1
|
Rudkouskaya A, Sinsuebphon N, Ochoa M, Chen SJ, Mazurkiewicz JE, Intes X, Barroso M. Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor. Theranostics 2020; 10:10309-10325. [PMID: 32929350 PMCID: PMC7481426 DOI: 10.7150/thno.45825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022] Open
Abstract
Rationale: Following an ever-increased focus on personalized medicine, there is a continuing need to develop preclinical molecular imaging modalities to guide the development and optimization of targeted therapies. Near-Infrared (NIR) Macroscopic Fluorescence Lifetime Förster Resonance Energy Transfer (MFLI-FRET) imaging offers a unique method to robustly quantify receptor-ligand engagement in live intact animals, which is critical to assess the delivery efficacy of therapeutics. However, to date, non-invasive imaging approaches that can simultaneously measure cellular drug delivery efficacy and metabolic response are lacking. A major challenge for the implementation of concurrent optical and MFLI-FRET in vivo whole-body preclinical imaging is the spectral crowding and cross-contamination between fluorescent probes. Methods: We report on a strategy that relies on a dark quencher enabling simultaneous assessment of receptor-ligand engagement and tumor metabolism in intact live mice. Several optical imaging approaches, such as in vitro NIR FLI microscopy (FLIM) and in vivo wide-field MFLI, were used to validate a novel donor-dark quencher FRET pair. IRDye 800CW 2-deoxyglucose (2-DG) imaging was multiplexed with MFLI-FRET of NIR-labeled transferrin FRET pair (Tf-AF700/Tf-QC-1) to monitor tumor metabolism and probe uptake in breast tumor xenografts in intact live nude mice. Immunohistochemistry was used to validate in vivo imaging results. Results: First, we establish that IRDye QC-1 (QC-1) is an effective NIR dark acceptor for the FRET-induced quenching of donor Alexa Fluor 700 (AF700). Second, we report on simultaneous in vivo imaging of the metabolic probe 2-DG and MFLI-FRET imaging of Tf-AF700/Tf-QC-1 uptake in tumors. Such multiplexed imaging revealed an inverse relationship between 2-DG uptake and Tf intracellular delivery, suggesting that 2-DG signal may predict the efficacy of intracellular targeted delivery. Conclusions: Overall, our methodology enables for the first time simultaneous non-invasive monitoring of intracellular drug delivery and metabolic response in preclinical studies.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Marien Ochoa
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sez-Jade Chen
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Joseph E. Mazurkiewicz
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
2
|
Prabha S, Durgalakshmi D, Subramani K, Aruna P, Ganesan S. Enhanced Emission of Zinc Nitride Colloidal Nanoparticles with Organic Dyes for Optical Sensors and Imaging Application. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19245-19257. [PMID: 32242405 DOI: 10.1021/acsami.9b21585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we have reported on the efficiency of inorganic Zn3N2 nanoparticles for labeling plant cells and animal cells toward imaging applications with negligible toxicity. We have synthesized zinc nitride (Zn3N2) colloidal nanoparticles with an average size of 25 nm at room temperature. The optical band gap of the prepared Zn3N2 nanoparticles is 2.8 eV and gives a visible range emission at 415 nm. With the addition of Zn3N2 colloids to organic dyes such as protoporphyrin, flavin adenine dinucleotide, fluorescein, and neutral red, the emission intensity of the organic dyes enhanced from 3 to 20 times. The molecular simulation and lifetime studies evidence the possibility of energy transfer from zinc nitride to organic dyes. The enhancement of dye intensity in the presence of Zn3N2 enhanced the vicinity of the cellular environment during confocal imaging of plant cells and animal cells. The detailed results suggested Zn3N2 for bioimaging and biosensor applications.
Collapse
Affiliation(s)
| | | | - Karthikeyan Subramani
- Department of Organic Chemistry, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St.,6, Moscow 117198, Russia
| | - Prakasarao Aruna
- Department of Medical Physics, Anna University, Chennai 600025, India
| | | |
Collapse
|
3
|
Rudkouskaya A, Sinsuebphon N, Ward J, Tubbesing K, Intes X, Barroso M. Quantitative imaging of receptor-ligand engagement in intact live animals. J Control Release 2018; 286:451-459. [PMID: 30036545 PMCID: PMC6231501 DOI: 10.1016/j.jconrel.2018.07.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
Abstract
Maintaining an intact tumor environment is critical for quantitation of receptor-ligand engagement in a targeted drug development pipeline. However, measuring receptor-ligand engagement in vivo and non-invasively in preclinical settings is extremely challenging. We found that quantitation of intracellular receptor-ligand binding can be achieved using whole-body macroscopic lifetime-based Förster Resonance Energy Transfer (FRET) imaging in intact, live animals bearing tumor xenografts. We determined that FRET levels report on ligand binding to transferrin receptors conversely to raw fluorescence intensity. FRET levels in heterogeneous tumors correlate with intracellular ligand binding but strikingly, not with ubiquitously used ex vivo receptor expression assessment. Hence, MFLI-FRET provides a direct measurement of systemic delivery, target availability and intracellular drug delivery in preclinical studies. Here, we have used MFLI to measure FRET longitudinally in intact and live animals. MFLI-FRET is well-suited for guiding the development of targeted drug therapy in heterogeneous tumors in intact, live small animals.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Nattawut Sinsuebphon
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jamie Ward
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Kate Tubbesing
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
4
|
Pyo K, Ly NH, Han SM, Hatshan MB, Abuhagr A, Wiederrecht G, Joo SW, Ramakrishna G, Lee D. Unique Energy Transfer in Fluorescein-Conjugated Au 22 Nanoclusters Leading to 160-Fold pH-Contrasting Photoluminescence. J Phys Chem Lett 2018; 9:5303-5310. [PMID: 30165739 DOI: 10.1021/acs.jpclett.8b02130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Accurate measurements of intracellular pH are of crucial importance in understanding the cellular activities and in the development of intracellular drug delivery systems. Here we report a highly sensitive pH probe based on a fluorescein-conjugated Au22 nanocluster. Steady-state photoluminescence (PL) measurements have shown that, when conjugated to Au22, fluorescein exhibits more than 160-fold pH-contrasting PL in the pH range of 4.3-7.8. Transient absorption measurements show that there are two competing ultrafast processes in the fluorescein-conjugated Au22 nanocluster: the intracore-state relaxation and the energy transfer from the nonthermalized states of Au22 to fluorescein. The latter becomes predominant at a higher pH, leading to dramatic PL enhancement of fluorescein. In addition to the intrinsically low toxicity, fluorescein-conjugated Au22 nanoclusters exhibit high pH sensitivity, wide dynamic range, and excellent photostability, providing a powerful tool for the study of intracellular processes.
Collapse
Affiliation(s)
- Kyunglim Pyo
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Nguyen Hoang Ly
- Department of Chemistry , Soongsil University , Seoul 06978 , Korea
| | - Sang Myeong Han
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Mohammad Bin Hatshan
- Department of Chemistry , Western Michigan University , Kalamazoo , Michigan 49008 , United States
| | - Abubkr Abuhagr
- Department of Chemistry , Western Michigan University , Kalamazoo , Michigan 49008 , United States
| | - Gary Wiederrecht
- Center for Nanoscale Materials , Argonne National Laboratory , Chicago , Illinois 60439 , United States
| | - Sang-Woo Joo
- Department of Chemistry , Soongsil University , Seoul 06978 , Korea
- Department of Information Communication, Materials Engineering, Chemistry Convergence Technology , Soongsil University , Seoul 06978 , Korea
| | - Guda Ramakrishna
- Department of Chemistry , Western Michigan University , Kalamazoo , Michigan 49008 , United States
| | - Dongil Lee
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| |
Collapse
|
5
|
Shi J, Tian F, Lyu J, Yang M. Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. J Mater Chem B 2015; 3:6989-7005. [DOI: 10.1039/c5tb00885a] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanoparticle based FRET assays have higher energy transfer efficiency and better performance compared with traditional organic fluorophore based FRET assays.
Collapse
Affiliation(s)
- Jingyu Shi
- Interdisciplinary Division of Biomedical Engineering
- the Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Feng Tian
- Interdisciplinary Division of Biomedical Engineering
- the Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Jing Lyu
- Interdisciplinary Division of Biomedical Engineering
- the Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Mo Yang
- Interdisciplinary Division of Biomedical Engineering
- the Hong Kong Polytechnic University
- Kowloon
- P. R. China
| |
Collapse
|
6
|
Abe K, Zhao L, Periasamy A, Intes X, Barroso M. Non-invasive in vivo imaging of near infrared-labeled transferrin in breast cancer cells and tumors using fluorescence lifetime FRET. PLoS One 2013; 8:e80269. [PMID: 24278268 PMCID: PMC3836976 DOI: 10.1371/journal.pone.0080269] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/11/2013] [Indexed: 12/05/2022] Open
Abstract
The conjugation of anti-cancer drugs to endogenous ligands has proven to be an effective strategy to enhance their pharmacological selectivity and delivery towards neoplasic tissues. Since cell proliferation has a strong requirement for iron, cancer cells express high levels of transferrin receptors (TfnR), making its ligand, transferrin (Tfn), of great interest as a delivery agent for therapeutics. However, a critical gap exists in the ability to non-invasively determine whether drugs conjugated to Tfn are internalized into target cells in vivo. Due to the enhanced permeability and retention (EPR) effect, it remains unknown whether these Tfn-conjugated drugs are specifically internalized into cancer cells or are localized non-specifically as a result of a generalized accumulation of macromolecules near tumors. By exploiting the dimeric nature of the TfnR that binds two molecules of Tfn in close proximity, we utilized a Förster Resonance Energy Transfer (FRET) based technique that can discriminate bound and internalized Tfn from free, soluble Tfn. In order to non-invasively visualize intracellular amounts of Tfn in tumors through live animal tissues, we developed a novel near infrared (NIR) fluorescence lifetime FRET imaging technique that uses an active wide-field time gated illumination platform. In summary, we report that the NIR fluorescence lifetime FRET technique is capable of non-invasively detecting bound and internalized forms of Tfn in cancer cells and tumors within a live small animal model, and that our results are quantitatively consistent when compared to well-established intensity-based FRET microscopy methods used in in vitro experiments.
Collapse
Affiliation(s)
- Ken Abe
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, New York, United States of America
| | - Lingling Zhao
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Jonsson Engineering Center Troy, New York, United States of America
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Jonsson Engineering Center Troy, New York, United States of America
| | - Margarida Barroso
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Talati R, Vanderpoel A, Eladdadi A, Anderson K, Abe K, Barroso M. Automated selection of regions of interest for intensity-based FRET analysis of transferrin endocytic trafficking in normal vs. cancer cells. Methods 2013; 66:139-52. [PMID: 23994873 DOI: 10.1016/j.ymeth.2013.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/14/2022] Open
Abstract
The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells.
Collapse
Affiliation(s)
- Ronak Talati
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Andrew Vanderpoel
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Amina Eladdadi
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Kate Anderson
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Ken Abe
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
8
|
Delehanty JB, Susumu K, Manthe RL, Algar WR, Medintz IL. Active cellular sensing with quantum dots: Transitioning from research tool to reality; a review. Anal Chim Acta 2012; 750:63-81. [DOI: 10.1016/j.aca.2012.05.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/17/2012] [Indexed: 01/31/2023]
|
9
|
Abstract
Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated transport.
Collapse
Affiliation(s)
- Margarida M Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
10
|
Zhu X, Chen L, Shen P, Jia J, Zhang D, Yang L. High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2184-2189. [PMID: 21329353 DOI: 10.1021/jf104140t] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Protein-based detection methods, enzyme-linked immunosorbent assay (ELISA) and lateral flow strip, have been widely used for rapid, spot, and sensitive detection of genetically modified organisms (GMOs). Herein, one novel quantum dot-based fluorescence-linked immunosorbent assay (QD-FLISA) was developed employing quantum dots (QDs) as the fluorescent marker for the detection of the Cry1Ab protein in MON810 maize. The end-point fluorescent detection system was carried out using QDs conjugated with goat anti-rabbit secondary antibody. The newly developed Cry1Ab QD-FLISA assay was highly specific to the Cry1Ab protein and had no cross-reactivity with other target proteins, such as Cry2Ab, Cry1F, and Cry3Bb. The quantified linearity was achieved in the value range of 0.05-5% (w/w). The limits of detection (LOD) and quantification (LOQ) of the QD-FLISA were 2.956 and 9.854 pg/mL, respectively, which were more sensitive than the conventional sandwich ELISA method. All of the results indicated that QD-FLISA was a highly specific and sensitive method for the monitoring of Cry1Ab in GMOs.
Collapse
Affiliation(s)
- Xiaolei Zhu
- National Molecular Characterization Center for Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 2010; 39:4326-54. [PMID: 20697629 PMCID: PMC3212036 DOI: 10.1039/b915139g] [Citation(s) in RCA: 611] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging field of bionanotechnology aims at revolutionizing biomedical research and clinical practice via introduction of nanoparticle-based tools, expanding capabilities of existing investigative, diagnostic, and therapeutic techniques as well as creating novel instruments and approaches for addressing challenges faced by medicine. Quantum dots (QDs), semiconductor nanoparticles with unique photo-physical properties, have become one of the dominant classes of imaging probes as well as universal platforms for engineering of multifunctional nanodevices. Possessing versatile surface chemistry and superior optical features, QDs have found initial use in a variety of in vitro and in vivo applications. However, careful engineering of QD probes guided by application-specific design criteria is becoming increasingly important for successful transition of this technology from proof-of-concept studies towards real-life clinical applications. This review outlines the major design principles and criteria, from general ones to application-specific, governing the engineering of novel QD probes satisfying the increasing demands and requirements of nanomedicine and discusses the future directions of QD-focused bionanotechnology research (critical review, 201 references).
Collapse
Affiliation(s)
- Pavel Zrazhevskiy
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA, 98195, USA
| | - Mark Sena
- Department of Bioengineering, University of California, Berkeley, 306 Stanley Hall #1762, Berkeley, CA, 94720, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA, 98195, USA
| |
Collapse
|
12
|
Resch-Genger U, Grabolle M, Nitschke R, Nann T. Nanocrystals and Nanoparticles Versus Molecular Fluorescent Labels as Reporters for Bioanalysis and the Life Sciences: A Critical Comparison. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY II 2010. [DOI: 10.1007/978-3-642-04701-5_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Grigsby CL, Leong KW. Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. J R Soc Interface 2009; 7 Suppl 1:S67-82. [PMID: 19734186 DOI: 10.1098/rsif.2009.0260] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Engineering polymeric gene-delivery vectors to release an intact DNA payload at the optimal time and subcellular compartment remains a formidable challenge. An ideal vector would provide total protection of complexed DNA from degradation prior to releasing it efficiently near or within the nucleus of a target cell. While optimization of polymer properties, such as molecular weight and charge density, has proved largely inadequate in addressing this challenge, applying polymeric carriers that respond to temperature, light, pH and redox environment to trigger a switch from a tight, protective complex to a more relaxed interaction favouring release at the appropriate time and place has shown promise. Currently, a paucity of gene carriers able to satisfy the contrary requirements of adequate DNA protection and efficient release contributes to the slow progression of non-viral gene therapy towards clinical translation. This review highlights the promising carrier designs that may achieve an optimal balance of DNA protection and release. It also discusses the imaging techniques and three-dimensional in vitro models that can help study these two barriers in the non-viral gene transfer process. Ultimately, efficacious non-viral gene therapy will depend on the combination of intelligent material design, innovative imaging techniques and sophisticated in vitro model systems to facilitate the rational design of polymeric gene-delivery vectors.
Collapse
Affiliation(s)
- Christopher L Grigsby
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | | |
Collapse
|
14
|
Chapter 12 Reflections on FRET imaging. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0075-7535(08)00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|