1
|
Yang E, Khaled A, Liang X, de la Cerda J, Schuler FW, Goel S, Pagel MD. Evaluations of a Cutaneous Wound Healing Model Using Oxygen Enhanced - Dynamic Contrast Enhanced Photoacoustic Imaging (OE-DCE PAI). Mol Imaging Biol 2024; 26:995-1004. [PMID: 39532769 DOI: 10.1007/s11307-024-01966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Preclinical models of cutaneous wound healing can be useful for improving clinical wound care. Oxygen Enhanced Photoacoustic imaging (OE PAI) can measure oxygenation, and Dynamic Contrast Enhanced (DCE) PAI can measure vascular perfusion. We investigated how a combined OE-DCE PAI protocol can measure vascular oxygenation and perfusion to a cutaneous healing model. PROCEDURES We developed a cutaneous "punch" wound model and photographed the wounds to track healing for 9 days. We performed OE-DCE PAI on Day 0, 3, 6, and 9. OE PAI was performed with 21% O2 and 100% O2 breathing gases to measure oxyhemoglobin (HbO2), deoxyhemoglobin (Hb), total hemoglobin (HbT), and oxygen saturation (%sO2), along with changes in these parameters caused by a change in breathing gas (ΔHb, ΔHbO2, ΔHbT, ΔsO2). To perform DCE PAI, indocyanine green (ICG) was administered intravenously while monitoring the PAI signal for 10 min as the agent washed through the wound area, which was used to evaluate the wash-out rate. RESULTS The average wound size was significantly smaller only by Day 6. For comparison, OE PAI measured a significant increase in HbO2, Hb, HbT, and %sO2 immediately after creating the wound, which significantly decreased by Day 3 and continued to decrease towards values for normal tissue by Day 9. The vascular wash-out rate significantly increased by Day 3, and continued to increase during the healing process. Notably, the wash-out rate can be assessed at a single PAI absorbance wavelength and by simply comparing signal amplitudes without advanced analysis, which may facilitate clinical translation. CONCLUSIONS OE-DCE PAI can monitor significant changes in vascular perfusion and oxygenation prior to significant changes in cutaneous wound size. These results establish OE-DCE PAI as a tool for future pre-clinical wound healing studies and eventual clinical translation.
Collapse
Affiliation(s)
- Euitaek Yang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue #1005, Madison, WI, 53705, USA
| | - Alia Khaled
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofei Liang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge de la Cerda
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F William Schuler
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Mark D Pagel
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue #1005, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Parvez MA, Yashiro K, Tsunoi Y, Saitoh D, Sato S, Nishidate I. In vivo monitoring of hemoglobin derivatives in a rat thermal injury model using spectral diffuse reflectance imaging. Burns 2024; 50:167-177. [PMID: 37821274 DOI: 10.1016/j.burns.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION To demonstrate the feasibility of our previously proposed Diffuse reflectance spectral imaging (DRSI) method for in vivo monitoring of oxygenated hemoglobin, deoxygenated hemoglobin, methemoglobin, tissue oxygen saturation, and methemoglobin saturation in a rat scald burn wound model and assess whether the method could be used for differentiating the burn depth groups in rats based on the hemoglobin parameters. METHODOLOGY Superficial dermal burns (SDBs), deep dermal burns (DDBs), and deep burns (DBs) were induced in rat dorsal skin using a Walker-Mason method. An approach based on multiple regression analysis for spectral diffuse reflectance images aided by Monte Carlo simulations for light transport was used to quantify the hemoglobin parameters. Canonical discriminant analysis (CDA) was performed to discriminate SDB, DDB, and DB. RESULTS CDA using the total hemoglobin concentration, tissue oxygen saturation, and methemoglobin saturation as the independent variables showed good performance for discriminating the SDB, DDB, and DB groups immediately after burn injury and the SDB group from the DDB and DB groups 24-72 h after burn injury. CONCLUSIONS The DRSI method with multiple regression analysis for quantification of oxygenated hemoglobin, deoxygenated hemoglobin, and methemoglobin proved to be reliable for monitoring these hemoglobin derivatives in the rat experimental burn injury model. The parameters of tissue oxygen saturation, methemoglobin saturation, and total hemoglobin concentration are promising for the differentiating the degree of burn injury using CDA.
Collapse
Affiliation(s)
- Md Anowar Parvez
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo 1848588 Japan
| | - Kazuhiro Yashiro
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo 1848588 Japan
| | - Yasuyuki Tsunoi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, 3-2, Namiki, Tokorozawa-shi, Saitama 3598513 Japan
| | - Daizoh Saitoh
- Division of Basic Traumatology, National Defense Medical College Research Institute, 3-2, Namiki, Tokorozawa-shi, Saitama 3598513 Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, 3-2, Namiki, Tokorozawa-shi, Saitama 3598513 Japan
| | - Izumi Nishidate
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo 1848588 Japan.
| |
Collapse
|
3
|
Tsunoi Y, Sato N, Nishidate I, Ichihashi F, Saitoh D, Sato S. Burn depth assessment by dual-wavelength light emitting diodes-excited photoacoustic imaging in rats. Wound Repair Regen 2023; 31:69-76. [PMID: 36177703 DOI: 10.1111/wrr.13056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/01/2023]
Abstract
Accurate burn depth assessment is crucial to determine treatment plans for burn patients. We have previously proposed a method for performing burn depth assessments based on photoacoustic (PA) imaging, and we have demonstrated the validity of this method, which allows the successful detection of PA signals originating from the blood under the bloodless burned tissue, using rat burn models. Based on these findings, we started a clinical study in which we faced two technical issues: (1) When the burn depth was shallow, PA signals due to skin contamination and/or melanin in the epidermis (surface signals) could not be distinguished from PA signals originating from the blood in the dermis; (2) the size of the system was too large. To solve these issues, we propose a burn depth diagnosis based on dual-wavelength light emitting diodes (LEDs)-excited PA imaging. The use of LEDs rendered the system compact compared to the previous one that used a conventional solid-state laser. We replicated human burned skin by applying a titrated synthetic melanin solution onto the wound surface in albino rat burn models and measured their burn depths by PA excitation at 690 and 850 nm, where melanin and haemoglobin show greatly different absorption coefficients. As a result, the surface signals were eliminated by subtracting the PA signals at 690 nm from those at 850 nm. The resultant estimated burn depths were strongly correlated with the histological assessment results. The validity of the proposed method was also examined using a burn model of rats with real melanin.
Collapse
Affiliation(s)
- Yasuyuki Tsunoi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Naoto Sato
- Research and Development Department, Cyberdyne, Inc, Tsukuba, Ibaraki, Japan
| | - Izumi Nishidate
- Graduate School of Bio-application and Systems Engineering, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Fumiyuki Ichihashi
- Research and Development Department, Cyberdyne, Inc, Tsukuba, Ibaraki, Japan
| | - Daizoh Saitoh
- Division of Basic Traumatology, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| |
Collapse
|
4
|
Kirchner T, Jaeger M, Frenz M. Machine learning enabled multiple illumination quantitative optoacoustic oximetry imaging in humans. BIOMEDICAL OPTICS EXPRESS 2022; 13:2655-2667. [PMID: 35774340 PMCID: PMC9203099 DOI: 10.1364/boe.455514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
Optoacoustic (OA) imaging is a promising modality for quantifying blood oxygen saturation (sO2) in various biomedical applications - in diagnosis, monitoring of organ function, or even tumor treatment planning. We present an accurate and practically feasible real-time capable method for quantitative imaging of sO2 based on combining multispectral (MS) and multiple illumination (MI) OA imaging with learned spectral decoloring (LSD). For this purpose we developed a hybrid real-time MI MS OA imaging setup with ultrasound (US) imaging capability; we trained gradient boosting machines on MI spectrally colored absorbed energy spectra generated by generic Monte Carlo simulations and used the trained models to estimate sO2 on real OA measurements. We validated MI-LSD in silico and on in vivo image sequences of radial arteries and accompanying veins of five healthy human volunteers. We compared the performance of the method to prior LSD work and conventional linear unmixing. MI-LSD provided highly accurate results in silico and consistently plausible results in vivo. This preliminary study shows a potentially high applicability of quantitative OA oximetry imaging, using our method.
Collapse
Affiliation(s)
- Thomas Kirchner
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Michael Jaeger
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Martin Frenz
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Li D, Humayun L, Vienneau E, Vu T, Yao J. Seeing through the Skin: Photoacoustic Tomography of Skin Vasculature and Beyond. JID INNOVATIONS 2021; 1:100039. [PMID: 34909735 PMCID: PMC8659408 DOI: 10.1016/j.xjidi.2021.100039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Skin diseases are the most common human diseases and manifest in distinct structural and functional changes to skin tissue components such as basal cells, vasculature, and pigmentation. Although biopsy is the standard practice for skin disease diagnosis, it is not sufficient to provide in vivo status of the skin and highly depends on the timing of diagnosis. Noninvasive imaging technologies that can provide structural and functional tissue information in real time would be invaluable for skin disease diagnosis and treatment evaluation. Among the modern medical imaging technologies, photoacoustic (PA) tomography (PAT) shows great promise as an emerging optical imaging modality with high spatial resolution, high imaging speed, deep penetration depth, rich contrast, and inherent sensitivity to functional and molecular information. Over the last decade, PAT has undergone an explosion in technical development and biomedical applications. Particularly, PAT has attracted increasing attention in skin disease diagnosis, providing structural, functional, metabolic, molecular, and histological information. In this concise review, we introduce the principles and imaging capability of various PA skin imaging technologies. We highlight the representative applications in the past decade with a focus on imaging skin vasculature and melanoma. We also envision the critical technical developments necessary to further accelerate the translation of PAT technologies to fundamental skin research and clinical impacts.
Collapse
Key Words
- ACD, allergy contact dermatitis
- AR-PAM, acoustic-resolution photoacoustic microscopy
- CSC, cryogen spray cooling
- CSVV, cutaneous small-vessel vasculitis
- CTC, circulating tumor cell
- FDA, Food and Drug Administration
- NIR, near-infrared
- OR-PAM, optical-resolution photoacoustic microscopy
- PA, photoacoustic
- PACT, photoacoustic computed tomography
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- PWS, port-wine stain
- RSOM, raster-scan optoacoustic mesoscopy
- THb, total hemoglobin concentration
- sO2, oxygen saturation of hemoglobin
Collapse
Affiliation(s)
- Daiwei Li
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Lucas Humayun
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Emelina Vienneau
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Tri Vu
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Junjie Yao
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Shrestha B, DeLuna F, Anastasio MA, Yong Ye J, Brey EM. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:79-102. [PMID: 31854242 PMCID: PMC7041335 DOI: 10.1089/ten.teb.2019.0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Several imaging modalities are available for investigation of the morphological, functional, and molecular features of engineered tissues in small animal models. While research in tissue engineering and regenerative medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging modality that has received significant attention due to its ability to exploit the strong endogenous contrast of optical methods with the high spatial resolution of ultrasound methods. Exogenous contrast agents can also be used in PAI for targeted imaging. Applications of PAI relevant to TERM include stem cell tracking, longitudinal monitoring of scaffolds in vivo, and evaluation of vascularization. In addition, the emerging capabilities of PAI applied to the detection and monitoring of cancer and other inflammatory diseases could be exploited by tissue engineers. This article provides an overview of the operating principles of PAI and its broad potential for application in TERM. Impact statement Photoacoustic imaging, a new hybrid imaging technique, has demonstrated high potential in the clinical diagnostic applications. The optical and acoustic aspect of the photoacoustic imaging system works in harmony to provide better resolution at greater tissue depth. Label-free imaging of vasculature with this imaging can be used to track and monitor disease, as well as the therapeutic progression of treatment. Photoacoustic imaging has been utilized in tissue engineering to some extent; however, the full benefit of this technique is yet to be explored. The increasing availability of commercial photoacoustic systems will make application as an imaging tool for tissue engineering application more feasible. This review first provides a brief description of photoacoustic imaging and summarizes its current and potential application in tissue engineering.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Frank DeLuna
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Mark A. Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Eric M. Brey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
7
|
Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic clinical imaging. PHOTOACOUSTICS 2019; 14:77-98. [PMID: 31293884 PMCID: PMC6595011 DOI: 10.1016/j.pacs.2019.05.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
Photoacoustic is an emerging biomedical imaging modality, which allows imaging optical absorbers in the tissue by acoustic detectors (light in - sound out). Such a technique has an immense potential for clinical translation since it allows high resolution, sufficient imaging depth, with diverse endogenous and exogenous contrast, and is free from ionizing radiation. In recent years, tremendous developments in both the instrumentation and imaging agents have been achieved. These opened avenues for clinical imaging of various sites allowed applications such as brain functional imaging, breast cancer screening, diagnosis of psoriasis and skin lesions, biopsy and surgery guidance, the guidance of tumor therapies at the reproductive and urological systems, as well as imaging tumor metastases at the sentinel lymph nodes. Here we survey the various clinical and pre-clinical literature and discuss the potential applications and hurdles that still need to be overcome.
Collapse
Affiliation(s)
- Idan Steinberg
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
| | - David M. Huland
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Ophir Vermesh
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Hadas E. Frostig
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Willemieke S. Tummers
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Materials Science & Engineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Abstract
Fuelled by innovation, optical microscopy plays a critical role in the life sciences and medicine, from basic discovery to clinical diagnostics. However, optical microscopy is limited by typical penetration depths of a few hundred micrometres for in vivo interrogations in the visible spectrum. Optoacoustic microscopy complements optical microscopy by imaging the absorption of light, but it is similarly limited by penetration depth. In this Review, we summarize progress in the development and applicability of optoacoustic mesoscopy (OPAM); that is, optoacoustic imaging with acoustic resolution and wide-bandwidth ultrasound detection. OPAM extends the capabilities of optical imaging beyond the depths accessible to optical and optoacoustic microscopy, and thus enables new applications. We explain the operational principles of OPAM, its placement as a bridge between optoacoustic microscopy and optoacoustic macroscopy, and its performance in the label-free visualization of tissue pathophysiology, such as inflammation, oxygenation, vascularization and angiogenesis. We also review emerging applications of OPAM in clinical and biological imaging.
Collapse
|
9
|
Zhou Y, Yao J, Wang LV. Tutorial on photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:61007. [PMID: 27086868 PMCID: PMC4834026 DOI: 10.1117/1.jbo.21.6.061007] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT’s basic principles, major implementations, imaging contrasts, and recent applications.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Junjie Yao
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| |
Collapse
|
10
|
Petri M, Stoffels I, Jose J, Leyh J, Schulz A, Dissemond J, Schadendorf D, Klode J. Photoacoustic imaging of real-time oxygen changes in chronic leg ulcers after topical application of a haemoglobin spray: a pilot study. J Wound Care 2016; 25:87, 89-91. [DOI: 10.12968/jowc.2016.25.2.87] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- M. Petri
- Department of Dermatology, Venerology and Allergology, University-Hospital Essen, University of Duisburg-Essen, Germany
| | - I. Stoffels
- Department of Dermatology, Venerology and Allergology, University-Hospital Essen, University of Duisburg-Essen, Germany
| | - J. Jose
- FujiFilm VisualSonics Inc., Amsterdam, The Netherlands
| | - J. Leyh
- Department of Dermatology, Venerology and Allergology, University-Hospital Essen, University of Duisburg-Essen, Germany
| | - A. Schulz
- Department of Dermatology, Venerology and Allergology, University-Hospital Essen, University of Duisburg-Essen, Germany
| | - J. Dissemond
- Department of Dermatology, Venerology and Allergology, University-Hospital Essen, University of Duisburg-Essen, Germany
| | - D. Schadendorf
- Department of Dermatology, Venerology and Allergology, University-Hospital Essen, University of Duisburg-Essen, Germany
| | - J. Klode
- Department of Dermatology, Venerology and Allergology, University-Hospital Essen, University of Duisburg-Essen, Germany
| |
Collapse
|
11
|
Vogler N, Heuke S, Bocklitz TW, Schmitt M, Popp J. Multimodal Imaging Spectroscopy of Tissue. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:359-87. [PMID: 26070717 DOI: 10.1146/annurev-anchem-071114-040352] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Advanced optical imaging technologies have experienced increased visibility in medical research, as they allow for a label-free and nondestructive investigation of tissue in either an excised state or living organisms. In addition to a multitude of ex vivo studies proving the applicability of these optical imaging approaches, a transfer of various modalities toward in vivo diagnosis is currently in progress as well. Furthermore, combining optical imaging techniques, referred to as multimodal imaging, allows for an improved diagnostic reliability due to the complementary nature of retrieved information. In this review, we provide a summary of ongoing multifold efforts in multimodal tissue imaging and focus in particular on in vivo applications for medical diagnosis. We also discuss the advantages and potential limitations of the imaging methods and outline opportunities for future developments.
Collapse
Affiliation(s)
- Nadine Vogler
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, 07743 Jena, Germany;
| | | | | | | | | |
Collapse
|
12
|
Ponticorvo A, Burmeister DM, Yang B, Choi B, Christy RJ, Durkin AJ. Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). BIOMEDICAL OPTICS EXPRESS 2014; 5:3467-81. [PMID: 25360365 PMCID: PMC4206317 DOI: 10.1364/boe.5.003467] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/28/2014] [Indexed: 05/02/2023]
Abstract
Accurate and timely assessment of burn wound severity is a critical component of wound management and has implications related to course of treatment. While most superficial burns and full thickness burns are easily diagnosed through visual inspection, burns that fall between these extremes are challenging to classify based on clinical appearance. Because of this, appropriate burn management may be delayed, increasing the risk of scarring and infection. Here we present an investigation that employs spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) as non-invasive technologies to characterize in-vivo burn severity. We used SFDI and LSI to investigate controlled burn wounds of graded severity in a Yorkshire pig model. Burn wounds were imaged starting at one hour after the initial injury and daily at approximately 24, 48 and 72 hours post burn. Biopsies were taken on each day in order to correlate the imaging data to the extent of burn damage as indicated via histological analysis. Changes in reduced scattering coefficient and blood flow could be used to categorize burn severity as soon as one hour after the burn injury. The results of this study suggest that SFDI and LSI information have the potential to provide useful metrics for quantifying the extent and severity of burn injuries.
Collapse
Affiliation(s)
- Adrien Ponticorvo
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92617, USA
- co-first authors
| | - David M. Burmeister
- United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, TX, 78234, USA
- co-first authors
| | - Bruce Yang
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92617, USA
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA 92697, USA
| | - Robert J. Christy
- United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, TX, 78234, USA
| | - Anthony J. Durkin
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92617, USA
| |
Collapse
|
13
|
Ida T, Kawaguchi Y, Kawauchi S, Iwaya K, Tsuda H, Saitoh D, Sato S, Iwai T. Real-time photoacoustic imaging system for burn diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:086013. [PMID: 25127338 DOI: 10.1117/1.jbo.19.8.086013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/23/2014] [Indexed: 05/23/2023]
Abstract
We have developed a real-time (8 to 30 fps) photoacoustic (PA) imaging system with a linear-array transducer for burn depth assessment. In this system, PA signals originating from blood in the noninjured tissue layer located under the injured tissue layer are detected and imaged. A compact home-made high-repetition-rate (500 Hz) 532-nm fiber laser was incorporated as a light source. We used an alternating arrangement for the fibers and sensor elements in the probe, which improved the signal-to-noise ratio, reducing the required laser energy power for PA excitation. This arrangement also enabled a hand-held light-weight probe design. A phantom study showed that thin light absorbers embedded in the tissue-mimicking scattering medium at depths >3 mm can be imaged with high contrast. The maximum error for depth measurement was 140 μm. Diagnostic experiments were performed for rat burn models, including superficial dermal burn, deep dermal burn, and deep burn models. Injury depths (zones of stasis) indicated by PA imaging were compared with those estimated by histological analysis, showing discrepancies 200 μm. The system was also used to monitor the healing process of a deep dermal burn. The results demonstrate the potential usefulness of the present system for clinical burn diagnosis.
Collapse
Affiliation(s)
- Taiichiro Ida
- New Concept Product Initiative, Advantest Corporation, 1-5, Shin-tone, Kazo-shi, Saitama 349-1158, Japan
| | - Yasushi Kawaguchi
- New Concept Product Initiative, Advantest Corporation, 1-5, Shin-tone, Kazo-shi, Saitama 349-1158, Japan
| | - Satoko Kawauchi
- National Defense Medical College Research Institute, Division of Biomedical Information Sciences, 3-2, Namiki, Tokorozawa-shi, Saitama 359-8513, Japan
| | - Keiichi Iwaya
- National Defense Medical College Research Institute, Department of Basic Pathology, 3-2, Namiki, Tokorozawa-shi, Saitama 359-8513, Japan
| | - Hitoshi Tsuda
- National Defense Medical College Research Institute, Department of Basic Pathology, 3-2, Namiki, Tokorozawa-shi, Saitama 359-8513, Japan
| | - Daizoh Saitoh
- National Defense Medical College Research Institute, Division of Basic Traumatology, 3-2, Namiki, Tokorozawa-shi, Saitama 359-8513, Japan
| | - Shunichi Sato
- National Defense Medical College Research Institute, Division of Biomedical Information Sciences, 3-2, Namiki, Tokorozawa-shi, Saitama 359-8513, Japan
| | - Toshiaki Iwai
- Tokyo University of Agriculture and Technology, Graduate School of Bio-Applications and Systems Engineering, 2-24-6, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
14
|
Zackrisson S, van de Ven SMWY, Gambhir SS. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res 2014; 74:979-1004. [PMID: 24514041 DOI: 10.1158/0008-5472.can-13-2387] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photoacoustic imaging (PAI) has the potential for real-time molecular imaging at high resolution and deep inside the tissue, using nonionizing radiation and not necessarily depending on exogenous imaging agents, making this technique very promising for a range of clinical applications. The fact that PAI systems can be made portable and compatible with existing imaging technologies favors clinical translation even more. The breadth of clinical applications in which photoacoustics could play a valuable role include: noninvasive imaging of the breast, sentinel lymph nodes, skin, thyroid, eye, prostate (transrectal), and ovaries (transvaginal); minimally invasive endoscopic imaging of gastrointestinal tract, bladder, and circulating tumor cells (in vivo flow cytometry); and intraoperative imaging for assessment of tumor margins and (lymph node) metastases. In this review, we describe the basics of PAI and its recent advances in biomedical research, followed by a discussion of strategies for clinical translation of the technique.
Collapse
Affiliation(s)
- S Zackrisson
- Departments of Radiology, Bioengineering, and Department of Materials Science & Engineering. Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.,Diagnostic Radiology, Department of Clinical Sciences in Malmö, Lund University, Sweden
| | - S M W Y van de Ven
- Departments of Radiology, Bioengineering, and Department of Materials Science & Engineering. Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - S S Gambhir
- Departments of Radiology, Bioengineering, and Department of Materials Science & Engineering. Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Tsunoi Y, Sato S, Kawauchi S, Ashida H, Saitoh D, Terakawa M. In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin. Burns 2013; 39:1403-8. [DOI: 10.1016/j.burns.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/09/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
16
|
Byrne WL, DeLille A, Kuo C, de Jong JS, van Dam GM, Francis KP, Tangney M. Use of optical imaging to progress novel therapeutics to the clinic. J Control Release 2013; 172:523-34. [PMID: 23680286 DOI: 10.1016/j.jconrel.2013.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 01/02/2023]
Abstract
There is an undisputed need for employment and improvement of robust technology for real-time analyses of therapeutic delivery and responses in clinical translation of gene and cell therapies. Over the past decade, optical imaging has become the in vivo imaging modality of choice for many preclinical laboratories due to its efficiency, practicality and affordability, while more recently, the clinical potential for this technology is becoming apparent. This review provides an update on the current state of the art in in vivo optical imaging and discusses this rapidly improving technology in the context of it representing a translation enabler or indeed a future clinical imaging modality in its own right.
Collapse
Affiliation(s)
- William L Byrne
- Cork Cancer Research Centre, BioScience Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Photoacoustic imaging, which is based on the photoacoustic effect, has developed extensively over the last decade. Possessing many attractive characteristics such as the use of nonionizing electromagnetic waves, good resolution and contrast, portable instrumention, and the ability to partially quantitate the signal, photoacoustic techniques have been applied to the imaging of cancer, wound healing, disorders in the brain, and gene expression, among others. As a promising structural, functional, and molecular imaging modality for a wide range of biomedical applications, photoacoustic imaging can be categorized into two types of systems: photoacoustic tomography (PAT), which is the focus of this article, and photoacoustic microscopy (PAM). We first briefly describe the endogenous (e.g., hemoglobin and melanin) and the exogenous (e.g., indocyanine green [ICG], various gold nanoparticles, single-walled carbon nanotubes [SWNTs], quantum dots [QDs], and fluorescent proteins) contrast agents for photoacoustic imaging. Next, we discuss in detail the applications of nontargeted photoacoustic imaging. Recently, molecular photoacoustic (MPA) imaging has gained significant interest, and a few proof-of-principle studies have been reported. We summarize the current state of the art of MPA imaging, including the imaging of gene expression and the combination of photoacoustic imaging with other imaging modalities. Last, we point out obstacles facing photoacoustic imaging. Although photoacoustic imaging will likely continue to be a highly vibrant research field for years to come, the key question of whether MPA imaging could provide significant advantages over nontargeted photoacoustic imaging remains to be answered in the future.
Collapse
|
18
|
Favazza CP, Jassim O, Cornelius LA, Wang LV. In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:016015. [PMID: 21280921 PMCID: PMC3055592 DOI: 10.1117/1.3528661] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In several human volunteers, photoacoustic microscopy (PAM) has been utilized for noninvasive cutaneous imaging of the skin microvasculature and a melanocytic nevus. Microvascular networks in both acral and nonacral skin were imaged, and multiple features within the skin have been identified, including the stratum corneum, epidermal-dermal junction, and subpapillary vascular plexus. Several vascular and structural differences between acral and nonacral skin were also observed in the photoacoustic images. In addition, a nevus was photoacoustically imaged, excised, and histologically analyzed. The photoacoustic images allowed for in vivo measurement of tumor thickness, depth, and microvasculature-values confirmed by histologic examination. The presented images demonstrate the potential of PAM to aid in the study and evaluation of cutaneous microcirculation and analysis of pigmented lesions. Through its ability to three-dimensionally image the structure and function of the microvasculature and pigmented lesions, PAM can have a clinical impact in diagnosis and assessment of systemic diseases that affect the microvasculature such as diabetes and cardiovascular disease, cutaneous malignancies such as melanoma, and potentially other skin disorders.
Collapse
Affiliation(s)
- Christopher P Favazza
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
19
|
Yuan Z, Zakhaleva J, Ren H, Liu J, Chen W, Pan Y. Noninvasive and high-resolution optical monitoring of healing of diabetic dermal excisional wounds implanted with biodegradable in situ gelable hydrogels. Tissue Eng Part C Methods 2010; 16:237-47. [PMID: 19496703 DOI: 10.1089/ten.tec.2009.0152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Closure of diabetic dermal chronic wounds remains a clinical challenge. Implant-assisted healing is emerging as a potential class of therapy for dermal wound closure; this advancement has not been paralleled by the development in complementary diagnostic techniques to objectively monitor the wound-healing process in conjunction with assessing/monitoring of implant efficacy. Biopsies provide the most objective morphological assessments of wound healing; however, they not only perpetuate the wound presence but also increase the risk of infection. A noninvasive and high-resolution imaging technique is highly desirable to provide objective longitudinal diagnosis of implant-assisted wound healing. We investigated the feasibility of deploying optical coherence tomography (OCT) for noninvasive monitoring of the healing of full-thickness excisional dermal wounds implanted with a novel in situ gelable hydrogel composed of N-carboxyethyl chitosan, oxidized dextran, and hyaluronan, in both normal and db/db mice. The results showed that OCT was able to differentiate the morphological differences (e.g., thickness of dermis) between normal and diabetic mice as validated by their corresponding histological evaluations (p < 0.05). OCT could detect essential morphological changes during wound healing, including re-epithelization, inflammatory response, and granulation tissue formation as well as impaired wound repair in diabetic mice. Importantly, by tracking specific morphological changes in hydrogel-assisted wound healing (e.g., implants' degradation and resorption, cell-mediated hydrogel degradation, and accelerated re-epithelization), OCT could also be deployed to monitor and evaluate the transformation of implanted biomaterials, thus holding the promise for noninvasive and objective monitoring of wound healing longitudinally and for objective efficacy assessment of implantable therapeutics in tissue engineering.
Collapse
Affiliation(s)
- Zhijia Yuan
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794-8181, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hatanaka K, Sato S, Saitoh D, Ashida H, Sakamoto T. Photoacoustic monitoring of granulation tissue grown in a grafted artificial dermis on rat skin. Wound Repair Regen 2010; 18:284-90. [PMID: 20459507 DOI: 10.1111/j.1524-475x.2010.00588.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we investigated the validity of photoacoustic (PA) measurement for monitoring granulation tissue and hence adhesion of grafted artificial dermis (AD). A 2.5 cm x 2.5 cm, 3-mm-thick AD composed of an atelocollagen sponge sheet and a silicone film was grafted on a full-thickness open wound in rat dorsal skin. The grafted AD was irradiated with low-energy, 532-nm nanosecond laser pulses to photoacoustically excite blood in neovascularities, and the PA signals induced were measured using a piezoelectric transducer as a function of postgrafting time. The PA signals were compared with results of laser Doppler imaging and histological analysis. We found a significant correlation between the depths of the first or shallowest PA signal peaks and the depths of granulation tissues estimated from histology with hematoxylin & eosin staining (R=0.951, p<0.05). There was also a significant correlation between the amplitudes of the first PA signal peaks and densities of CD31-positive cells evaluated from histology with immunohistochemical staining (R=0.859, p<0.05). With laser Doppler imaging, no clear perfusion signals were observed, which is attributable to a high light scattering loss in ADs. These findings suggest the validity of PA measurement for monitoring the adhesion of grafted ADs.
Collapse
Affiliation(s)
- Kousuke Hatanaka
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Saitama, Japan
| | | | | | | | | |
Collapse
|