1
|
Ramajayam K, Ganesan S, Ramesh P, Beena M, Kokulnathan T, Palaniappan A. Molecularly Imprinted Polymer-Based Biomimetic Systems for Sensing Environmental Contaminants, Biomarkers, and Bioimaging Applications. Biomimetics (Basel) 2023; 8:245. [PMID: 37366840 DOI: 10.3390/biomimetics8020245] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Molecularly imprinted polymers (MIPs), a biomimetic artificial receptor system inspired by the human body's antibody-antigen reactions, have gained significant attraction in the area of sensor development applications, especially in the areas of medical, pharmaceutical, food quality control, and the environment. MIPs are found to enhance the sensitivity and specificity of typical optical and electrochemical sensors severalfold with their precise binding to the analytes of choice. In this review, different polymerization chemistries, strategies used in the synthesis of MIPs, and various factors influencing the imprinting parameters to achieve high-performing MIPs are explained in depth. This review also highlights the recent developments in the field, such as MIP-based nanocomposites through nanoscale imprinting, MIP-based thin layers through surface imprinting, and other latest advancements in the sensor field. Furthermore, the role of MIPs in enhancing the sensitivity and specificity of sensors, especially optical and electrochemical sensors, is elaborated. In the later part of the review, applications of MIP-based optical and electrochemical sensors for the detection of biomarkers, enzymes, bacteria, viruses, and various emerging micropollutants like pharmaceutical drugs, pesticides, and heavy metal ions are discussed in detail. Finally, MIP's role in bioimaging applications is elucidated with a critical assessment of the future research directions for MIP-based biomimetic systems.
Collapse
Affiliation(s)
- Kalaipriya Ramajayam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Selvaganapathy Ganesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Purnimajayasree Ramesh
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Maya Beena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
2
|
The Role of VEGF Receptors as Molecular Target in Nuclear Medicine for Cancer Diagnosis and Combination Therapy. Cancers (Basel) 2021; 13:cancers13051072. [PMID: 33802353 PMCID: PMC7959315 DOI: 10.3390/cancers13051072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The rapid development of diagnostic and therapeutic methods of the cancer treatment causes that these diseases are becoming better known and the fight against them is more and more effective. Substantial contribution in this development has nuclear medicine that enables very early cancer diagnosis and early start of the so-called targeted therapy. This therapeutic concept compared to the currently used chemotherapy, causes much fewer undesirable side effects, due to targeting a specific lesion in the body. This review article discusses the possible applications of radionuclide-labelled tracers (peptides, antibodies or synthetic organic molecules) that can visualise cancer cells through pathological blood vessel system in close tumour microenvironment. Hence, at a very early step of oncological disease, targeted therapy can involve in tumour formation and growth. Abstract One approach to anticancer treatment is targeted anti-angiogenic therapy (AAT) based on prevention of blood vessel formation around the developing cancer cells. It is known that vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) play a pivotal role in angiogenesis process; hence, application of angiogenesis inhibitors can be an effective approach in anticancer combination therapeutic strategies. Currently, several types of molecules have been utilised in targeted VEGF/VEGFR anticancer therapy, including human VEGF ligands themselves and their derivatives, anti-VEGF or anti-VEGFR monoclonal antibodies, VEGF binding peptides and small molecular inhibitors of VEGFR tyrosine kinases. These molecules labelled with diagnostic or therapeutic radionuclides can become, respectively, diagnostic or therapeutic receptor radiopharmaceuticals. In targeted anti-angiogenic therapy, diagnostic radioagents play a unique role, allowing the determination of the emerging tumour, to monitor the course of treatment, to predict the treatment outcomes and, first of all, to refer patients for AAT. This review provides an overview of design, synthesis and study of radiolabelled VEGF/VEGFR targeting and imaging agents to date. Additionally, we will briefly discuss their physicochemical properties and possible application in combination targeted radionuclide tumour therapy.
Collapse
|
3
|
Taurone S, Galli F, Signore A, Agostinelli E, Dierckx RAJO, Minni A, Pucci M, Artico M. VEGF in nuclear medicine: Clinical application in cancer and future perspectives (Review). Int J Oncol 2016; 49:437-47. [PMID: 27277340 DOI: 10.3892/ijo.2016.3553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
Clinical trials using antiangiogenic drugs revealed their potential against cancer. Unfortunately, a large percentage of patients does not yet benefit from this therapeutic approach highlighting the need of diagnostic tools to non-invasively evaluate and monitor response to therapy. It would also allow to predict which kind of patient will likely benefit of antiangiogenic therapy. Reasons for treatment failure might be due to a low expression of the drug targets or prevalence of other pathways. Molecular imaging has been therefore explored as a diagnostic technique of choice. Since the vascular endothelial growth factor (VEGF/VEGFR) pathway is the main responsible of tumor angiogenesis, several new drugs targeting either the soluble ligand or its receptor to inhibit signaling leading to tumor regression could be involved. Up today, it is difficult to determine VEGF or VEGFR local levels and their non-invasive measurement in tumors might give insight into the available target for VEGF/VEGFR-dependent antiangiogenic therapies, allowing therapy decision making and monitoring of response.
Collapse
Affiliation(s)
| | - Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, 'Sapienza' University, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, 'Sapienza' University, Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', 'Sapienza' University, Rome, Italy
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antonio Minni
- Department of Sensory Organs, 'Sapienza' University, Rome, Italy
| | - Marcella Pucci
- Department of Sensory Organs, 'Sapienza' University, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, 'Sapienza' University, Rome, Italy
| |
Collapse
|
4
|
Ye Z, Ji YL, Ma X, Wen JG, Wei W, Huang SM. Pharmacokinetics and distributions of bevacizumab by intravitreal injection of bevacizumab-PLGA microspheres in rabbits. Int J Ophthalmol 2015; 8:653-8. [PMID: 26309857 DOI: 10.3980/j.issn.2222-3959.2015.04.02] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/19/2015] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the pharmacokinetics and distributions of bevacizumab by intravitreal injection of prepared bevacizumab-poly (L-lactic-co-glycolic acid) (PLGA) microspheres in rabbits, to provide evidence for clinical application of this kind of bevacizumab sustained release dosage form. METHODS Bevacizumab was encapsulated into PLGA microsphere via the solid-in-oil-in-hydrophilic oil (S/O/hO) method. Fifteen healthy New Zealand albino-rabbits were used in experiments. The eyes of each rabbit received an intravitreal injection. The left eyes were injected with prepared bevacizumab-PLGA microspheres and the right eyes were injected with bevacizumab solution. After intravitreal injection, rabbits were randomly selected at days 3, 7, 14, 28 and 42 respectively, three animals each day. Then we used immunofluorescence staining to observe the distribution and duration of bevacizumab in rabbit eye tissues, and used the sandwich ELISA to quantify the concentration of free bevacizumab from the rabbit aqueous humor and vitreous after intravitreal injection. RESULTS The results show that the concentration of bevacizumab in vitreous and aqueous humor after administration of PLGA formulation was higher than that of bevacizumab solution. The T1/2 of intravitreal injection of bevacizumab-PLGA microspheres is 9.6d in vitreous and 10.2d in aqueous humor, and the T1/2 of intravitreal injection of soluble bevacizumab is 3.91d in vitreous and 4.1d in aqueous humor. There were statistical significant difference for comparison the results of the bevacizumab in vitreous and aqueous humor between the left and right eyes (P<0.05). The AUC0-t of the sustained release dosage form was 1-fold higher than that of the soluble form. The relative bioavailability was raised significantly. The immunofluorescence staining of PLGA-encapsulated bevacizumab (b-PLGA) in rabbit eye tissues was still observed up to 42d. It was longer than that of the soluble form. CONCLUSION The result of this study shows the beneficial effects of PLGA in prolonging the residency of bevacizumab in the vitreous. And the drug delivery system may have potential as a treatment modality for related disease.
Collapse
Affiliation(s)
- Zhuo Ye
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China ; The Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Yan-Li Ji
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China ; Department of Ophthalmology, the Second People's Hospital of Zhengzhou, Zhengzhou 450006, Henan Province, China
| | - Xiang Ma
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Jian-Guo Wen
- The Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| | - Wei Wei
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Shu-Man Huang
- The Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
5
|
Liu Y, Feshitan JA, Wei MY, Borden MA, Yuan B. Ultrasound-modulated fluorescence based on fluorescent microbubbles. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:085005. [PMID: 25104407 PMCID: PMC4407672 DOI: 10.1117/1.jbo.19.8.085005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 05/15/2023]
Abstract
Ultrasound-modulated fluorescence (UMF) imaging has been proposed to provide fluorescent contrast while maintaining ultrasound resolution in an optical-scattering medium (such as biological tissue). The major challenge is to extract the weakly modulated fluorescent signal from a bright and unmodulated background. UMF was experimentally demonstrated based on fluorophore-labeled microbubble contrast agents. These contrast agents were produced by conjugating N-hydroxysuccinimide (NHS)-ester-attached fluorophores on the surface of amine-functionalized microbubbles. The fluorophore surface concentration was controlled so that a significant self-quenching effect occurred when no ultrasound was applied. The intensity of the fluorescent emission was modulated when microbubbles were oscillated by ultrasound pulses, presented as UMF signal. Our results demonstrated that the UMF signals were highly dependent on the microbubbles' oscillation amplitude and the initial surface fluorophore-quenching status. A maximum of ∼42% UMF modulation depth was achieved with a single microbubble under an ultrasound peak-to-peak pressure of 675 kPa. Further, UMF was detected from a 500-μm tube filled with contrast agents in water and scattering media with ultrasound resolution. These results indicate that ultrasound-modulated fluorescent microbubble contrast agents can potentially be used for fluorescence-based molecular imaging with ultrasound resolution in the future.
Collapse
Affiliation(s)
- Yuan Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas 76010, United States
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Biomedical Engineering Program, Texas 75390, United States
| | - Jameel A. Feshitan
- University of Colorado, Department of Mechanical Engineering, Boulder, Colorado 80309-0427, United States
| | - Ming-Yuan Wei
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas 76010, United States
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Biomedical Engineering Program, Texas 75390, United States
| | - Mark A. Borden
- University of Colorado, Department of Mechanical Engineering, Boulder, Colorado 80309-0427, United States
| | - Baohong Yuan
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas 76010, United States
- University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, Joint Biomedical Engineering Program, Texas 75390, United States
| |
Collapse
|
6
|
Pu C, Chang S, Sun J, Zhu S, Liu H, Zhu Y, Wang Z, Xu RX. Ultrasound-mediated destruction of LHRHa-targeted and paclitaxel-loaded lipid microbubbles for the treatment of intraperitoneal ovarian cancer xenografts. Mol Pharm 2013; 11:49-58. [PMID: 24237050 DOI: 10.1021/mp400523h] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) is a promising technique to facilitate the delivery of chemotherapy in cancer treatment. However, the process typically uses nonspecific microbubbles, leading to low tumor-to-normal tissue uptake ratio and adverse side effects. In this study, we synthesized the LHRH receptor-targeted and paclitaxel (PTX)-loaded lipid microbubbles (TPLMBs) for tumor-specific binding and enhanced therapeutic effect at the tumor site. An ovarian cancer xenograft model was established by injecting A2780/DDP cells intraperitoneally in BALB/c nude mice. Microscopic imaging of tumor sections after intraperitoneal injection of TPLMBs showed effective binding of the microbubbles with cancer cells. Ultrasound mediated destruction of the intraperitoneally injected TPLMBs yielded a superior therapeutic outcome in comparison with other treatment options. Immunohistochemical analyses of the dissected tumor tissue further confirmed the increased tumor apoptosis and reduced angiogenesis. Our experiment suggests that ultrasound-mediated intraperitoneal administration of the targeted drug-loaded microbubbles may be a useful method for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Caixiu Pu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shenyin Zhu
- Department of Pharmacy, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongxia Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yi Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ronald X Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Zhao YZ, Lu CT, Li XK, Cai J. Ultrasound-mediated strategies in opening brain barriers for drug brain delivery. Expert Opin Drug Deliv 2013; 10:987-1001. [DOI: 10.1517/17425247.2013.787987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Xu RX. Multifunctional microbubbles and nanobubbles for photoacoustic imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 6:401-11. [PMID: 22025340 DOI: 10.1002/cmmi.442] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoacoustic imaging is an emerging imaging modality for noninvasive detection of tissue structural and functional anomalies. Multifunctional microbubbles (MBs) and nanobubbles (NBs) are contrast agents integrating multiple disease-targeting, imaging and therapeutic functions. Multifunctional MBs and NBs represent an enabling technology for many potential applications in the field of photoacoustic imaging. Highly absorbing optical contrast agents, such as gold nanoparticles, India ink and Indocyanine Green, can be encapsulated in MBs and NBs for stable absorption properties and multimodal imaging contrasts. The surface of MBs and NBs can be modified for high disease-targeting affinity, reduced immunogenicity and prolonged circulation lifetime. Low boiling point perfluorocarbon compounds can be encapsulated in MBs and NBs for selective activation by external energy sources. The activation of these MBs and NBs may introduce significant contrast enhancement and facilitate a variety of potential clinical applications, such as image-guided drug delivery and therapeutic margin assessment. MB and NB enhanced photoacoustic imaging is still in its infancy. Further development and validation works are necessary for successful translation of the technology from the benchtop to the bedside.
Collapse
Affiliation(s)
- Ronald X Xu
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA.
| |
Collapse
|
9
|
Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel) 2011; 3:1377-1397. [PMID: 22577513 DOI: 10.3390/polym3031377] [Citation(s) in RCA: 2620] [Impact Index Per Article: 201.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In past two decades poly lactic-co-glycolic acid (PLGA) has been among the most attractive polymeric candidates used to fabricate devices for drug delivery and tissue engineering applications. PLGA is biocompatible and biodegradable, exhibits a wide range of erosion times, has tunable mechanical properties and most importantly, is a FDA approved polymer. In particular, PLGA has been extensively studied for the development of devices for controlled delivery of small molecule drugs, proteins and other macromolecules in commercial use and in research. This manuscript describes the various fabrication techniques for these devices and the factors affecting their degradation and drug release.
Collapse
Affiliation(s)
- Hirenkumar K Makadia
- Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
10
|
Xu RX, Xu JS, Zuo T, Shen R, Huang TH, Tweedle MF. Drug-loaded biodegradable microspheres for image-guided combinatory epigenetic therapy in cells. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:020507. [PMID: 21361663 PMCID: PMC3188613 DOI: 10.1117/1.3548878] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 05/25/2023]
Abstract
We synthesize drug-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres for image-guided combinatory epigenetic therapy in MCF-10A human mammary epithelial cells. LY294002 and Nile Red are encapsulated in microspheres for sustained drug release and fluorescence microscopic imaging. Drug-loaded microspheres target MCF-10A cells through a three-step binding process involving biotinylated antibody, streptavidin, and biotinylated microspheres. LY294002 loaded microspheres and 5-Aza-2-deoxycytidine are applied to MCF-10A cells for combinatory PI3K∕AKT inhibition and deoxyribonucleic acid (DNA) demethylation. Our study implies the technical potential of disease targeting and image-guided combinatory epigenetic therapy using drug-loaded multifunctional biodegradable PLGA microspheres.
Collapse
|