killing of bacteria using a combination of photosensitizers and light. Over the past decade, numerous in vitro and clinical studies have been performed to demonstrate the effectiveness of this mode of root canal disinfection. While most studies offer an important understanding of the effectiveness of LAD on monospecies biofilms, few have offered credence to the fact that infections of the root canal system are mediated by polymicrobial biofilms. Hence, it is imperative to understand the effect of LAD on polymicrobial biofilms both in terms of microbial killing and the changes in the biofilm architecture. The aim of this review was to systematically review the literature to evaluate the effect of LAD on dual and multispecies biofilms and demonstrate the antibiofilm effect of LAD. Two databases (PubMed and Scopus) were searched to identify eligible studies using a combination of key words. These studies were reviewed to draw conclusions on the effect of LAD on dual and multi species biofilm and the antibiofilm effect of LAD. It was found that LAD alone may be unable to eradicate dual and multispecies biofilms, but it may enhance the effect of conventional canal debridement strategies. Novel formulations of photosensitizers with nanoparticles showed the potential to inhibit biofilm formation and/or disrupt the biofilm architecture.
Collapse
Affiliation(s)
- Islam A Abdelaziz Ali
- Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Prasanna Neelakantan
- Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Soares JA, Soares SMCS, de Jesus Tavarez RR, de Castro Rizzi C, Vaz Rodrigues SCG, Maia Filho EM, Brito-Júnior M, Pereira RD, Magalhães PP, de Macêdo Farias L. Exploring different photodynamic therapy parameters to optimize elimination of Enterococcus faecalis in planktonic form. Photodiagnosis Photodyn Ther 2018; 22:127-131. [DOI: 10.1016/j.pdpdt.2018.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/13/2018] [Accepted: 03/28/2018] [Indexed: 01/10/2023]
|
38
|
Zhang N, Li K, Cui Y, Wu Z, Shum PP, Auguste JL, Dinh XQ, Humbert G, Wei L. Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels. LAB ON A CHIP 2018; 18:655-661. [PMID: 29362756 DOI: 10.1039/c7lc01247k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
All-in-fiber optofluidics is an analytical tool that provides enhanced sensing performance with simplified analyzing system design. Currently, its advance is limited either by complicated liquid manipulation and light injection configuration or by low sensitivity resulting from inadequate light-matter interaction. In this work, we design and fabricate a side-channel photonic crystal fiber (SC-PCF) and exploit its versatile sensing capabilities in in-line optofluidic configurations. The built-in microfluidic channel of the SC-PCF enables strong light-matter interaction and easy lateral access of liquid samples in these analytical systems. In addition, the sensing performance of the SC-PCF is demonstrated with methylene blue for absorptive molecular detection and with human cardiac troponin T protein by utilizing a Sagnac interferometry configuration for ultra-sensitive and specific biomolecular specimen detection. Owing to the features of great flexibility and compactness, high-sensitivity to the analyte variation, and efficient liquid manipulation/replacement, the demonstrated SC-PCF offers a generic solution to be adapted to various fiber-waveguide sensors to detect a wide range of analytes in real time, especially for applications from environmental monitoring to biological diagnosis.
Collapse
Affiliation(s)
- Nan Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. and CINTRA CNRS/NTU/THALES, UMI 3288, 50 Nanyang Drive, Singapore
| | - Kaiwei Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore.
| | - Ying Cui
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. and CINTRA CNRS/NTU/THALES, UMI 3288, 50 Nanyang Drive, Singapore
| | - Zhifang Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. and CINTRA CNRS/NTU/THALES, UMI 3288, 50 Nanyang Drive, Singapore
| | - Perry Ping Shum
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. and CINTRA CNRS/NTU/THALES, UMI 3288, 50 Nanyang Drive, Singapore
| | - Jean-Louis Auguste
- XLIM Research Institute, UMR 7252 CNRS, University of Limoges, 123 Avenue Albert Thomas, Limoges Cedex, France.
| | - Xuan Quyen Dinh
- CINTRA CNRS/NTU/THALES, UMI 3288, 50 Nanyang Drive, Singapore and Thales Solutions Asia Pte Ltd, R&T Centre, 28 Changi North Rise, Singapore
| | - Georges Humbert
- XLIM Research Institute, UMR 7252 CNRS, University of Limoges, 123 Avenue Albert Thomas, Limoges Cedex, France.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. and CINTRA CNRS/NTU/THALES, UMI 3288, 50 Nanyang Drive, Singapore
| |
Collapse
|
39
|
Rout B, Liu CH, Wu WC. Photosensitizer in lipid nanoparticle: a nano-scaled approach to antibacterial function. Sci Rep 2017; 7:7892. [PMID: 28801673 PMCID: PMC5554217 DOI: 10.1038/s41598-017-07444-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022] Open
Abstract
Photosensitization-based antimicrobial therapy (PAT) is an alternative therapy aimed at achieving bacterial inactivation. Researchers use various photosensitizers to achieve bacterial inactivation. However, the most widely used approach involves the use of photosensitizers dispersed in aqueous solution, which could limit the effectiveness of photodynamic inactivation. Therefore, the approaches to encapsulate the photosensitizer in appropriate vehicles can enhance the delivery of the photosensitizer. Herein, Toluidine Blue O (TBO) was the photosensitizer, and lipid nanoparticles were used for its encapsulation. The lipid nanoparticle-based delivery system has been tailor-made for decreasing the average size and viscosity and increasing the formulation stability as well as the wettability of skin. Usage of an appropriate vehicle will also increase the cellular uptake of the photosensitizer into the bacterial cells, leading to the damage on cell membrane and genomic DNA. Evidence of effectiveness of the developed PAT on planktonic bacteria and biofilms was examined by fluorescence microscopy and scanning electron microscopy. Lipid nanoparticles protected the photosensitizer from aggregation and made the application easy on the skin as indicated in data of size distribution and contact angle. The use of lipid nanoparticles for encapsulating TBO could enhance photosensitization-based antimicrobial therapy as compared to the aqueous media for delivering photosensitizers.
Collapse
Affiliation(s)
- Bishakh Rout
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan
| | - Chi-Hsien Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan. .,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan, Taiwan. .,Department of Chemical Engineering, Ming Chi University of Technology, 84, Gung-Juan Road, New Taipei City, Taiwan. .,Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwan.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| |
Collapse
|
40
|
Barin LM, Barcelos RCS, Vey LT, Pillusky FM, Palma VM, Kantorski KZ, Bürger ME, Maciel RM, Danesi CC. Role of the adjunctive antimicrobial photodynamic therapy to periodontal treatment at plasmatic oxidative stress and vascular behavior. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:538-544. [PMID: 28692925 DOI: 10.1016/j.jphotobiol.2017.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND To evaluate for the first time in vivo the effects of methylene blue (MB) photosensitizer dissolved in ethanol in antimicrobial photodynamic therapy (aPDT) as adjuvant periodontal treatment, at plasmatic oxidative stress and vascular behavior in rat model. METHODS Wistar rats were divided into negative control (NC, no periodontitis) and positive control (PC, with periodontitis, without any treatment). The other groups had periodontitis and were treated with scaling and root planing (SRP); SRP+aPDT+MB dissolved in water (aPDT I); SRP+aPDT+MB dissolved in ethanol (aPDT II). The periodontitis was induced by ligature at the mandibular right first molar. At 7/15/30days, rats were euthanized, the plasma was used to determine oxidative stress parameters and gingival tissue for histomorphometric analysis. RESULTS PC showed higher thiobarbituric acid reactive substances levels in 7/15/30days. aPDT II was able to block the lipid peroxidation, especially between 15th and 30th days. Glutathione reduced levels were consumed in PC, aPDT I and II groups throughout the experiment. aPDT II increased the vitamin C levels which were restored in this group in the 30th day. aPDT II group showed the highest number of blood vessels. CONCLUSION In summary, the aPDT with MB dissolved in ethanol provides better therapeutic responses in periodontitis treatment.
Collapse
Affiliation(s)
- L M Barin
- Post-Graduation Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - R C S Barcelos
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - L T Vey
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - F M Pillusky
- Post-Graduation Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - V M Palma
- Department of Pathology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - K Z Kantorski
- Post-Graduation Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Stomatology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - M E Bürger
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - R M Maciel
- Post-Graduation Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - C C Danesi
- Post-Graduation Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Pathology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
41
|
Abstract
Commonly used irrigants do not always eradicate the entire microbial flora in infected root canals. Therefore, several other strategies, such as photodynamic therapy (PDT) have been developed. Photoactivated disinfection is based on the interaction of a photosensitive antibacterial agent and a light source. It uses a nontoxic dye named photosensitizer (PS) and low-intensity visible light. In oxygen presentation, these combine to produce some cytotoxic species. The PS molecules attach to bacteria membrane. Irradiation with a specific wavelength of the light may lead to the production of singlet oxygen, resulting in rupture of the microbial cell wall. There are several applications for PDT in dentistry. A successful periodontal treatment is based on elimination of bacteria from the infected area. Phenothiazinium PSs have been shown to be highly effective and safe for this purpose. However, scaling/root planing should be performed before the PDT. While performing the PDT, PS should be first injected in the periodontal pocket and allowed to pigment. Then, the special fiber should be inserted 1 mm short of the pocket base and lased. Photodynamic therapy has also been used to disinfect caries dentin before restoration, disinfecting oral tissues before or during surgical procedures, treating denture stomatitis, and treating oral candidiasis in immunocompromised patients. Photodynamic therapy can be used in combination with mechanical instrumentation and chemical antimicrobial agents, such as sodium hypochlo-rite, too. The purpose of this study was to review historical perspective, mechanism of action, and applications of PDT in dentistry and especially in endodontics was reviewed. Furthermore, the effects of PDT on dentin bonding and endo-toxin are discussed. CLINICAL SIGNIFICANCE Photodynamic therapy has been advocated to increase the disinfection level of the root canal system.
Collapse
Affiliation(s)
- Zahed Mohammadi
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran; Iranian National Elite Foundation, Tehran, Islamic Republic of Iran
| | - Hamid Jafarzadeh
- Department of Endodontics, Faculty of Dentistry, Dental Research Center, Mashhad University of Medical Sciences Mashhad, Islamic Republic of Iran, Phone: +985138829501, e-mail: hamid_j365@ yahoo.com/
| | - Sousan Shalavi
- Private Dental Clinic, Hamedan, Islamic Republic of Iran
| | - Jun-Ichiro Kinoshita
- Department of Conservative Dentistry, Showa University Dental Hospital, Tokyo, Japan
| |
Collapse
|
42
|
Pillusky FM, Barcelos RCS, Vey LT, Barin LM, de Mello Palma V, Maciel RM, Kantorski KZ, Bürger ME, Danesi CC. Antimicrobial photodynamic therapy with photosensitizer in ethanol improves oxidative status and gingival collagen in a short-term in periodontitis. Photodiagnosis Photodyn Ther 2017; 19:119-127. [PMID: 28506773 DOI: 10.1016/j.pdpdt.2017.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study evaluated the antimicrobial photodynamic therapy (aPDT) effects using the methylene blue (MB) in ethanol 20% on systemic oxidative status and collagen content from gingiva of rats with periodontitis. METHODS Rats were divided into five experimental groups: NC (negative control; no periodontitis); PC (positive control; periodontitis without any treatment); SRP (periodontitis and scaling and root planing), aPDT I (periodontitis and SRP+aPDT+MB solubilized in water), and aPDT II (periodontitis and SRP+aPDT+MB solubilized in ethanol 20%). After 7days of removal of the ligature, the periodontal treatments were performed. At 7/15/30days, gingival tissue was removed for morphometric analysis. The erythrocytes were used to evaluate systemic oxidative status. RESULTS PC group showed higher lipoperoxidation levels at 7/15/30days. aPDT indicated a protective influence in erythrocytes at 15days observed by the elevation in levels of systemic antioxidant defense. aPDT II group was the only one that restored the total collagen area in 15days, and recovered the type I collagen area at the same time point. CONCLUSIONS aPDT as an adjunct to the SRP can induce the systemic protective response against oxidative stress periodontitis-induced and recover the gingival collagen, thus promoting the healing periodontal, particularly when the MB is dissolved in ethanol 20%.
Collapse
Affiliation(s)
- Fernanda Maia Pillusky
- Programa de Pós-Graduação em Ciências Odontológicas, Rua Marechal Floriano Peixoto, 1184, Centro, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Raquel Cristine Silva Barcelos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, Brazil.
| | - Luciana Taschetto Vey
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, RS, Brazil.
| | - Luisa Machado Barin
- Programa de Pós-Graduação em Ciências Odontológicas, Rua Marechal Floriano Peixoto, 1184, Centro, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Victor de Mello Palma
- Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, Brazil.
| | - Roberto Marinho Maciel
- Programa de Pós-Graduação em Ciências Odontológicas, Rua Marechal Floriano Peixoto, 1184, Centro, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Karla Zanini Kantorski
- Programa de Pós-Graduação em Ciências Odontológicas, Rua Marechal Floriano Peixoto, 1184, Centro, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Departamento de Estomatologia, Rua Marechal Floriano Peixoto, 1184, Centro, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Marilise Escobar Bürger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, RS, Brazil.
| | - Cristiane Cademartori Danesi
- Programa de Pós-Graduação em Ciências Odontológicas, Rua Marechal Floriano Peixoto, 1184, Centro, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Departamento de Patologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, Brazil.
| |
Collapse
|
43
|
Kishen A, Peters OA, Zehnder M, Diogenes AR, Nair MK. Advances in endodontics: Potential applications in clinical practice. J Conserv Dent 2016; 19:199-206. [PMID: 27217630 PMCID: PMC4872571 DOI: 10.4103/0972-0707.181925] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Contemporary endodontics has seen an unprecedented advance in technology and materials. This article aimed to review some of the challenges and advances in the following sections: (1) endodontic imaging, (2) root canal preparation, (3) root canal disinfection, (4) root canal filling, and (4) regenerative endodontic procedures (REPs). Jointly, these advances are aimed at improving the state of the art and science of root canal treatment.
Collapse
Affiliation(s)
- Anil Kishen
- Department of Endodontics, University of Toronto, Toronto, Ontario, Canada
| | - Ove A Peters
- Department of Endodontics, Arthur A Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - Matthias Zehnder
- Department of Preventive Dentistry, Periodontology and Cariology, Division of Endodontology, University of Zürich Center for Dental Medicine, Zürich, Switzerland
| | - Anibal R Diogenes
- Department of Endodontics, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Madhu K Nair
- Department of Radiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Asnaashari M, Godiny M, Azari-Marhabi S, Tabatabaei FS, Barati M. Comparison of the Antibacterial Effect of 810 nm Diode Laser and Photodynamic Therapy in Reducing the Microbial Flora of Root Canal in Endodontic Retreatment in Patients With Periradicular Lesions. J Lasers Med Sci 2016; 7:99-104. [PMID: 27330705 DOI: 10.15171/jlms.2016.17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The aim of this study was to compare the antibacterial efficacy of diode laser 810nm and photodynamic therapy (PDT) in reducing bacterial microflora in endodontic retreatment of teeth with periradicular lesion. METHODS In this in vivo clinical trial, 20 patients who needed endodontic retreatment were selected. After conventional chemo mechanical preparation of root canals, microbiological samples were taken with sterile paper point (PP), held in thioglycollate broth, and then were transferred to the microbiological lab. In the first group, PDT with methylene blue (MB) and diode laser (810 nm, 0.2 W, 40 seconds) was performed and in the second group diode laser (810 nm, 1.2 W, 30 seconds) was irradiated. Then second samples were taken from all canals. RESULTS CFU/ml amounts showed statistically significant reduction in both groups (P < 0.001). CFU/ml amounts were compared between the two groups and there was no statistical difference. CONCLUSION PDT and diode laser 810 nm irradiation are effective methods for root canal disinfection. PDT is a suitable alternative for diode laser 810 nm irradiation, because of lower thermal risk on root dentin.
Collapse
Affiliation(s)
- Mohammad Asnaashari
- Department of Endodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Godiny
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saranaz Azari-Marhabi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Sadat Tabatabaei
- Department of Dental Materials, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Barati
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
de Souza TD, Ziembowicz FI, Müller DF, Lauermann SC, Kloster CL, Santos RCV, Lopes LQS, Ourique AF, Machado G, Villetti MA. Evaluation of photodynamic activity, photostability and in vitro drug release of zinc phthalocyanine-loaded nanocapsules. Eur J Pharm Sci 2016; 83:88-98. [DOI: 10.1016/j.ejps.2015.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/25/2015] [Accepted: 12/04/2015] [Indexed: 01/09/2023]
|
46
|
Plotino G, Cortese T, Grande NM, Leonardi DP, Di Giorgio G, Testarelli L, Gambarini G. New Technologies to Improve Root Canal Disinfection. Braz Dent J 2016; 27:3-8. [DOI: 10.1590/0103-6440201600726] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/22/2016] [Indexed: 11/21/2022] Open
Abstract
Abstract Effective irrigant delivery and agitation are prerequisites to promote root canal disinfection and debris removal and improve successful endodontic treatment. This paper presents an overview of the currently available technologies to improve the cleaning of the endodontic space and their debridement efficacy. A PubMed electronic search was conducted with appropriate key words to identify the relevant literature on this topic. After retrieving the full-text articles, all the articles were reviewed and the most appropriate were included in this review. Several different systems of mechanical activation of irrigants to improve endodontic disinfection were analysed: manual agitation with gutta-percha cones, endodontic instruments or special brushes, vibrating systems activated by low-speed hand-pieces or by sonic or subsonic energy, use of ultrasonic or laser energy to mechanically activate the irrigants and apical negative pressure irrigation systems. Furthermore, this review aims to describe systems designed to improve the intracanal bacterial decontamination by a specific chemical action, such as ozone, direct laser action or light-activated disinfection. The ultrasonic activation of root canal irrigants and of sodium hypochlorite in particular still remains the gold standard to which all other systems of mechanical agitation analyzed in this article were compared. From this overview, it is evident that the use of different irrigation systems can provide several advantages in the clinical endodontic outcome and that integration of new technologies, coupled with enhanced techniques and materials, may help everyday clinical practice.
Collapse
|
47
|
Abstract
As our knowledge of host-microbial interactions within the oral cavity increases, future treatments are likely to be more targeted. For example, efforts to target a single species or key virulence factors that they produce, while maintaining the natural balance of the resident oral microbiota that acts to modulate the host immune response would be an advantage. Targeted approaches may be directed at the black-pigmented anaerobes, Porphyromonas gingivalis and Prevotella intermedia, associated with periodontitis. Such pigments provide an opportunity for targeted phototherapy with high-intensity monochromatic light. Functional inhibition approaches, including the use of enzyme inhibitors, are also being explored to control periodontitis. More general disruption of dental plaque through the use of enzymes and detergents, alone and in combination, shows much promise. The use of probiotics and prebiotics to improve gastrointestinal health has now led to an interest in using these approaches to control oral disease. More recently the potential of antimicrobial peptides and nanotechnology, through the application of nanoparticles with biocidal, anti-adhesive and delivery capabilities, has been explored. The aim of this review is to consider the current status as regards non-conventional treatment approaches for oral infections with particular emphasis on the plaque-related diseases.
Collapse
Affiliation(s)
- Robert P Allaker
- a Oral Microbiology; Barts and The London School of Medicine & Dentistry; Queen Mary University of London ; London, UK
| | | |
Collapse
|
48
|
Chiniforush N, Pourhajibagher M, Shahabi S, Bahador A. Clinical Approach of High Technology Techniques for Control and Elimination of Endodontic Microbiota. J Lasers Med Sci 2015; 6:139-50. [PMID: 26705458 DOI: 10.15171/jlms.2015.09] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The main goal in endodontic treatment is to eradicate or at least reduce intraradicular microbial population to levels that are more compatible with periapical lesions healing process. Since endodontic infections are polymicrobial in nature, intraradicular survival of endodontic microbiota and their pathogenic properties are influenced by a combination of their virulence factors. The purpose of this article is to review the endodontic microbiota and their respective virulence attributes, as well as perform a literature review of the effects of disinfection procedures in the treatment of endodontic infections to gain best practices. Conventional technique for root canal preparation includes mechanical debridement and application of antimicrobial irrigants. Recently, laser irradiation has been used to enhance the results of root canal treatment through its thermal effect. To reduce thermal side effects, laser activated irrigation (LAI) and photon induced photoacoustic streaming (PIPS) were introduced. Antimicrobial photodynamic therapy (aPDT) by photochemical reaction uses light at a specific wavelength to activate a nontoxic photosensitizer (PS) in the presence of oxygen to produce cytotoxic products. Different PSs are used in dentistry including methylene blue (MB), toluidine blue O (TBO), indocyanine green (ICG) and curcumin. Among different options, ICG could be the best choice due to its peak absorption at wavelength of 808 nm, which coincides with the commercial diode laser devices. Also, this wavelength has more penetration depth compared to other wavelengths used in aPDT.
Collapse
Affiliation(s)
- Nasim Chiniforush
- Laser Research Center of Dentistry (LRCD), Dental Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Shahabi
- Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Antimicrobial photodynamic therapy: A promise candidate for caries lesions treatment. Photodiagnosis Photodyn Ther 2015; 12:511-8. [DOI: 10.1016/j.pdpdt.2015.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/20/2015] [Accepted: 04/13/2015] [Indexed: 01/09/2023]
|
50
|
Antimicrobial photodynamic effect of phenothiazinic photosensitizers in formulations with ethanol on Pseudomonas aeruginosa biofilms. Photodiagnosis Photodyn Ther 2015; 13:291-296. [PMID: 26315922 DOI: 10.1016/j.pdpdt.2015.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND DATA Methylene blue (MB) and toluidine blue (TB) are recognized as safe photosensitizers (Ps) for use in humans. The clinical effectiveness of the antimicrobial photodynamic therapy with MB and TB needs to be optimized, and ethanol can increase their antimicrobial effect. Formulations of MB and TB containing ethanol were evaluated for their ability to produce singlet oxygen and their antibacterial effect on Pseudomonas aeruginosa biofilms. METHODS Photoactivated formulations were prepared by diluting the Ps (250 μM) in buffered water (pH 5.6, sodium acetate/acetic acid), 10% ethanol (buffer: ethanol, 90:10), or 20% ethanol (buffer: ethanol, 80:20). Biofilms also were exposed to the buffer, 10% ethanol, or 20% ethanol without photoactivation. Untreated biofilm was considered the control group. The production of singlet oxygen in the formulations was measured based on the photo-oxidation of 1,3-diphenylisobenzofuran. The photo-oxidation and CFU (log10) data were evaluated by two-way ANOVA and post-hoc Tukey's tests. RESULTS In all the formulations, compared to TB, MB showed higher production of singlet oxygen. In the absence of photoactivation, neither the buffer nor the 10% ethanol solution showed any antimicrobial effect, while the 20% ethanol solution significantly reduced bacterial viability (P=0.009). With photoactivation, only the formulations containing MB and both 10% and 20% ethanol solutions significantly reduced the viability of P. aeruginosa biofilms when compared with the control. CONCLUSIONS MB formulations containing ethanol enhanced the antimicrobial effect of the photodynamic therapy against P. aeruginosa biofilms in vitro.
Collapse
|