1
|
Cicchi R, Baria E, Mari M, Filippidis G, Chorvat D. Extraction of collagen morphological features from second-harmonic generation microscopy images via GLCM and CT analyses: A cross-laboratory study. JOURNAL OF BIOPHOTONICS 2024; 17:e202400090. [PMID: 38937995 DOI: 10.1002/jbio.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Second-harmonic generation (SHG) microscopy provides a high-resolution label-free approach for noninvasively detecting collagen organization and its pathological alterations. Up to date, several imaging analysis algorithms for extracting collagen morphological features from SHG images-such as fiber size and length, order and anisotropy-have been developed. However, the dependence of extracted features on experimental setting represents a significant obstacle for translating the methodology in the clinical practice. We tackled this problem by acquiring SHG images of the same kind of collagenous sample in various laboratories using different experimental setups and imaging conditions. The acquired images were analyzed by commonly used algorithms, such as gray-level co-occurrence matrix or curvelet transform; the extracted morphological features were compared, finding that they strongly depend on some experimental parameters, whereas they are almost independent from others. We conclude with useful suggestions for comparing results obtained in different labs using different experimental setups and conditions.
Collapse
Affiliation(s)
- R Cicchi
- National Institute of Optics, National Research Council, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
| | - E Baria
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - M Mari
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Crete, Greece
| | - G Filippidis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Crete, Greece
| | - D Chorvat
- Department of Biophotonics, International Laser Centre (ILC), Slovak Centre of Scientific and Technical Information (SCSTI), Bratislava, Slovakia
| |
Collapse
|
2
|
The Potential Role of Protease Systems in Hemophilic Arthropathy. Blood Adv 2022; 6:5505-5515. [PMID: 35580335 DOI: 10.1182/bloodadvances.2022007028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Haemophilic arthropathy is characterised by joint damage following recurrent joint bleeds frequently observed in patients affected by the clotting disorder haemophilia. Joint bleeds or haemarthroses trigger inflammation in the synovial tissue which promotes damage to the articular cartilage. The plasminogen activation system is integral to fibrinolysis, and urokinase plasminogen activator or uPA in particular is strongly upregulated following haemarthroses. uPA is a serine protease that catalyses the production of plasmin, a broad-spectrum protease that can degrade fibrin as well as proteins of the joint extracellular matrix and cartilage. Both uPA and plasmin are able to proteolytically generate active forms of matrix metalloproteinases (MMPs). The MMPs are a family of >20 proteases that are secreted as inactive proenzymes and are activated extracellularly. MMPs are involved in degradation of all types of collagen and proteoglycans that constitute the extracellular matrix, which provides structural support to articular cartilage. The MMPs have an established role in joint destruction following rheumatoid arthritis (RA). They degrade cartilage and bone, indirectly promoting angiogenesis. MMPs are also implicated in the pathology of osteoarthritis (OA) characterized by degradation of the cartilage matrix that precipitates joint damage and deformity. HA shares a number of overlapping pathological characteristics with RA and OA. Here we discuss how the plasminogen activation system and MMPs might exacerbate joint damage in HA, lending insight into novel possible therapeutic targets to reduce co-morbidity of haemophilia.
Collapse
|
3
|
Kumar N, Saraber P, Ding Z, Kusumbe AP. Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Front Immunol 2021; 12:798211. [PMID: 34975909 PMCID: PMC8718446 DOI: 10.3389/fimmu.2021.798211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
The bones and joints in the skeletal system are composed of diverse cell types, including vascular niches, bone cells, connective tissue cells and mineral deposits and regulate whole-body homeostasis. The capacity of maintaining strength and generation of blood lineages lies within the skeletal system. Bone harbours blood and immune cells and their progenitors, and vascular cells provide several immune cell type niches. Blood vessels in bone are phenotypically and functionally diverse, with distinct capillary subtypes exhibiting striking changes with age. The bone vasculature has a special impact on osteogenesis and haematopoiesis, and dysregulation of the vasculature is associated with diverse blood and bone diseases. Ageing is associated with perturbed haematopoiesis, loss of osteogenesis, increased adipogenesis and diminished immune response and immune cell production. Endothelial and perivascular cells impact immune cell production and play a crucial role during inflammation. Here, we discuss normal and maladapted vascular niches in bone during development, homeostasis, ageing and bone diseases such as rheumatoid arthritis and osteoarthritis. Further, we discuss the role of vascular niches during bone malignancy.
Collapse
Affiliation(s)
| | | | | | - Anjali P. Kusumbe
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Tissue and Tumor Microenvironments Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Wang X, Hunter DJ, Jin X, Ding C. The importance of synovial inflammation in osteoarthritis: current evidence from imaging assessments and clinical trials. Osteoarthritis Cartilage 2018; 26:165-174. [PMID: 29224742 DOI: 10.1016/j.joca.2017.11.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/17/2017] [Accepted: 11/30/2017] [Indexed: 02/02/2023]
Abstract
Synovial abnormalities have been observed at multiple stages of osteoarthritis (OA). Increasing evidence suggests that it may play an important role in the OA pathological process. Many assessment systems using magnetic resonance imaging (MRI) and ultrasound have been established to detect synovial inflammation in OA. These have been used to inform the current investigation of OA disease phenotypes and progression and can be utilised in the future for clinical trials developing potential treatments. This narrative review aims to illustrate the importance of synovial tissue in OA and provide an overview of imaging assessments and possible therapies targeting synovial abnormalities.
Collapse
Affiliation(s)
- X Wang
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, St. Leonards, New South Wales, Australia
| | - D J Hunter
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, St. Leonards, New South Wales, Australia
| | - X Jin
- National Drug and Alcohol Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - C Ding
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Translational Research Centre, Academy of Orthopedics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Cicchi R, Pavone FS. Probing Collagen Organization: Practical Guide for Second-Harmonic Generation (SHG) Imaging. Methods Mol Biol 2017; 1627:409-425. [PMID: 28836217 DOI: 10.1007/978-1-4939-7113-8_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Second-harmonic generation (SHG) microscopy is a powerful microscopy technique for imaging collagen and other biological molecules using a label-free approach. SHG microscopy offers the advantages of a nonlinear imaging modality together with those ones of a coherent technique. These features make SHG microscopy the ideal tool for imaging collagen at high resolution and for characterizing its organization at various hierarchical levels. Considering that collagen organization plays a crucial role in fibrosis and in its development, it would be beneficial for the researcher working in the field of fibrosis to have a manual listing crucial points to be considered when imaging collagen using SHG microscopy. This chapter provides an answer to this demand with state-of-the-art protocols, methods, and laboratory tips related to SHG microscopy. We also discuss advantages and limitations of the use of SHG for studying fibrosis.
Collapse
Affiliation(s)
- Riccardo Cicchi
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy.
| | - Francesco S Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Zhu XQ, Xu YH, Liao CX, Liu WG, Cheng KK, Chen JX. Differentiating the extent of cartilage repair in rabbit ears using nonlinear optical microscopy. J Microsc 2015; 260:219-26. [PMID: 26366638 DOI: 10.1111/jmi.12288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/09/2015] [Indexed: 11/26/2022]
Abstract
Nonlinear optical microscopy (NLOM) was used as a noninvasive and label-free tool to detect and quantify the extent of the cartilage recovery. Two cartilage injury models were established in the outer ears of rabbits that created a different extent of cartilage recovery based on the presence or absence of the perichondrium. High-resolution NLOM images were used to measure cartilage repair, specifically through spectral analysis and image texture. In contrast to a wound lacking a perichondrium, wounds with intact perichondria demonstrated significantly larger TPEF signals from cells and matrix, coarser texture indicating the more deposition of type I collagen. Spectral analysis of cells and matrix can reveal the matrix properties and cell growth. In addition, texture analysis of NLOM images showed significant differences in the distribution of cells and matrix of repaired tissues with or without perichondrium. Specifically, the decay length of autocorrelation coefficient based on TPEF images is 11.2 ± 1.1 in Wound 2 (with perichondrium) and 7.5 ± 2.0 in Wound 1 (without perichondrium), indicating coarser image texture and faster growth of cells in repaired tissues with perichondrium (p < 0.05). Moreover, the decay length of autocorrelation coefficient based on collagen SHG images also showed significant difference between Wound 2 and 1 (16.2 ± 1.2 vs. 12.2 ± 2.1, p < 0.05), indicating coarser image texture and faster deposition of collagen in repaired tissues with perichondrium (Wound 2). These findings suggest that NLOM is an ideal tool for studying cartilage repair, with potential applications in clinical medicine. NLOM can capture macromolecular details and distinguish between different extents of cartilage repair without the need for labelling agents.
Collapse
Affiliation(s)
- X Q Zhu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| | - Y H Xu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| | - C X Liao
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| | - W G Liu
- Department of Orthopedics, Affiliated Union Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - K K Cheng
- Institute of Bioproduct Development & Department of Bioprocess Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - J X Chen
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| |
Collapse
|
7
|
Chen J, Zhu X, Xu Y, Tang Y, Xiong S, Zhuo S, Chen J. Stereoscopic visualization and quantification of auricular cartilage regeneration in rabbits using multiphoton microscopy. SCANNING 2014; 36:540-546. [PMID: 25195587 DOI: 10.1002/sca.21153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
Multiphoton microscopy (MPM) was applied for imaging and quantifying the elastic cartilage regeneration tissue in a rabbit ear model without using labeling agents. Morphology of cells and collagen matrix were analysis, showing significant difference between regenerated and intact cartilage in cellular size and collagen distribution. The results demonstrate that high resolution images provide by MPM are consistent with the histological results, and show additional biological behavior which is not visible in standard histology. Advantages in instrumentation may lead to the application of MPM for intravital detection and treatment.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhu X, Tang Y, Chen J, Xiong S, Zhuo S, Chen J. Monitoring wound healing of elastic cartilage using multiphoton microscopy. Osteoarthritis Cartilage 2013; 21:1799-806. [PMID: 23973917 DOI: 10.1016/j.joca.2013.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To demonstrate the ability of multiphoton microscopy (MPM) for monitoring wound healing of elastic cartilage. METHOD In a rabbit ear model, four cartilage specimen groups at 1-day, 1-, 4-, 20-week healing time points as well as a normal elastic cartilage were examined with MPM without using labeling agents. MPM images at wound margins were obtained from specimens at different healing stages, compared with the Hematoxylin and Eosin (H&E) stained images. Image analysis was performed to characterize the collagen morphology for quantifying the wound healing progression of elastic cartilage. RESULTS MPM provided high-resolution images of elastic cartilage at varying depths. Comparisons of the images of specimens at different healing stages show obvious cell growth and matrix deposition. The results are consistent with the histological results. Moreover, quantitative analysis results show significant alteration in the collagen cavity size or collagen orientation index during wound healing of elastic cartilage, indicating the possibility to act as indicators for monitoring wound healing. CONCLUSION Our results suggested that MPM has the ability to monitor the wound healing progression of elastic cartilage, based on the visualization of cell growth and proliferation and quantitative characterization of collagen morphology during wound healing.
Collapse
Affiliation(s)
- X Zhu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, PR China.
| | | | | | | | | | | |
Collapse
|
9
|
McQueenie R, Stevenson R, Benson R, MacRitchie N, McInnes I, Maffia P, Faulds K, Graham D, Brewer J, Garside P. Detection of Inflammation in Vivo by Surface-Enhanced Raman Scattering Provides Higher Sensitivity Than Conventional Fluorescence Imaging. Anal Chem 2012; 84:5968-75. [DOI: 10.1021/ac3006445] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ross McQueenie
- Institute of Infection, Immunity
and Inflammation, University of Glasgow, G12 8TA, United Kingdom
| | - Ross Stevenson
- Centre for Molecular Nanometrology,
WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, United Kingdom
| | - Robert Benson
- Institute of Infection, Immunity
and Inflammation, University of Glasgow, G12 8TA, United Kingdom
| | - Neil MacRitchie
- Institute of Infection, Immunity
and Inflammation, University of Glasgow, G12 8TA, United Kingdom
| | - Iain McInnes
- Institute of Infection, Immunity
and Inflammation, University of Glasgow, G12 8TA, United Kingdom
| | - Pasquale Maffia
- Institute of Infection, Immunity
and Inflammation, University of Glasgow, G12 8TA, United Kingdom
- Department of Experimental Pharmacology, University of Naples Federico II, 80131 Naples, Italy
| | - Karen Faulds
- Centre for Molecular Nanometrology,
WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, United Kingdom
| | - Duncan Graham
- Centre for Molecular Nanometrology,
WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, United Kingdom
| | - James Brewer
- Institute of Infection, Immunity
and Inflammation, University of Glasgow, G12 8TA, United Kingdom
| | - Paul Garside
- Institute of Infection, Immunity
and Inflammation, University of Glasgow, G12 8TA, United Kingdom
| |
Collapse
|