1
|
Lee YH, Kuo PW, Chen CJ, Sue CJ, Hsu YF, Pan MC. Indocyanine Green-Camptothecin Co-Loaded Perfluorocarbon Double-Layer Nanocomposite: A Versatile Nanotheranostics for Photochemotherapy and FDOT Diagnosis of Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13091499. [PMID: 34575572 PMCID: PMC8466706 DOI: 10.3390/pharmaceutics13091499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer and is the leading cause of neoplastic disease burden for females worldwide, suggesting that effective therapeutic and/or diagnostic strategies are still urgently needed. In this study, a type of indocyanine green (ICG) and camptothecin (CPT) co-loaded perfluorocarbon double-layer nanocomposite named ICPNC was developed for detection and photochemotherapy of breast cancer. The ICPNCs were designed to be surface modifiable for on-demand cell targeting and can serve as contrast agents for fluorescence diffuse optical tomography (FDOT). Upon near infrared (NIR) irradiation, the ICPNCs can generate a significantly increased production of singlet oxygen compared to free ICG, and offer a comparable cytotoxicity with reduced chemo-drug dosage. Based on the results of animal study, we further demonstrated that the ICPNCs ([ICG]/[CPT] = 40-/7.5-μM) in association with 1-min NIR irradiation (808 nm, 6 W/cm2) can provide an exceptional anticancer effect to the MDA-MB-231 tumor-bearing mice whereby the tumor size was significantly reduced by 80% with neither organ damage nor systemic toxicity after a 21-day treatment. Given a number of aforementioned merits, we anticipate that the developed ICPNC is a versatile theranostic nanoagent which is highly promising to be used in the clinic.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
- Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320317, Taiwan
- Correspondence: (Y.-H.L.); (M.-C.P.); Tel.: +886-3-422-7151 (ext. 27755) (Y.-H.L.); +886-3-422-7151 (ext. 34312) (M.-C.P.)
| | - Po-Wei Kuo
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Chun-Ju Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Chu-Jih Sue
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Ya-Fen Hsu
- Department of Surgery, Landseed International Hospital, Taoyuan City 324609, Taiwan;
| | - Min-Chun Pan
- Department of Mechanical Engineering, National Central University, Taoyuan City 320317, Taiwan
- Correspondence: (Y.-H.L.); (M.-C.P.); Tel.: +886-3-422-7151 (ext. 27755) (Y.-H.L.); +886-3-422-7151 (ext. 34312) (M.-C.P.)
| |
Collapse
|
2
|
Choi E, Adams F, Palagi S, Gengenbacher A, Schlager D, Müller PF, Gratzke C, Miernik A, Fischer P, Qiu T. A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate. Ann Biomed Eng 2019; 48:437-446. [PMID: 31535249 PMCID: PMC6928096 DOI: 10.1007/s10439-019-02361-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022]
Abstract
Transurethral resection of the prostate (TURP) is a minimally invasive endoscopic procedure that requires experience and skill of the surgeon. To permit surgical training under realistic conditions we report a novel phantom of the human prostate that can be resected with TURP. The phantom mirrors the anatomy and haptic properties of the gland and permits quantitative evaluation of important surgical performance indicators. Mixtures of soft materials are engineered to mimic the physical properties of the human tissue, including the mechanical strength, the electrical and thermal conductivity, and the appearance under an endoscope. Electrocautery resection of the phantom closely resembles the procedure on human tissue. Ultrasound contrast agent was applied to the central zone, which was not detectable by the surgeon during the surgery but showed high contrast when imaged after the surgery, to serve as a label for the quantitative evaluation of the surgery. Quantitative criteria for performance assessment are established and evaluated by automated image analysis. We present the workflow of a surgical simulation on a prostate phantom followed by quantitative evaluation of the surgical performance. Surgery on the phantom is useful for medical training, and enables the development and testing of endoscopic and minimally invasive surgical instruments.
Collapse
Affiliation(s)
- Eunjin Choi
- Micro Nano and Molecular Systems Lab, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Fabian Adams
- Department of Urology, University Medical Center Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Stefano Palagi
- Micro Nano and Molecular Systems Lab, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Anina Gengenbacher
- Department of Urology, University Medical Center Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Daniel Schlager
- Department of Urology, University Medical Center Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Philippe-Fabian Müller
- Department of Urology, University Medical Center Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, University Medical Center Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Arkadiusz Miernik
- Department of Urology, University Medical Center Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Peer Fischer
- Micro Nano and Molecular Systems Lab, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany.,Institute for Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Tian Qiu
- Micro Nano and Molecular Systems Lab, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany. .,Institute for Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| |
Collapse
|
3
|
Etrych T, Janoušková O, Chytil P. Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment. Pharmaceutics 2019; 11:E471. [PMID: 31547308 PMCID: PMC6781319 DOI: 10.3390/pharmaceutics11090471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/04/2023] Open
Abstract
Targeted drug delivery using nano-sized carrier systems with targeting functions to malignant and inflammatory tissue and tailored controlled drug release inside targeted tissues or cells has been and is still intensively studied. A detailed understanding of the correlation between the pharmacokinetic properties and structure of the nano-sized carrier is crucial for the successful transition of targeted drug delivery nanomedicines into clinical practice. In preclinical research in particular, fluorescence imaging has become one of the most commonly used powerful imaging tools. Increasing numbers of suitable fluorescent dyes that are excitable in the visible to near-infrared (NIR) wavelengths of the spectrum and the non-invasive nature of the method have significantly expanded the applicability of fluorescence imaging. This chapter summarizes non-invasive fluorescence-based imaging methods and discusses their potential advantages and limitations in the field of drug delivery, especially in anticancer therapy. This chapter focuses on fluorescent imaging from the cellular level up to the highly sophisticated three-dimensional imaging modality at a systemic level. Moreover, we describe the possibility for simultaneous treatment and imaging using fluorescence theranostics and the combination of different imaging techniques, e.g., fluorescence imaging with computed tomography.
Collapse
Affiliation(s)
- Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic.
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
4
|
Mazzocco C, Fracasso G, Germain-Genevois C, Dugot-Senant N, Figini M, Colombatti M, Grenier N, Couillaud F. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe. Sci Rep 2016; 6:23314. [PMID: 26996325 PMCID: PMC4800420 DOI: 10.1038/srep23314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
We aimed to evaluate a fluorescent-labeled single chain variable fragment (scFv) of the anti-PSMA antibody as a specific probe for the detection of prostate cancer by in vivo fluorescence imaging. An orthotopic model of prostate cancer was generated by injecting LNCaP cells into the prostate lobe. ScFvD2B, a high affinity anti-PSMA antibody fragment, was labeled using a near-infrared fluorophore to generate a specific imaging probe (X770-scFvD2B). PSMA-unrelated scFv-X770 was used as a control. Probes were injected intravenously into mice with prostate tumors and fluorescence was monitored in vivo by fluorescence molecular tomography (FMT). In vitro assays showed that X770-scFvD2B specifically bound to PSMA and was internalized in PSMA-expressing LNCaP cells. After intravenous injection, X770-scFvD2B was detected in vivo by FMT in the prostate region. On excised prostates the scFv probe co-localized with the cancer cells and was found in PSMA-expressing cells. The PSMA-unrelated scFv used as a control did not label the prostate cancer cells. Our data demonstrate that scFvD2B is a high affinity contrast agent for in vivo detection of PSMA-expressing cells in the prostate. NIR-labeled scFvD2B could thus be further developed as a clinical probe for imaging-guided targeted biopsies.
Collapse
Affiliation(s)
- Claire Mazzocco
- CNRS UMS 3428 and Univ. Bordeaux, 146 rue Léo Saignat, F33076 Bordeaux
| | | | | | - Nathalie Dugot-Senant
- Service d'Histologie INSERM US005, Univ. Bordeaux, 146 rue Léo Saignat, F33076 Bordeaux
| | - Mariangela Figini
- Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Instituto Nazionale dei Tumori, Milano, Italy
| | | | - Nicolas Grenier
- Service d'Imagerie Diagnostique et Interventionnelle de l'Adulte, Groupe Hospitalier Pellegrin, Place Amélie Raba-Léon - F 33076 BORDEAUX Cedex.,Univ. Bordeaux, Imagerie Moléculaire et Thérapies Innovantes en Oncologie (IMOTION), 146 rue Léo Saignat, F33076 Bordeaux
| | - Franck Couillaud
- Univ. Bordeaux, Imagerie Moléculaire et Thérapies Innovantes en Oncologie (IMOTION), 146 rue Léo Saignat, F33076 Bordeaux
| |
Collapse
|
5
|
Fluorescence optical imaging in anticancer drug delivery. J Control Release 2016; 226:168-81. [PMID: 26892751 DOI: 10.1016/j.jconrel.2016.02.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/21/2022]
Abstract
In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography.
Collapse
|
6
|
Kumar R, Belz J, Markovic S, Jadhav T, Fowle W, Niedre M, Cormack R, Makrigiorgos MG, Sridhar S. Nanoparticle-based brachytherapy spacers for delivery of localized combined chemoradiation therapy. Int J Radiat Oncol Biol Phys 2015; 91:393-400. [PMID: 25636762 PMCID: PMC4527168 DOI: 10.1016/j.ijrobp.2014.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. METHODS AND MATERIALS Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. RESULTS The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. CONCLUSIONS The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when administered systemically. The results demonstrate that these spacers with tailored release profiles have potential in improving the combined therapeutic efficacy of chemoradiation therapy.
Collapse
Affiliation(s)
- Rajiv Kumar
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| | - Jodi Belz
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
| | - Stacey Markovic
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA USA
| | - Tej Jadhav
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
| | - William Fowle
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
| | - Mark Niedre
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA USA
| | - Robert Cormack
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| | - Mike G Makrigiorgos
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| | - Srinivas Sridhar
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA USA
| |
Collapse
|
7
|
Piao D. Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. VI. Time-domain analysis. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:2232-43. [PMID: 25401250 DOI: 10.1364/josaa.31.002232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Part VI analytically examines time-domain (TD) photon diffusion in a homogeneous medium enclosed by a "concave" circular cylindrical applicator or enclosing a "convex" circular cylindrical applicator, both geometries being infinite in the longitudinal dimension. The aim is to assess characteristics of TD photon diffusion, in response to a spatially and temporally impulsive source, versus the line-of-sight source-detector distance along the azimuthal or longitudinal direction on the concave or convex medium-applicator interface. By comparing to their counterparts evaluated along a straight line on a semi-infinite medium-applicator interface versus the same source-detector distance, the following patterns are indicated: (1) the peak photon fluence rate is always reached sooner in concave and later in convex geometry; (2) the peak photon fluence rate decreases slower along the azimuthal and faster along the longitudinal direction on the concave interface, and conversely on the convex interface; (3) the total photon fluence decreases slower along the azimuthal and faster along the longitudinal direction on the concave interface, and conversely on the convex interface; (4) the ratio between the peak photon fluence rate and the total fluence is always greater in concave geometry and smaller in convex geometry. The total fluence is equivalent to the steady-state photon fluence analyzed in Part I [J. Opt. Soc. Am. A27, 648 (2010)10.1364/JOSAA.27.000648JOAOD61084-7529]. The patterns of peak fluence rate, time to reaching peak fluence rate, and the ratio of these two, correspond to those of AC amplitude, phase, and modulation depth of frequency-domain results demonstrated in Part IV [J. Opt. Soc. Am. A29, 1445 (2012)10.1364/JOSAA.29.001445JOAOD61084-7529].
Collapse
|
8
|
Li B, Maafi F, Berti R, Pouliot P, Rhéaume E, Tardif JC, Lesage F. Hybrid FMT-MRI applied to in vivo atherosclerosis imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:1664-76. [PMID: 24877023 PMCID: PMC4026902 DOI: 10.1364/boe.5.001664] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 05/20/2023]
Abstract
Combining Fluorescent Molecular Tomography (FMT) with anatomical imaging, e.g. MRI facilitates interpreting functional information. Furthermore, using a heterogeneous model for light propagation has been shown in simulations to be superior to homogeneous modeling to quantify fluorescence. Here, we present a combined FMT-MRI system and apply it to heart and aorta molecular imaging, a challenging area due to strong tissue heterogeneity and the presence of air-voids due to lungs. First investigating performance in a phantom and mouse corpse, the MRI-enabled heterogeneous models resulted in an improved quantification of fluorescence reconstructions. The system was then used in mice for in vivo atherosclerosis molecular imaging. Results show that, when using the heterogeneous model, reconstructions were in agreement with the ex vivo measurements. Therefore, the proposed system might serve as a powerful imaging tool for atherosclerosis in mice.
Collapse
Affiliation(s)
- Baoqiang Li
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, QC, H3C 3A7, Canada
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | - Foued Maafi
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | - Romain Berti
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | - Philippe Pouliot
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, QC, H3C 3A7, Canada
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | - Eric Rhéaume
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | | | - Frederic Lesage
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, QC, H3C 3A7, Canada
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| |
Collapse
|
9
|
Masilamani V, Das BB, Secor J, AlSalhi M, Devanesan S, Prasad S, Rabah D, Alfano RR. Optical Biopsy of Benign and Malignant Tissue by Time Resolved Spectroscopy. Technol Cancer Res Treat 2013; 12:559-63. [DOI: 10.7785/tcrt.2012.500345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathological condition of malignant tissue could be analyzed by spectral domain or time domain spectroscopy, the two being the complementary to each other in optical biopsy (OB) of cancer. This paper reports results of time resolved emission spectroscopy (TRS) of 24 excised tissue samples of breast and prostate (normal control = 12; benign = 4; malignant = 8), employing a 390 nm, 100 fs, Ti-Sapphire laser pulses. The fluorescence decay times were measured using streak camera and the resultant data were fitted for single and bi-exponential decays with reliability of 97%. Our results show the distinct difference between normal, benign and malignant tissues mostly due to the emission spectra of Nicotinamide Adenine Dinucleotide (NADH), Flavin Mononucleotide (FAD) and also due to the heterogeneity of micro environments associated with the diseased tissues. In this short report, fit is also shown that TRS of breast tissues are similar to those of prostate tissues.
Collapse
Affiliation(s)
- V. Masilamani
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, KSA
| | - B. B. Das
- Fairfield University, Fairfield, Connecticut
| | - J. Secor
- Institute of Ultrafast Spectroscopy and Lasers, IUSL, CUNY, New York, USA
| | - M. AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, KSA
| | - S. Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, KSA
| | - S. Prasad
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, KSA
| | - D. Rabah
- Princess Johara Al-Ibrahim Center for Cancer Research, KKUH, Riyadh, KSA
| | - R. R. Alfano
- Institute of Ultrafast Spectroscopy and Lasers, IUSL, CUNY, New York, USA
| |
Collapse
|
10
|
Hart VP, Doyle TE. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids. APPLIED OPTICS 2013; 52:6220-6229. [PMID: 24085080 DOI: 10.1364/ao.52.006220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
A Monte Carlo method was derived from the optical scattering properties of spheroidal particles and used for modeling diffuse photon migration in biological tissue. The spheroidal scattering solution used a separation of variables approach and numerical calculation of the light intensity as a function of the scattering angle. A Monte Carlo algorithm was then developed which utilized the scattering solution to determine successive photon trajectories in a three-dimensional simulation of optical diffusion and resultant scattering intensities in virtual tissue. Monte Carlo simulations using isotropic randomization, Henyey-Greenstein phase functions, and spherical Mie scattering were additionally developed and used for comparison to the spheroidal method. Intensity profiles extracted from diffusion simulations showed that the four models differed significantly. The depth of scattering extinction varied widely among the four models, with the isotropic, spherical, spheroidal, and phase function models displaying total extinction at depths of 3.62, 2.83, 3.28, and 1.95 cm, respectively. The results suggest that advanced scattering simulations could be used as a diagnostic tool by distinguishing specific cellular structures in the diffused signal. For example, simulations could be used to detect large concentrations of deformed cell nuclei indicative of early stage cancer. The presented technique is proposed to be a more physical description of photon migration than existing phase function methods. This is attributed to the spheroidal structure of highly scattering mitochondria and elongation of the cell nucleus, which occurs in the initial phases of certain cancers. The potential applications of the model and its importance to diffusive imaging techniques are discussed.
Collapse
|
11
|
Piao D, Zhang A, Xu G. Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. V. Steady-state fluorescence. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2013; 30:791-805. [PMID: 23595341 DOI: 10.1364/josaa.30.000791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
As Part V in our series, this paper examines steady-state fluorescence photon diffusion in a homogenous medium that contains a homogenous distribution of fluorophores, and is enclosed by a "concave" circular cylindrical applicator or is enclosing a "convex" circular cylindrical applicator, both geometries being infinite in the longitudinal dimension. The aim is to predict by analytics and examine with the finite-element method the changing characteristics of the fluorescence-wavelength photon-fluence rate and the ratio (sometimes called the Born ratio) of it versus the excitation-wavelength photon-fluence rate, with respect to the source-detector distance. The analysis is performed for a source and a detector located on the medium-applicator interface and aligned either azimuthally or longitudinally in both concave and convex geometries. When compared to its steady-state counterparts on a semi-infinite medium-applicator interface with the same line-of-sight source-detector distance, the fluorescence-wavelength photon-fluence rate reduces faster along the longitudinal direction and slower along the azimuthal direction in the concave geometry, and conversely in the convex geometry. However, the Born ratio increases slower in both azimuthal and longitudinal directions in the concave geometry and faster in both directions in the convex geometry, respectively, when compared to that in the semi-infinite geometry.
Collapse
Affiliation(s)
- Daqing Piao
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | | | | |
Collapse
|
12
|
Puszka A, Hervé L, Planat-Chrétien A, Koenig A, Derouard J, Dinten JM. Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion. BIOMEDICAL OPTICS EXPRESS 2013; 4:569-83. [PMID: 23577292 PMCID: PMC3617719 DOI: 10.1364/boe.4.000569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 05/18/2023]
Abstract
We show how to apply the Mellin-Laplace transform to process time-resolved reflectance measurements for diffuse optical tomography. We illustrate this method on simulated signals incorporating the main sources of experimental noise and suggest how to fine-tune the method in order to detect the deepest absorbing inclusions and optimize their localization in depth, depending on the dynamic range of the measurement. To finish, we apply this method to measurements acquired with a setup including a femtosecond laser, photomultipliers and a time-correlated single photon counting board. Simulations and experiments are illustrated for a probe featuring the interfiber distance of 1.5 cm and show the potential of time-resolved techniques for imaging absorption contrast in depth with this geometry.
Collapse
Affiliation(s)
- Agathe Puszka
- CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Lionel Hervé
- CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | - Anne Koenig
- CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Jacques Derouard
- Univ. Grenoble 1 / CNRS, LIPhy UMR 5588, BP 87 F-38402 Saint Martin d'Hères, France
| | - Jean-Marc Dinten
- CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
13
|
Mo W, Rohrbach D, Sunar U. Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:071306. [PMID: 22894467 PMCID: PMC3381019 DOI: 10.1117/1.jbo.17.7.071306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/20/2012] [Accepted: 03/05/2012] [Indexed: 05/29/2023]
Abstract
We report the tomographic imaging of a photodynamic therapy (PDT) photosensitizer, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in vivo with time-domain fluorescence diffuse optical tomography (TD-FDOT). Simultaneous reconstruction of fluorescence yield and lifetime of HPPH was performed before and after PDT. The methodology was validated in phantom experiments, and depth-resolved in vivo imaging was achieved through simultaneous three-dimensional (3-D) mappings of fluorescence yield and lifetime contrasts. The tomographic images of a human head-and-neck xenograft in a mouse confirmed the preferential uptake and retention of HPPH by the tumor 24-h post-injection. HPPH-mediated PDT induced significant changes in fluorescence yield and lifetime. This pilot study demonstrates that TD-FDOT may be a good imaging modality for assessing photosensitizer distributions in deep tissue during PDT monitoring.
Collapse
Affiliation(s)
- Weirong Mo
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| | - Daniel Rohrbach
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| | - Ulas Sunar
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| |
Collapse
|
14
|
Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 2011; 3:229-74. [PMID: 24310495 PMCID: PMC3864234 DOI: 10.3390/pharmaceutics3020229] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/07/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022] Open
Abstract
Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue's optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development.
Collapse
|
15
|
De la lumière infrarouge pour guider les biopsies de la prostate. Ing Rech Biomed 2011. [DOI: 10.1016/j.irbm.2011.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Laidevant A, Hervé L, Debourdeau M, Boutet J, Grenier N, Dinten JM. Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe. BIOMEDICAL OPTICS EXPRESS 2010; 2:194-206. [PMID: 21326649 PMCID: PMC3028494 DOI: 10.1364/boe.2.000194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 05/03/2023]
Abstract
Ultrasound imaging (US) of the prostate has a low specificity to distinguish tumors from the surrounding tissues. This limitation leads to systematic biopsies. Fluorescent diffuse optical imaging may represent an innovative approach to guide biopsies to tumors marked with high specificity contrast agents and therefore enable an early detection of prostate cancer. This article describes a time-resolved optical system embedded in a transrectal US probe, as well as the fluorescence reconstruction method and its performance. Optical measurements were performed using a pulsed laser, optical fibers and a time-resolved detection system. A novel fast reconstruction method was derived and used to locate a 45 µL ICG fluorescent inclusion at a concentration of 10 µM, in a liquid prostate phantom. Very high location accuracy (0.15 cm) was achieved after reconstruction, for different positions of the inclusion, in the three directions of space. The repeatability, tested with ten sequential measurements, was of the same order of magnitude. Influence of the input parameters (optical properties and lifetime) is presented. These results confirm the feasibility of using optical imaging for prostate guided biopsies.
Collapse
Affiliation(s)
- Aurélie Laidevant
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Lionel Hervé
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | - Jérôme Boutet
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Nicolas Grenier
- Service d'Imagerie Diagnostique et Interventionnelle de l'Adulte, Groupe Hospitalier Pellegrin, Place Amélie Raba-Léon, 33076 BORDEAUX Cedex, France
| | - Jean-Marc Dinten
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
17
|
Dufort S, Sancey L, Wenk C, Josserand V, Coll JL. Optical small animal imaging in the drug discovery process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2266-73. [PMID: 20346346 DOI: 10.1016/j.bbamem.2010.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/15/2010] [Accepted: 03/17/2010] [Indexed: 02/07/2023]
Abstract
Molecular imaging of tumors in preclinical models is of the utmost importance for developing innovative cancer treatments. This field is moving extremely rapidly, with recent advances in optical imaging technologies and sophisticated molecular probes for in vivo imaging. The aim of this review is to provide a succinct overview of the imaging modalities available for rodents and with focus on describing optical probes for cancer imaging.
Collapse
Affiliation(s)
- S Dufort
- Institut Albert Bonniot, BP 170, 38 042 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
18
|
Zhang A, Piao D, Bunting CF, Pogue BW. Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. I. Steady-state theory. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2010; 27:648-62. [PMID: 20208959 DOI: 10.1364/josaa.27.000648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This work presents an analytic treatment for photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. Focusing initially on the steady-state condition, the photon diffusion in these two geometries is solved in cylindrical coordinates by using modified Bessel functions and by applying the extrapolated boundary condition. For large cylinder diameter, the analytic solutions may be simplified to a format employing the physical source and its image source with respect to a semi-infinite geometry and a radius-dependent term to account for the shape and dimension of the cylinder. The analytic solutions and their approximations are evaluated numerically to demonstrate qualitatively the effect of the applicator curvature--either concave or convex--and the radius on the photon fluence rate as a function of the source-detector distance, in comparison with that in the semi-infinite geometry. This work is subjected to quantitative examination in a coming second part and possible extension to time-resolved analysis.
Collapse
Affiliation(s)
- Anqi Zhang
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | |
Collapse
|