1
|
Benavides Lara J, Prakash R, Avanaki K. Assessment of a Single-Element Scanning System for Enhanced Photoacoustic Imaging of Brain Hemorrhage. JOURNAL OF BIOPHOTONICS 2025; 18:e202400153. [PMID: 39806268 PMCID: PMC11884960 DOI: 10.1002/jbio.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025]
Abstract
The use of photoacoustic brain imaging for hemorrhage detection holds significant clinical importance. This study focuses on the performance of sensitivity and detection capabilities of a single-element scanning system, considering the remarkable signal-to-noise ratio of photoacoustic signals generated by a single-element transducer. By employing blood vessel-like phantoms and ex vivo brain phantoms, we demonstrated the superior efficacy of the single-element scanning method over the transducer array system in the context of brain hemorrhage detection. This research highlights the potential for enhancing hemorrhage detection sensitivity through careful design and optimization of the proposed method, thereby increasing its viability for clinical application.
Collapse
Affiliation(s)
- Juliana Benavides Lara
- The Richard and Loan Hill Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Ravi Prakash
- The Richard and Loan Hill Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Dermatology and PediatricUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Mansutti G, Villiger M, Bouma BE, Uribe-Patarroyo N. Full-field amplitude speckle decorrelation angiography. BIOMEDICAL OPTICS EXPRESS 2024; 15:5756-5772. [PMID: 39421771 PMCID: PMC11482163 DOI: 10.1364/boe.530993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 10/19/2024]
Abstract
We propose a new simple and cost-effective optical imaging technique, full-field amplitude speckle decorrelation angiography (FASDA), capable of visualizing skin microvasculature with high resolution, and sensitive to small, superficial vessels with slow blood flow and larger, deeper vessels with faster blood flow. FASDA makes use of a laser source with limited temporal coherence, can be implemented with cameras with conventional frame rates, and does not require raster scanning. The proposed imaging technique is based on the simultaneous evaluation of two metrics: the blood flow index, a contrast-based metric used in laser speckle contrast imaging, and the adaptive speckle decorrelation index (ASDI), a new metric that we defined based on the second-order autocorrelation function that considers the limited speckle modulation that occurs in partially-coherent imaging. We demonstrate excellent delineation of small, superficial vessels with slow blood flow in skin nevi using ASDI and larger, deeper vessels with faster blood flow using BFI, providing a powerful new tool for the imaging of microvasculature with significantly lower hardware complexity and cost than other optical imaging techniques.
Collapse
Affiliation(s)
- Giulia Mansutti
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
3
|
Hoshino T, Cheng Y, Ninomiya M, Katsuyama M, Yamashita T, Katagiri C, Wang RK, Hara Y. Diameter-dependent classification of dermal vasculature using optical coherence tomography angiography. Quant Imaging Med Surg 2024; 14:6238-6249. [PMID: 39281136 PMCID: PMC11400647 DOI: 10.21037/qims-23-1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/08/2024] [Indexed: 09/18/2024]
Abstract
Background Dermal blood vessels beneath the epidermis play critical roles in epidermal homeostasis and are functionally divided into several types, such as capillaries. Optical coherence tomography angiography (OCTA) is a powerful tool for the non-invasive assessment of dermal vasculature. However, the classification of vessel types has been limited. To address this issue, we proposed an algorithm for diameter-dependent classification that preserves three-dimensional (3D) information using OCTA. Methods OCTA data were acquired by a prototype swept-source-type optical coherence tomography (OCT) system, which was processed through several imaging filters: an optical microangiography (OMAG) imaging filter, a vesselness imaging filter, and a diameter map filter. All vessels were visually classified into three types based on their diameters, as micro-vessels, intermediate vessels, and thick vessels. Aging-related alterations and their association with the epidermis were investigated for each vessel type. The measurements were conducted on the cheeks of 124 female subjects aged 20-79 years. Results The 3D vascular structure was visualized by applying our proposed post-processing filters. Based on visual assessment, the thresholds for the diameters of the micro, intermediate and thick vessels were set at 80 and 160 µm. It was found that micro-vessels were predominantly located in the upper layer of the dermis and thick vessels in the deeper layer. Analysis of vessel metrics revealed that the volume density of the micro-vessels decreased significantly with age (r=-0.36, P<0.001) and was positively correlated with epidermal thickness (r=0.50, P<0.001). In contrast, the volume density of thick vessels significantly increased with age (r=0.2, P<0.05) and was not significantly correlated with epidermal thickness (r=0.13, P≥0.05). Conclusions In this study, we proposed a 3D quantification method using OCTA for dermal blood vessels and various vessel metrics, such as vessel volume density. This proposed classification will be beneficial for determining the function of the dermal vasculature and its diagnostic applications.
Collapse
Affiliation(s)
- Takuma Hoshino
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Masato Ninomiya
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | | | | | - Chika Katagiri
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Yusuke Hara
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| |
Collapse
|
4
|
Cho S, Kim M, Ahn J, Kim Y, Lim J, Park J, Kim HH, Kim WJ, Kim C. An ultrasensitive and broadband transparent ultrasound transducer for ultrasound and photoacoustic imaging in-vivo. Nat Commun 2024; 15:1444. [PMID: 38365897 PMCID: PMC10873420 DOI: 10.1038/s41467-024-45273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
Transparent ultrasound transducers (TUTs) can seamlessly integrate optical and ultrasound components, but acoustic impedance mismatch prohibits existing TUTs from being practical substitutes for conventional opaque ultrasound transducers. Here, we propose a transparent adhesive based on a silicon dioxide-epoxy composite to fabricate matching and backing layers with acoustic impedances of 7.5 and 4-6 MRayl, respectively. By employing these layers, we develop an ultrasensitive, broadband TUT with 63% bandwidth at a single resonance frequency and high optical transparency ( > 80%), comparable to conventional opaque ultrasound transducers. Our TUT maximises both acoustic power and transfer efficiency with maximal spectrum flatness while minimising ringdowns. This enables high contrast and high-definition dual-modal ultrasound and photoacoustic imaging in live animals and humans. Both modalities reach an imaging depth of > 15 mm, with depth-to-resolution ratios exceeding 500 and 370, respectively. This development sets a new standard for TUTs, advancing the possibilities of sensor fusion.
Collapse
Affiliation(s)
- Seonghee Cho
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Minsu Kim
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joongho Ahn
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeonggeun Kim
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Junha Lim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeongwoo Park
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyung Ham Kim
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
5
|
Wang Z, Chen Y, Pan S, Zhang W, Guo Z, Wang Y, Yang S. Quantitative classification of melasma with photoacoustic microscopy: a pilot study. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11504. [PMID: 37927370 PMCID: PMC10624224 DOI: 10.1117/1.jbo.29.s1.s11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Significance The classification of melasma is critical for correct clinical diagnosis, treatment selection, and postoperative measures. However, preoperative quantitative determination of melasma type remains challenging using conventional Wood's lamp and optical dermoscopy techniques. Aim Using photoacoustic microscopy (PAM) to simultaneously obtain the two diagnostic indicators of melanin and blood vessels for melasma classification and perform quantitative analysis to finally achieve accurate classification, rather than relying solely on physicians' experience. Approach First, the patients were classified by experienced dermatologists with Wood's lamp and optical dermoscopy. Next, the patients were examined in vivo using the PAM imaging system. Further, the horizontal section images (X - Y plane) of epidermal melanin and dermal vascular involvement were extracted from the 3D photoacoustic imaging results, which are important basis for PAM to quantitatively classify melasma. Results PAM can quantitatively reveal epidermal thickness and dermal vascular morphology in each case and obtain the quantitative diagnostic indicators of melanin and blood vessels. The mean vascular diameter in lesional skin (223.2 μ m ) of epidermal M+V-type was much larger than that in non-lesional skin (131.6 μ m ), and the mean vascular density in lesional skin was more than three times that in non-lesional skin. Importantly, vascular diameter and density are important parameters for distinguishing M type from M+V type. Conclusions PAM can obtain the data of epidermal thickness, pigment depth, subcutaneous vascular diameter, and vascular density, and realize the dual standard quantitative melasma classification by combining the parameters of melanin and blood vessels. In addition, PAM can provide new diagnostic information for uncertain melasma types and further refine the typing.
Collapse
Affiliation(s)
- Zhiyang Wang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Yuying Chen
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Shu Pan
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Wuyu Zhang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
- Guangdong Photoacoustic Technology Co., Ltd., Foshan, China
| | - Ziwei Guo
- Zhujiang Hospital of Southern Medical University, Department of Plastic Surgery, Guangzhou, China
| | - Yuzhi Wang
- General Hospital of Southern Theater Command, Department of Burns and Plastic Surgery, Guangzhou, China
| | - Sihua Yang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| |
Collapse
|
6
|
Urashima SH, Kimura M, Morisaku T, Yui H. Local elasticity evaluation of acid-denatured collagen by photoacoustic spectroscopy. ANAL SCI 2023; 39:1567-1574. [PMID: 37432528 DOI: 10.1007/s44211-023-00377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 07/12/2023]
Abstract
While there are various analytical methods for elasticity evaluation, those with micrometer-order spatial resolution are still under developing. As some of biological tissues such as capillary vessels and cochlea are very small and/or highly heterogeneous, development of analytical techniques with such high spatial resolution has been desired for biological and medical purposes. Especially, the elasticity of capillary vessels (several micrometer in diameter) would be an important indicator to find out early diseases. To measure the local elasticity for such small and/or heterogeneous samples, we have proposed an approach based on a temporal waveform of photoacoustic (PA) signal, i.e., time-domain PA. As the time-domain PA contains both the vibrating frequency and the sound propagation time after the excitation, it provides the information on the local elasticity (from the frequency) at a specific depth (from the propagation time) of samples. In the present study, the signal from collagen sheets were obtained and analyzed as models of blood vessel walls and scaffolds for regenerative medicine. In contrast to previous studies using the agarose gel which showed a single frequency peak, the signal from the collagen sheets was mainly composed of two frequency peaks, assignable to surface and bulk vibration. Further, the bulk vibration was found to sensitively reflect the elasticity of the samples. Since the PA effect can be induced only at the position where the light absorber exists, the analytical method proposed here would allow us to measure the local elasticity and its spatial distribution in blood vessels and other tissues.
Collapse
Affiliation(s)
- Shu-Hei Urashima
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
- Water Frontier Research Center, Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Maiko Kimura
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Toshinori Morisaku
- Water Frontier Research Center, Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
- Department of Surgery, School of Medicine, Keio University, Shinanomachi 35, Shinjuku, Tokyo, Japan
| | - Hiroharu Yui
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan.
- Water Frontier Research Center, Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan.
| |
Collapse
|
7
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Seong D, Yi S, Han S, Lee J, Park S, Hwang YH, Kim J, Kim HK, Jeon M. Target ischemic stroke model creation method using photoacoustic microscopy with simultaneous vessel monitoring and dynamic photothrombosis induction. PHOTOACOUSTICS 2022; 27:100376. [PMID: 35734368 PMCID: PMC9207728 DOI: 10.1016/j.pacs.2022.100376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 06/02/2023]
Abstract
The ischemic stroke animal model evaluates the efficacy of reperfusion and neuroprotective strategies for ischemic injuries. Various conventional methods have been reported to induce the ischemic models; however, controlling specific neurological deficits, mortality rates, and the extent of the infarction is difficult as the size of the affected region is not precisely controlled. In this paper, we report a single laser-based localized target ischemic stroke model development method by simultaneous vessel monitoring and photothrombosis induction using photoacoustic microscopy (PAM), which has minimized the infarct size at precise location with high reproducibility. The proposed method has significantly reduced the infarcted region by illuminating the precise localization. The reproducibility and validity of suggested method have been demonstrated through repeated experiments and histological analyses. These results demonstrate that our method can provide the ischemic stroke model closest to the clinical pathology for brain ischemia research from inducement, occurrence mechanisms to the recovery process.
Collapse
Affiliation(s)
- Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Soojin Yi
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Sangyeob Han
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Institute of Biomedical Engineering, School of Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Jaeyul Lee
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Sungjo Park
- Pohang Innotown Center, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Yang-Ha Hwang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Hong Kyun Kim
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| |
Collapse
|
9
|
Ma H, Wang Z, Zuo C, Huang Q. Three dimensional confocal photoacoustic dermoscopy with an autofocusing sono-opto probe. JOURNAL OF BIOPHOTONICS 2022; 15:e202100323. [PMID: 34989131 DOI: 10.1002/jbio.202100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Photoacoustic dermoscopy (PAD) is uniquely positioned for the diagnosis and assessment of dermatological conditions because of its ability to visualize optical absorption contrast in vivo in three dimensions. In this Letter, we developed a 3D confocal PAD (3D-CPAD) equipped with an autofocusing sono-opto probe to facilitate the reconstruction of high-spatial-resolution imaging of skin with multilaminate structures in depth direction. The autofocusing sono-opto probe integrated a 10-mm electrowetting-based varifocal lens to automatically control the acoustic and optical confocal length, and an annular ultrasonic detector with a mid-frequency of ~32.8 MHz is coaxially configured for receiving photoacoustic signals. Using this sono-opto probe, the acoustic and optical confocal length-shifting range from ~7 to 43 mm with high image contrast and spatial resolution in the 3D image reconstruction. Autofocusing property tests and 3D human skin in vivo imaging were carried out to demonstrate the imaging capability of the 3D-CPAD for potential clinical foreground in noninvasive biopsies of skin disease.
Collapse
Affiliation(s)
- Haigang Ma
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chao Zuo
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Qinghua Huang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
10
|
Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology. Nat Rev Clin Oncol 2022; 19:365-384. [PMID: 35322236 DOI: 10.1038/s41571-022-00615-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clinical oncology can benefit substantially from imaging technologies that reveal physiological characteristics with multiscale observations. Complementing conventional imaging modalities, photoacoustic imaging (PAI) offers rapid imaging (for example, cross-sectional imaging in real time or whole-breast scanning in 10-15 s), scalably high levels of spatial resolution, safe operation and adaptable configurations. Most importantly, this novel imaging modality provides informative optical contrast that reveals details on anatomical, functional, molecular and histological features. In this Review, we describe the current state of development of PAI and the emerging roles of this technology in cancer screening, diagnosis and therapy. We comment on the performance of cutting-edge photoacoustic platforms, and discuss their clinical applications and utility in various clinical studies. Notably, the clinical translation of PAI is accelerating in the areas of macroscopic and mesoscopic imaging for patients with breast or skin cancers, as well as in microscopic imaging for histopathology. We also highlight the potential of future developments in technological capabilities and their clinical implications, which we anticipate will lead to PAI becoming a desirable and widely used imaging modality in oncological research and practice.
Collapse
Affiliation(s)
- Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA. .,Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
11
|
Jin Y, Yin Y, Li C, Liu H, Shi J. Non-Invasive Monitoring of Human Health by Photoacoustic Spectroscopy. SENSORS 2022; 22:s22031155. [PMID: 35161900 PMCID: PMC8839463 DOI: 10.3390/s22031155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
For certain diseases, the continuous long-term monitoring of the physiological condition is crucial. Therefore, non-invasive monitoring methods have attracted widespread attention in health care. This review aims to discuss the non-invasive monitoring technologies for human health based on photoacoustic spectroscopy. First, the theoretical basis of photoacoustic spectroscopy and related devices are reported. Furthermore, this article introduces the monitoring methods for blood glucose, blood oxygen, lipid, and tumors, including differential continuous-wave photoacoustic spectroscopy, microscopic photoacoustic spectroscopy, mid-infrared photoacoustic detection, wavelength-modulated differential photoacoustic spectroscopy, and others. Finally, we present the limitations and prospects of photoacoustic spectroscopy.
Collapse
Affiliation(s)
- Yongyong Jin
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China;
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
| | - Yonggang Yin
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
| | - Chiye Li
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
| | - Hongying Liu
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China;
- Correspondence: (H.L.); (J.S.)
| | - Junhui Shi
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; (Y.Y.); (C.L.)
- Correspondence: (H.L.); (J.S.)
| |
Collapse
|
12
|
Gao S, Tsumura R, Vang DP, Bisland K, Xu K, Tsunoi Y, Zhang HK. Acoustic-resolution photoacoustic microscope based on compact and low-cost delta configuration actuator. ULTRASONICS 2022; 118:106549. [PMID: 34474357 PMCID: PMC8530928 DOI: 10.1016/j.ultras.2021.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 05/02/2023]
Abstract
The state-of-the-art configurations for acoustic-resolution photoacoustic (PA) microscope (AR-PAM) are large in size and expensive, hindering their democratization. While previous research on AR-PAMs introduced a low-cost light source to reduce the cost, few studies have investigated the possibility of optimizing the sensor actuation, particularly for the AR-PAM. Additionally, there is an unmet need to evaluate the image quality deterioration associated with the actuation inaccuracy. A low-cost actuation device is introduced to reduce the system size and cost of the AR-PAM while maintaining the image quality by implementing the advanced beamformers. This work proposes an AR-RAM incorporating the delta configuration actuator adaptable from a low-cost off-the-shelf 3D printer as the sensor actuation device. The image degradation due to the data acquisition positioning inaccuracy is evaluated in the simulation. We further assess the mitigation of potential actuation precision uncertainty through advanced 3D synthetic aperture focusing algorithms represented by the Delay-and-Sum (DAS) with Coherence Factor (DAS+CF) and Delay-Multiply-and-Sum (DMAS) algorithms. The simulation study demonstrated the tolerance of image quality on actuation inaccuracy and the effect of compensating the actuator motion precision error through advanced reconstruction algorithms. With those algorithms, the image quality degradation was suppressed to within 25% with the presence of 0.2 mm motion inaccuracy. The experimental evaluation using phantoms and an ex-vivo sample presented the applicability of low-cost delta configuration actuators for AR-PAMs. The measured full width at half maximum of the 0.2 mm diameter pencil-lead phantom were 0.45 ± 0.06 mm, 0.31 ± 0.04 mm, and 0.35 ± 0.07 mm, by applying the DAS, DAS+CF, and DMAS algorithms, respectively. AR-PAMs with a compact and low-cost delta configuration provide high-quality PA imaging with better accessibility for biomedical applications. The research evaluated the image degradation contributed by the actuation inaccuracy and suggested that the advanced beamformers are capable of suppressing the actuation inaccuracy.
Collapse
Affiliation(s)
- Shang Gao
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Ryosuke Tsumura
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Doua P Vang
- Worcester Polytechnic Institute, Department of Electrical and Computer Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Keion Bisland
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Keshuai Xu
- Johns Hopkins University, Department of Computer Science, Baltimore 21218, United States
| | - Yasuyuki Tsunoi
- National Defense Medical College Research Institute, Division of Bioinformation and Therapeutic Systems, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Haichong K Zhang
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Computer Science, 100 Institute Rd, Worcester 01609, United States.
| |
Collapse
|
13
|
Sathyanarayana SG, Wang Z, Sun N, Ning B, Hu S, Hossack JA. Recovery of Blood Flow From Undersampled Photoacoustic Microscopy Data Using Sparse Modeling. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:103-120. [PMID: 34388091 DOI: 10.1109/tmi.2021.3104521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photoacoustic microscopy (PAM) leverages the optical absorption contrast of blood hemoglobin for high-resolution, multi-parametric imaging of the microvasculature in vivo. However, to quantify the blood flow speed, dense spatial sampling is required to assess blood flow-induced loss of correlation of sequentially acquired A-line signals, resulting in increased laser pulse repetition rate and consequently optical fluence. To address this issue, we have developed a sparse modeling approach for blood flow quantification based on downsampled PAM data. Evaluation of its performance both in vitro and in vivo shows that this sparse modeling method can accurately recover the substantially downsampled data (up to 8 times) for correlation-based blood flow analysis, with a relative error of 12.7 ± 6.1 % across 10 datasets in vitro and 12.7 ± 12.1 % in vivo for data downsampled 8 times. Reconstruction with the proposed method is on par with recovery using compressive sensing, which exhibits an error of 12.0 ± 7.9 % in vitro and 33.86 ± 26.18 % in vivo for data downsampled 8 times. Both methods outperform bicubic interpolation, which shows an error of 15.95 ± 9.85 % in vitro and 110.7 ± 87.1 % in vivo for data downsampled 8 times.
Collapse
|
14
|
Wang Z, Yang F, Cheng Z, Zhang W, Xiong K, Shen T, Yang S. Quantitative multilayered assessment of skin lightening by photoacoustic microscopy. Quant Imaging Med Surg 2022; 12:470-480. [PMID: 34993094 PMCID: PMC8666735 DOI: 10.21037/qims-21-335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND With the emergence of various new skin-lightening products, there is an urgent need to scientifically evaluate the efficacy and toxicology of these products, and provide scientific guidance for their use based on physiological differences between individuals. Visualized imaging methods and quantitative evaluation criteria play key roles in evaluating the efficacy of skin-lightening products. In order to quantify the changes in the multilayered morphology and endogenous components of human skin before and after the use of lightening products, high-resolution three-dimensional (3D) imaging of human skin is required. METHODS In this study, photoacoustic microscopy (PAM; SSPM-532, Guangdong Photoacoustic Medical Technology Co., Ltd.) was used to capture the morphological structures of human skin and reveal skin components quantitatively. The efficacy and safety of skin-lightening products were evaluated by measuring skin melanin concentration and observing skin morphology. The melanin concentration in the epidermis was obtained by examining the linear relationship between photoacoustic (PA) signals. Further, the epidermal thickness and the melanin distribution were obtained in the cross-sectional (x-z) and lateral (x-y) images. Finally, the efficacy of skin-lightening products was evaluated according to the concentration and distribution of melanin in the epidermis, and the safety of cosmetics was assessed by observing the vascular morphology in the dermis. RESULTS PAM noninvasively could assess the multilayered morphological structures of human skin, which allowed for quantification of epidermal thickness and melanin concentration of different skin sites. Based on this, the efficacy and safety of skin-lightening products in multilayer structures were quantitatively evaluated. CONCLUSIONS As a quantitative imaging method, PAM, has the potential to accurately evaluate the use of skin-lightening products. The method can also be extended to assessments within the larger field of aesthetic medicine.
Collapse
Affiliation(s)
- Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tianding Shen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
15
|
Leng X, Amidi E, Kou S, Cheema H, Otegbeye E, Chapman WJ, Mutch M, Zhu Q. Rectal Cancer Treatment Management: Deep-Learning Neural Network Based on Photoacoustic Microscopy Image Outperforms Histogram-Feature-Based Classification. Front Oncol 2021; 11:715332. [PMID: 34631543 PMCID: PMC8495416 DOI: 10.3389/fonc.2021.715332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
We have developed a novel photoacoustic microscopy/ultrasound (PAM/US) endoscope to image post-treatment rectal cancer for surgical management of residual tumor after radiation and chemotherapy. Paired with a deep-learning convolutional neural network (CNN), the PAM images accurately differentiated pathological complete responders (pCR) from incomplete responders. However, the role of CNNs compared with traditional histogram-feature based classifiers needs further exploration. In this work, we compare the performance of the CNN models to generalized linear models (GLM) across 24 ex vivo specimens and 10 in vivo patient examinations. First order statistical features were extracted from histograms of PAM and US images to train, validate and test GLM models, while PAM and US images were directly used to train, validate, and test CNN models. The PAM-CNN model performed superiorly with an AUC of 0.96 (95% CI: 0.95-0.98) compared to the best PAM-GLM model using kurtosis with an AUC of 0.82 (95% CI: 0.82-0.83). We also found that both CNN and GLMs derived from photoacoustic data outperformed those utilizing ultrasound alone. We conclude that deep-learning neural networks paired with photoacoustic images is the optimal analysis framework for determining presence of residual cancer in the treated human rectum.
Collapse
Affiliation(s)
- Xiandong Leng
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Eghbal Amidi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Sitai Kou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Hassam Cheema
- Department of Pathology, Washington University in St. Louis, St. Louis, MO, United States
| | - Ebunoluwa Otegbeye
- Division of Colorectal Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - William Jr Chapman
- Division of Colorectal Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew Mutch
- Division of Colorectal Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Deán-Ben XL, Razansky D. Optoacoustic imaging of the skin. Exp Dermatol 2021; 30:1598-1609. [PMID: 33987867 DOI: 10.1111/exd.14386] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Optoacoustic (OA, photoacoustic) imaging capitalizes on the synergistic combination of light excitation and ultrasound detection to empower biological and clinical investigations with rich optical contrast while effectively bridging the gap between micro and macroscopic imaging realms. State-of-the-art OA embodiments consistently provide images at micron-scale resolution through superficial tissue layers by means of focused illumination that can be smoothly exchanged for acoustic-resolution images at diffuse light depths of several millimetres to centimetres via ultrasound beamforming or tomographic reconstruction. Taken together, this unique multi-scale imaging capacity opens unprecedented capabilities for high-resolution in vivo interrogations of the skin at scalable depths. Moreover, diverse anatomical and functional information is retrieved via dynamic mapping of endogenous chromophores such as haemoglobin, melanin, lipids, collagen, water and others. This, along with the use of non-ionizing radiation, facilitates a clinical translation of the OA modalities. We review recent progress in OA imaging of the skin in preclinical and clinical studies exploiting the rich contrast provided by endogenous substances in tissues. The imaging capabilities of existing approaches are discussed in the context of initial translational studies on skin cancer, inflammatory skin diseases, wounds and other conditions.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Liao T, Liu Y, Wu J, Deng L, Deng Y, Zeng L, Ji X. Centimeter-scale wide-field-of-view laser-scanning photoacoustic microscopy for subcutaneous microvasculature in vivo. BIOMEDICAL OPTICS EXPRESS 2021; 12:2996-3007. [PMID: 34168911 PMCID: PMC8194621 DOI: 10.1364/boe.426366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 05/25/2023]
Abstract
We developed a simple and compact laser-scanning photoacoustic microscopy (PAM) for imaging large areas of subcutaneous microvasculature in vivo. The reflection-mode PAM not only retains the advantage of high scanning speed for optical scanning, but also offers an imaging field-of-view (FOV) up to 20 × 20 mm2, which is the largest FOV available in laser-scanning models so far. The lateral resolution of the PAM system was measured to be 17.5 µm. Image experiments on subcutaneous microvasculature in in vivo mouse ears and abdomen demonstrate the system's potential for fast and high-resolution imaging for injuries and diseases of large tissues and organs.
Collapse
Affiliation(s)
- Tangyun Liao
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- T. Liao and Y. Liu contributed equally to this work
| | - Yuan Liu
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- T. Liao and Y. Liu contributed equally to this work
| | - Junwei Wu
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Doppler Electronic Technologies Incorporated Company, Guangzhou 510530, China
| | - Lijun Deng
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Key Lab of Optic-Electronic and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China
| | - Yu Deng
- Doppler Electronic Technologies Incorporated Company, Guangzhou 510530, China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Key Lab of Optic-Electronic and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Qiu T, Lan Y, Gao W, Zhou M, Liu S, Huang W, Zeng S, Pathak JL, Yang B, Zhang J. Photoacoustic imaging as a highly efficient and precise imaging strategy for the evaluation of brain diseases. Quant Imaging Med Surg 2021; 11:2169-2186. [PMID: 33936997 DOI: 10.21037/qims-20-845] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging strategy with a unique combination of rich optical contrasts, high ultrasound spatial resolution, and deep penetration depth without ionizing radiation. Taking advantage of the features mentioned above, PAI has been widely applied to preclinical studies in diverse fields, such as vascular biology, cardiology, neurology, ophthalmology, dermatology, gastroenterology, and oncology. Among various biomedical applications, photoacoustic brain imaging has great importance due to the brain's complex anatomy and the variability of brain disease. In this review, we aimed to introduce a novel and effective imaging modality for diagnosing brain diseases. Firstly, a brief overview of two major types of PAI system was provided. Then, PAI's major preclinical applications in brain diseases were introduced, including early diagnosis of brain tumors, subtle changes in the chemotherapy response, epileptic activity and brain injury, foreign body, and brain plaque. Finally, a perspective of the remaining challenges of PAI was given for future advancements.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yintao Lan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mengyu Zhou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shiqi Liu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wenyan Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Sujuan Zeng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Bin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
19
|
Lin L, Wang LV. Photoacoustic Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:147-175. [PMID: 34053027 DOI: 10.1007/978-981-15-7627-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAI uniquely combines the advantages of optical excitation and of acoustic detection. Optical excitation provides a rich contrast mechanism from either endogenous or exogenous chromophores, allowing PAI to perform biochemical, functional, and molecular imaging. Acoustic detection benefits from the low scattering of ultrasound in biological tissue, enabling PAI to generate high-resolution images in both the optical ballistic and diffusive regimes. Accordingly, this hybrid imaging modality features high sensitivity to optical absorption and wide scalability of spatial resolution with the desired imaging depth. Over the past two decades, the photoacoustic technique has led to a variety of exciting discoveries and applications from laboratory research to clinical patient care. In biological research, PAI has become an irreplaceable tool, providing functional optical contrast with high spatiotemporal resolution. Translational PAI also attracted growing interest in clinical applications including tumor margin examination, internal organ imaging, breast cancer screening, and sentinel lymph node mapping, among others.
Collapse
Affiliation(s)
- Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA. .,Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
20
|
Yang JM, Ghim CM. Photoacoustic Tomography Opening New Paradigms in Biomedical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:239-341. [PMID: 33834440 DOI: 10.1007/978-981-33-6064-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After the emergence of the ultrasound, X-ray CT, PET, and MRI, photoacoustic tomography (PAT) is now in the phase of its exponential growth, with its expected full maturation being another form of mainstream clinical imaging modality. By combining the high contrast benefit of optical imaging and the high-resolution deep imaging capability of ultrasound, PAT can provide unprecedented anatomical image contrasts at clinically relevant depths as well as enable the use of a variety of functional and molecular imaging information, which is not possible with conventional imaging modalities. With these strengths, PAT has achieved numerous breakthroughs in various biomedical applications and also provided new technical platforms that may be able to resolve unmet issues in clinics. In this chapter, we provide an overview of the development of PAT technology for several major biomedical applications and provide an approximate projection of the future of PAT.
Collapse
Affiliation(s)
- Joon-Mo Yang
- Center for Photoacoustic Medical Instruments, Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Cheol-Min Ghim
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
21
|
Manwar R, Kratkiewicz K, Avanaki K. Overview of Ultrasound Detection Technologies for Photoacoustic Imaging. MICROMACHINES 2020; 11:E692. [PMID: 32708869 PMCID: PMC7407969 DOI: 10.3390/mi11070692] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Ultrasound detection is one of the major components of photoacoustic imaging systems. Advancement in ultrasound transducer technology has a significant impact on the translation of photoacoustic imaging to the clinic. Here, we present an overview on various ultrasound transducer technologies including conventional piezoelectric and micromachined transducers, as well as optical ultrasound detection technology. We explain the core components of each technology, their working principle, and describe their manufacturing process. We then quantitatively compare their performance when they are used in the receive mode of a photoacoustic imaging system.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
22
|
Dahlstrand U, Sheikh R, Merdasa A, Chakari R, Persson B, Cinthio M, Erlöv T, Gesslein B, Malmsjö M. Photoacoustic imaging for three-dimensional visualization and delineation of basal cell carcinoma in patients. PHOTOACOUSTICS 2020; 18:100187. [PMID: 32461885 PMCID: PMC7243191 DOI: 10.1016/j.pacs.2020.100187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Photoacoustic (PA) imaging is an emerging non-invasive biomedical imaging modality that could potentially be used to determine the borders of basal cell carcinomas (BCC) preoperatively in order to reduce the need for repeated surgery. METHODS Two- and three-dimensional PA images were obtained by scanning BCCs using 59 wavelengths in the range 680-970 nm. Spectral unmixing was performed to visualize the tumor tissue distribution. Spectral signatures from 38 BCCs and healthy tissue were compared ex vivo. RESULTS AND DISCUSSION The PA spectra could be used to differentiate between BCC and healthy tissue ex vivo (p < 0.05). Spectral unmixing provided visualization of the overall architecture of the lesion and its border. CONCLUSION PA imaging can be used to differentiate between BCC and healthy tissue and can potentially be used to delineate tumors prior to surgical excision.
Collapse
Affiliation(s)
- Ulf Dahlstrand
- Department of Clinical Sciences Lund, Ophthalmology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Rafi Sheikh
- Department of Clinical Sciences Lund, Ophthalmology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Aboma Merdasa
- Department of Clinical Sciences Lund, Ophthalmology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Rehan Chakari
- Department of Clinical Sciences Lund, Ophthalmology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Bertil Persson
- Department of Dermatology, Skåne University Hospital, Lund, Sweden
| | - Magnus Cinthio
- Faculty of Engineering, Department of Biomedical Engineering, Lund University, Sweden
| | - Tobias Erlöv
- Faculty of Engineering, Department of Biomedical Engineering, Lund University, Sweden
| | - Bodil Gesslein
- Department of Clinical Sciences Lund, Ophthalmology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Sun CK, Wu PJ, Chen ST, Su YH, Wei ML, Wang CY, Gao HC, Sung KB, Liao YH. Slide-free clinical imaging of melanin with absolute quantities using label-free third-harmonic-generation enhancement-ratio microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:3009-3024. [PMID: 32637238 PMCID: PMC7316008 DOI: 10.1364/boe.391451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/21/2023]
Abstract
The capability to image the 3D distribution of melanin in human skin in vivo with absolute quantities and microscopic details will not only enable noninvasive histopathological diagnosis of melanin-related cutaneous disorders, but also make long term treatment assessment possible. In this paper, we demonstrate clinical in vivo imaging of the melanin distribution in human skin with absolute quantities on mass density and with microscopic details by using label-free third-harmonic-generation (THG) enhancement-ratio microscopy. As the dominant absorber in skin, melanin provides the strongest THG nonlinearity in human skin due to resonance enhancement. We show that the THG-enhancement-ratio (erTHG) parameter can be calibrated in vivo and can indicate the melanin mass density. With an unprecedented clinical imaging resolution, our study revealed erTHG-microscopy's unique capability for long-term treatment assessment and direct clinical observation of melanin's micro-distribution to shed light into the unknown pathway and regulation mechanism of melanosome transfer and translocation.
Collapse
Affiliation(s)
- Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Jhe Wu
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Tse Chen
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsiang Su
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Liang Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Chiao-Yi Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Cheng Gao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Kung-Bing Sung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|
24
|
Seong M, Chen SL. Recent advances toward clinical applications of photoacoustic microscopy: a review. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1798-1812. [DOI: 10.1007/s11427-019-1628-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
25
|
Hult J, Dahlstrand U, Merdasa A, Wickerström K, Chakari R, Persson B, Cinthio M, Erlöv T, Albinsson J, Gesslein B, Sheikh R, Malmsjö M. Unique spectral signature of human cutaneous squamous cell carcinoma by photoacoustic imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e201960212. [PMID: 32049420 DOI: 10.1002/jbio.201960212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 05/11/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer with metastatic potential. To reduce reoperations due to nonradical excision, there is a need to develop a technique for identification of tumor margins preoperatively. Photoacoustic (PA) imaging is a novel imaging technology that combines the strengths of laser optics and ultrasound. Our aim was to determine the spectral signature of cSCC using PA imaging and to use this signature to visualize tumor architecture and borders. Two-dimensional PA images of 33 cSCCs and surrounding healthy skin were acquired ex vivo, using 59 excitation wavelengths from 680 to 970 nm. The spectral response of the cSCCs was compared to healthy tissue, and the difference was found to be greatest at wavelengths in the range 765 to 960 nm (P < .05). Three-dimensional PA images were constructed from spectra obtained in the y-z plane using a linear stepper motor moving along the x-plane. Spectral unmixing was then performed which provided a clear three-dimensional view of the distribution of tumor masses and their borders.
Collapse
Affiliation(s)
- Jenny Hult
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ulf Dahlstrand
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Aboma Merdasa
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Karin Wickerström
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Rehan Chakari
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bertil Persson
- Department of Dermatology, Skåne University Hospital, Lund, Sweden
| | - Magnus Cinthio
- Faculty of Engineering, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Tobias Erlöv
- Faculty of Engineering, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - John Albinsson
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bodil Gesslein
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Rafi Sheikh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
26
|
Towards Clinical Translation of LED-Based Photoacoustic Imaging: A Review. SENSORS 2020; 20:s20092484. [PMID: 32349414 PMCID: PMC7249023 DOI: 10.3390/s20092484] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging, with the capability to provide simultaneous structural, functional, and molecular information, is one of the fastest growing biomedical imaging modalities of recent times. As a hybrid modality, it not only provides greater penetration depth than the purely optical imaging techniques, but also provides optical contrast of molecular components in the living tissue. Conventionally, photoacoustic imaging systems utilize bulky and expensive class IV lasers, which is one of the key factors hindering the clinical translation of this promising modality. Use of LEDs which are portable and affordable offers a unique opportunity to accelerate the clinical translation of photoacoustics. In this paper, we first review the development history of LED as an illumination source in biomedical photoacoustic imaging. Key developments in this area, from point-source measurements to development of high-power LED arrays, are briefly discussed. Finally, we thoroughly review multiple phantom, ex-vivo, animal in-vivo, human in-vivo, and clinical pilot studies and demonstrate the unprecedented preclinical and clinical potential of LED-based photoacoustic imaging.
Collapse
|
27
|
Baik JW, Kim JY, Cho S, Choi S, Kim J, Kim C. Super Wide-Field Photoacoustic Microscopy of Animals and Humans In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:975-984. [PMID: 31484110 DOI: 10.1109/tmi.2019.2938518] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Acoustic-resolution photoacoustic micro-scopy (AR-PAM) is an emerging biomedical imaging modality that combines superior optical sensitivity and fine ultrasonic resolution in an optical quasi-diffusive regime (~1-3 mm in tissues). AR-PAM has been explored for anatomical, functional, and molecular information in biological tissues. Heretofore, AR-PAM systems have suffered from a limited field-of-view (FOV) and/or slow imaging speed, which have precluded them from routine preclinical and clinical applications. Here, we demonstrate an advanced AR-PAM system that overcomes both limitations of previous AR-PAM systems. The new AR-PAM system demonstrates a super wide-field scanning that utilized a 1-axis water-proofing microelectromechanical systems (MEMS) scanner integrated with two linear stepper motor stages. We achieved an extended FOV of 36 ×80 mm2 by mosaicking multiple volumetric images of 36 ×2.5 mm2 with a total acquisition time of 224 seconds. For one volumetric data (i.e., 36 ×2.5 mm2), the B-scan imaging speed over the short axis (i.e., 2.5 mm) was 83 Hz in humans. The 3D volumetric image was also provided by using MEMS mirror scanning along the X-axis and stepper-motor scanning along the Y-axis. The super-wide FOV mosaic image was realized by registering and merging all individual volumetric images. Finally, we obtained multi-plane whole-body in-vivo PA images of small animals, illustrating distinct multi-layered structures including microvascular networks and internal organs. Importantly, we also visualized microvascular networks in human fingers, palm, and forearm successfully. This advanced MEMS-AR-PAM system could potentially enable hitherto not possible wide preclinical and clinical applications.
Collapse
|
28
|
Attia ABE, Balasundaram G, Moothanchery M, Dinish U, Bi R, Ntziachristos V, Olivo M. A review of clinical photoacoustic imaging: Current and future trends. PHOTOACOUSTICS 2019; 16:100144. [PMID: 31871888 PMCID: PMC6911900 DOI: 10.1016/j.pacs.2019.100144] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 05/02/2023]
Abstract
Photoacoustic imaging (or optoacoustic imaging) is an upcoming biomedical imaging modality availing the benefits of optical resolution and acoustic depth of penetration. With its capacity to offer structural, functional, molecular and kinetic information making use of either endogenous contrast agents like hemoglobin, lipid, melanin and water or a variety of exogenous contrast agents or both, PAI has demonstrated promising potential in a wide range of preclinical and clinical applications. This review provides an overview of the rapidly expanding clinical applications of photoacoustic imaging including breast imaging, dermatologic imaging, vascular imaging, carotid artery imaging, musculoskeletal imaging, gastrointestinal imaging and adipose tissue imaging and the future directives utilizing different configurations of photoacoustic imaging. Particular emphasis is placed on investigations performed on human or human specimens.
Collapse
Key Words
- AR-PAM, acoustic resolution-photoacoustic microscopy
- Clinical applications
- DAQ, data acquisition
- FOV, field-of-view
- Hb, deoxy-hemoglobin
- HbO2, oxy-hemoglobin
- LED, light emitting diode
- MAP, maximum amplitude projection
- MEMS, microelectromechanical systems
- MRI, magnetic resonance imaging
- MSOT, multispectral optoacoustic tomography
- OCT, optical coherence tomography
- OR-PAM, optical resolution-photoacoustic microscopy
- Optoacoustic mesoscopy
- Optoacoustic tomography
- PA, photoacoustic
- PAI, photoacoustic imaging
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- Photoacoustic imaging
- Photoacoustic microscopy
- RSOM, raster-scanning optoacoustic mesoscopy
- SBH-PACT, single breath hold photoacoustic computed tomography system
- US, ultrasound
- sO2, saturation
Collapse
Affiliation(s)
| | | | - Mohesh Moothanchery
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - U.S. Dinish
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Renzhe Bi
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Malini Olivo
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| |
Collapse
|
29
|
Sun CK, Liu WM, Liao YH. Study on melanin enhanced third harmonic generation in a live cell model. BIOMEDICAL OPTICS EXPRESS 2019; 10:5716-5723. [PMID: 31799042 PMCID: PMC6865104 DOI: 10.1364/boe.10.005716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 10/04/2019] [Indexed: 05/08/2023]
Abstract
Melanin dominates the endogenous contrasts of in vivo third harmonic generation (THG) imaging of human skin. A recent study investigated the THG in melanin solution and a linear relationship between melanin concentration and THG intensity was reported, in contrast to the expected nonlinear relationship. Since melanin hydrocolloid solution is very different from the skin tissue, here we report our study on the origin of the melanin-enhanced THG by using a live cell model. Different from the previous conclusion, our live cell study has indicated an initial nonlinear process where the THG intensity was enhanced according to the 3.5th power of melanin mass density (MMD). When the MMD is higher than 11 mg/ml, a transition from the resonance-enhanced THG to the high-order hyper-Rayleigh scattering process occurs. This saturation phenomenon of the virtual-transition-based THG nonlinear process is attributed to the multi-melanosome-induced scattering within the sub-femtoliter focal volume.
Collapse
Affiliation(s)
- Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Min Liu
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|
30
|
Rao B, Leng X, Zeng Y, Lin Y, Chen R, Zhou Q, Hagemann AR, Kuroki LM, McCourt CK, Mutch DG, Powell MA, Hagemann IS, Zhu Q. Optical Resolution Photoacoustic Microscopy of Ovary and Fallopian Tube. Sci Rep 2019; 9:14306. [PMID: 31586106 PMCID: PMC6778126 DOI: 10.1038/s41598-019-50743-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer is the leading cause of death among gynecological cancers, but is poorly amenable to preoperative diagnosis. In this study, we investigate the feasibility of "optical biopsy," using high-optical-resolution photoacoustic microscopy (OR-PAM) to quantify the microvasculature of ovarian and fallopian tube tissue. The technique is demonstrated using excised human ovary and fallopian tube specimens imaged immediately after surgery. Quantitative parameters are derived using Amira software. The parameters include three-dimensional vascular segment count, total volume and length, which are associated with tumor angiogenesis. Qualitative results of OR-PAM demonstrate that malignant ovarian tissue has larger and more tortuous blood vessels as well as smaller vessels of different sizes, while benign and normal ovarian tissue has smaller vessels of uniform size. Quantitative analysis shows that malignant ovaries have greater tumor vessel volume, length and number of segments, as compared with benign and normal ovaries. The vascular pattern of benign fallopian tube is different than that of benign ovarian tissue. Our initial results demonstrate the potential of OR-PAM as an imaging tool for fast assessment of ovarian tissue and fallopian tube and could avoid unnecessary surgery if the risk of the examined ovary is extremely low.
Collapse
Affiliation(s)
- Bin Rao
- Biomedical Engineering, Washington University, St Louis, MO, 63130, USA
- Applied Bioptics LLC, St Louis, MO, 63146, USA
| | - Xiandong Leng
- Biomedical Engineering, Washington University, St Louis, MO, 63130, USA
| | - Yifeng Zeng
- Biomedical Engineering, Washington University, St Louis, MO, 63130, USA
| | - Yixiao Lin
- Biomedical Engineering, Washington University, St Louis, MO, 63130, USA
| | - Ruimin Chen
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Andrea R Hagemann
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lindsay M Kuroki
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carolyn K McCourt
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David G Mutch
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew A Powell
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ian S Hagemann
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Quing Zhu
- Biomedical Engineering, Washington University, St Louis, MO, 63130, USA.
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
31
|
Deán-Ben XL, Razansky D. Optoacoustic image formation approaches-a clinical perspective. Phys Med Biol 2019; 64:18TR01. [PMID: 31342913 DOI: 10.1088/1361-6560/ab3522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinical translation of optoacoustic imaging is fostered by the rapid technical advances in imaging performance as well as the growing number of clinicians recognizing the immense diagnostic potential of this technology. Clinical optoacoustic systems are available in multiple configurations, including hand-held and endoscopic probes as well as raster-scan approaches. The hardware design must be adapted to the accessible portion of the imaged region and other application-specific requirements pertaining the achievable depth, field of view or spatio-temporal resolution. Equally important is the adequate choice of the signal and image processing approach, which is largely responsible for the resulting imaging performance. Thus, new image reconstruction algorithms are constantly evolving in parallel to the newly-developed set-ups. This review focuses on recent progress on optoacoustic image formation algorithms and processing methods in the clinical setting. Major reconstruction challenges include real-time image rendering in two and three dimensions, efficient hybridization with other imaging modalitites as well as accurate interpretation and quantification of bio-markers, herein discussed in the context of ongoing progress in clinical translation.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. Department of Information Technology and Electrical Engineering and Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
32
|
Li X, Dinish US, Aguirre J, Bi R, Dev K, Attia ABE, Nitkunanantharajah S, Lim QH, Schwarz M, Yew YW, Thng STG, Ntziachristos V, Olivo M. Optoacoustic mesoscopy analysis and quantitative estimation of specific imaging metrics in Fitzpatrick skin phototypes II to V. JOURNAL OF BIOPHOTONICS 2019; 12:e201800442. [PMID: 31012286 DOI: 10.1002/jbio.201800442] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 04/22/2019] [Indexed: 05/07/2023]
Abstract
Raster Scanning Optoacoustic Mesoscopy (RSOM) is a novel optoacoustic imaging modality that offers non-invasive, label-free, high resolution (~7 μm axial, ~30 μm lateral) imaging up to 1 to 2 mm below the skin, providing novel quantitative insights into skin pathophysiology. As the RSOM image contrast mechanism is based on light absorption, it is expected that the amount of melanin present in the skin will affect RSOM images. However, the effect of skin tone in the performance of RSOM has not been addressed so far. Herein, we present the efficiency of RSOM for in vivo skin imaging of human subjects with Fitzpatrick (FP) skin types between II to V. RSOM images acquired from the volar forearms of the subjects were used to derive metrics used in RSOM studies, such as total blood volume, vessel diameter and melanin signal intensity. Our study shows that the melanin signal intensity derived from the RSOM images exhibited an excellent correlation with that obtained from a clinical colorimeter for the subjects of varying FP skin types. We could successfully estimate the vessel diameter at different depths of the dermis. Furthermore, our study shows that there is a need to compensate for total blood volume calculated for subjects with higher FP skin types due to the lower signal-to-noise ratio in dermis, owing to strong absorption of light by melanin. This study sheds light into how RSOM can be used for studying various skin conditions in populations with different skin phenotypes.
Collapse
Affiliation(s)
- Xiuting Li
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - U S Dinish
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | | | - Renzhe Bi
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Kapil Dev
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | | | - Qian Han Lim
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | | | | | | | - Vasilis Ntziachristos
- Technical University of Munich, Munich, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| |
Collapse
|
33
|
Application of multi-wavelength technique for photoacoustic imaging to delineate tumor margins during maximum-safe resection of glioma: A preliminary simulation study. J Clin Neurosci 2019; 70:242-246. [PMID: 31477467 DOI: 10.1016/j.jocn.2019.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022]
Abstract
Accurate margin delineation and safe maximal resection of glioma is one of the most challenging problems of neurosurgery, due to its close resemblance to normal brain parenchyma. However, different intraoperative visualization methods have been used for real-time intraoperative investigation of the borders of the resection cavity, each having advantages and limitations. This preliminary study was designed to simulate multi-wavelength photoacoustic imaging for brain tumor margin delineation for maximum safe resection of glioma. Since the photoacoustic signal is directly related to the amount of optical energy absorption by the endogenous tissue chromophores such as hemoglobin; it may be able to illustrate the critical structures such as tumor vessels during surgery. The simulation of the optical and acoustic part was done by using Monte-Carlo and k-wave toolbox, respectively. As our simulation results proved, at different wavelengths and depths, the amount of optical absorption for the blood layer is significantly different from others such as normal and tumoral tissues. Furthermore, experimental validation of our approach confirms that, by using multi-wavelengths proportional to the depth of the tumor margin during surgery, tumor margin can be differented using photoacoustic imaging at various depths. Photoacoustic imaging may be considered as a promising imaging modality which combines the spectral contrast of optical imaging as well as the spatial resolution of ultrasound imaging, and may be able to delineate the vascular-rich glioma margins at different depths of the resection cavity during surgery.
Collapse
|
34
|
Wen C, Zhao L, Han T, Li W, Zhang G, Li C. A versatile dark-field acoustic-resolution photoacoustic microscopy system aided by 3D printing. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:083704. [PMID: 31472646 DOI: 10.1063/1.5094862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Since the dark-field acoustic-resolution photoacoustic microscopy (AR-PAM) was invented over one decade ago, its powerful imaging capability made this system successful. In this work, we designed and tested an AR-PAM system whose key parts are relied on 3D printing and fiber bundles. This new design not only makes it much simpler to develop a robust PAM system, but also the illumination angle is adjustable to aid for different applications. Our simulation study and phantom experiments demonstrated that this design has the comparable performance with traditional dark-field AR-PAM.
Collapse
Affiliation(s)
- Chenyao Wen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Lingyi Zhao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Tao Han
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wenzhao Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Guangjie Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Changhui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
35
|
Liu M, Drexler W. Optical coherence tomography angiography and photoacoustic imaging in dermatology. Photochem Photobiol Sci 2019; 18:945-962. [PMID: 30735220 DOI: 10.1039/c8pp00471d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optical coherence tomography angiography (OCTA) is a relatively novel functional extension of the widely accepted ophthalmic imaging tool named optical coherence tomography (OCT). Since OCTA's debut in ophthalmology, researchers have also been trying to expand its translational application in dermatology. The ability of OCTA to resolve microvasculature has shown promising results in imaging skin diseases. Meanwhile, photoacoustic imaging (PAI), which uses laser pulse induced ultrasound waves as the signal, has been studied to differentiate human skin layers and to help in skin disease diagnosis. This perspective article gives a short review of OCTA and PAI in the field of photodermatology. After an introduction to the principles of OCTA and PAI, we describe the most updated results of skin disease imaging using these two optical imaging modalities. We also place emphasis on dual modality imaging combining OCTA and photoacoustic tomography (PAT) for dermatological applications. In the end, the challenges and prospects of these two imaging modalities in dermatology are discussed.
Collapse
Affiliation(s)
- Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.
| | | |
Collapse
|
36
|
Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic clinical imaging. PHOTOACOUSTICS 2019; 14:77-98. [PMID: 31293884 PMCID: PMC6595011 DOI: 10.1016/j.pacs.2019.05.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
Photoacoustic is an emerging biomedical imaging modality, which allows imaging optical absorbers in the tissue by acoustic detectors (light in - sound out). Such a technique has an immense potential for clinical translation since it allows high resolution, sufficient imaging depth, with diverse endogenous and exogenous contrast, and is free from ionizing radiation. In recent years, tremendous developments in both the instrumentation and imaging agents have been achieved. These opened avenues for clinical imaging of various sites allowed applications such as brain functional imaging, breast cancer screening, diagnosis of psoriasis and skin lesions, biopsy and surgery guidance, the guidance of tumor therapies at the reproductive and urological systems, as well as imaging tumor metastases at the sentinel lymph nodes. Here we survey the various clinical and pre-clinical literature and discuss the potential applications and hurdles that still need to be overcome.
Collapse
Affiliation(s)
- Idan Steinberg
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
| | - David M. Huland
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Ophir Vermesh
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Hadas E. Frostig
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Willemieke S. Tummers
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Materials Science & Engineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
37
|
Gargiulo S, Albanese S, Mancini M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5080267. [PMID: 31182936 PMCID: PMC6515147 DOI: 10.1155/2019/5080267] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
The optical imaging plays an increasing role in preclinical studies, particularly in cancer biology. The combined ultrasound and optical imaging, named photoacoustic imaging (PAI), is an emerging hybrid technique for real-time molecular imaging in preclinical research and recently expanding into clinical setting. PAI can be performed using endogenous contrast, particularly from oxygenated and deoxygenated hemoglobin and melanin, or exogenous contrast agents, sometimes targeted for specific biomarkers, providing comprehensive morphofunctional and molecular information on tumor microenvironment. Overall, PAI has revealed notable opportunities to improve knowledge on tumor pathophysiology and on the biological mechanisms underlying therapy. The aim of this review is to introduce the principles of PAI and to provide a brief overview of current PAI applications in preclinical research, highlighting also on recent advances in clinical translation for cancer diagnosis, staging, and therapy.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Sandra Albanese
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Marcello Mancini
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| |
Collapse
|
38
|
Hindelang B, Aguirre J, Schwarz M, Berezhnoi A, Eyerich K, Ntziachristos V, Biedermann T, Darsow U. Non-invasive imaging in dermatology and the unique potential of raster-scan optoacoustic mesoscopy. J Eur Acad Dermatol Venereol 2019; 33:1051-1061. [PMID: 30422337 PMCID: PMC6563473 DOI: 10.1111/jdv.15342] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022]
Abstract
In recent years, several non‐invasive imaging methods have been introduced to facilitate diagnostics and therapy monitoring in dermatology. The microscopic imaging methods are restricted in their penetration depth, while the mesoscopic methods probe deeper but provide only morphological, not functional, information. ‘Raster‐scan optoacoustic mesoscopy’ (RSOM), an emerging new imaging technique, combines deep penetration with contrast based on light absorption, which provides morphological, molecular and functional information. Here, we compare the capabilities and limitations of currently available dermatological imaging methods and highlight the principles and unique abilities of RSOM. We illustrate the clinical potential of RSOM, in particular for non‐invasive diagnosis and monitoring of inflammatory and oncological skin diseases.
Collapse
Affiliation(s)
- B Hindelang
- Department of Dermatology and Allergy, Technische Universität München, Munich, Germany.,Chair of Biological Imaging, Technische Universität München, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - J Aguirre
- Chair of Biological Imaging, Technische Universität München, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - M Schwarz
- Chair of Biological Imaging, Technische Universität München, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.,iThera Medical GmbH, Munich, Germany
| | - A Berezhnoi
- Chair of Biological Imaging, Technische Universität München, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - K Eyerich
- Department of Dermatology and Allergy, Technische Universität München, Munich, Germany
| | - V Ntziachristos
- Chair of Biological Imaging, Technische Universität München, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - T Biedermann
- Department of Dermatology and Allergy, Technische Universität München, Munich, Germany
| | - U Darsow
- Department of Dermatology and Allergy, Technische Universität München, Munich, Germany
| |
Collapse
|
39
|
Moore C, Jokerst JV. Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranostics 2019; 9:1550-1571. [PMID: 31037123 PMCID: PMC6485201 DOI: 10.7150/thno.32362] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Abstract
Photoacoustic imaging is a rapidly maturing imaging modality in biological research and medicine. This modality uses the photoacoustic effect ("light in, sound out") to combine the contrast and specificity of optical imaging with the high temporal resolution of ultrasound. The primary goal of image-guided therapy, and theranostics in general, is to transition from conventional medicine to precision strategies that combine diagnosis with therapy. Photoacoustic imaging is well-suited for noninvasive guidance of many therapies and applications currently being pursued in three broad areas. These include the image-guided resection of diseased tissue, monitoring of disease states, and drug delivery. In this review, we examine the progress and strategies for development of photoacoustics in these three key areas with an emphasis on the value photoacoustics has for image-guided therapy.
Collapse
Affiliation(s)
| | - Jesse V. Jokerst
- Department of NanoEngineering
- Materials Science and Engineering Program
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093. United States
| |
Collapse
|
40
|
Gandhi R, Tsoumpas C. Preclinical Imaging Biomarkers for Postischaemic Neurovascular Remodelling. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:3128529. [PMID: 30863220 PMCID: PMC6378027 DOI: 10.1155/2019/3128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022]
Abstract
In the pursuit of understanding the pathological alterations that underlie ischaemic injuries, such as vascular remodelling and reorganisation, there is a need for recognising the capabilities and limitations of in vivo imaging techniques. Thus, this review presents contemporary published research of imaging modalities that have been implemented to study postischaemic neurovascular changes in small animals. A comparison of the technical aspects of the various imaging tools is included to set the framework for identifying the most appropriate methods to observe postischaemic neurovascular remodelling. A systematic search of the PubMed® and Elsevier's Scopus databases identified studies that were conducted between 2008 and 2018 to explore postischaemic neurovascular remodelling in small animal models. Thirty-five relevant in vivo imaging studies are included, of which most made use of magnetic resonance imaging or positron emission tomography, whilst various optical modalities were also utilised. Notably, there is an increasing trend of using multimodal imaging to exploit the most beneficial properties of each imaging technique to elucidate different aspects of neurovascular remodelling. Nevertheless, there is still scope for further utilising noninvasive imaging tools such as contrast agents or radiotracers, which will have the ability to monitor neurovascular changes particularly during restorative therapy. This will facilitate more successful utility of the clinical imaging techniques in the interpretation of neurovascular reorganisation over time.
Collapse
Affiliation(s)
- Richa Gandhi
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9NL, West Yorkshire, UK
| | - Charalampos Tsoumpas
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9NL, West Yorkshire, UK
| |
Collapse
|
41
|
Shirshin EA, Gurfinkel YI, Matskeplishvili ST, Sasonko ML, Omelyanenko NP, Yakimov BP, Lademann J, Darvin ME. In vivo optical imaging of the viable epidermis around the nailfold capillaries for the assessment of heart failure severity in humans. JOURNAL OF BIOPHOTONICS 2018; 11:e201800066. [PMID: 29845751 DOI: 10.1002/jbio.201800066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 05/03/2023]
Abstract
Heart failure (HF) is among the socially significant diseases, involving over 2% of the adult population in the developed countries. Diagnostics of the HF severity remains complicated due to the absence of specific symptoms and objective criteria. Here, we present an indicator of the HF severity based on the imaging of tissue parameters around the nailfold capillaries. High resolution nailfold video capillaroscopy was performed to determine the perivascular zone (PZ) size around nailfold capillaries, and 2-photon tomography with fluorescence lifetime imaging was used to investigate PZ composition. We found that the size of PZ around the nailfold capillaries strongly correlates with HF severity. Further investigations using 2-photon tomography demonstrated that PZ corresponds to the border of viable epidermis and it was suggested that the PZ size variations were due to the different amounts of interstitial fluid that potentially further translates in clinically significant oedema. The obtained results allow for the development of a quantitative indicator of oedematous syndrome, which can be used in various applications to monitor the dynamics of interstitial fluid retention. We therefore suggest PZ size measured with nailfold video capillaroscopy as a novel quantitative sensitive non-invasive marker of HF severity.
Collapse
Affiliation(s)
- Evgeny A Shirshin
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Institute of spectroscopy of the Russian Academy of Sciences, Troitsk, Moscow, Russia
| | - Yury I Gurfinkel
- Research Clinical Center of JSC "Russian Railways", Moscow, Russia
- Lomonosov Moscow State University Clinic, Moscow, Russia
| | | | - Maria L Sasonko
- Research Clinical Center of JSC "Russian Railways", Moscow, Russia
| | | | - Boris P Yakimov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Juergen Lademann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - Maxim E Darvin
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
42
|
Roberts PR, Jani AB, Packianathan S, Albert A, Bhandari R, Vijayakumar S. Upcoming imaging concepts and their impact on treatment planning and treatment response in radiation oncology. Radiat Oncol 2018; 13:146. [PMID: 30103786 PMCID: PMC6088418 DOI: 10.1186/s13014-018-1091-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
For 2018, the American Cancer Society estimated that there would be approximately 1.7 million new diagnoses of cancer and about 609,640 cancer-related deaths in the United States. By 2030 these numbers are anticipated to exceed a staggering 21 million annual diagnoses and 13 million cancer-related deaths. The three primary therapeutic modalities for cancer treatments are surgery, chemotherapy, and radiation therapy. Individually or in combination, these treatment modalities have provided and continue to provide curative and palliative care to the myriad victims of cancer. Today, CT-based treatment planning is the primary means through which conventional photon radiation therapy is planned. Although CT remains the primary treatment planning modality, the field of radiation oncology is moving beyond the sole use of CT scans to define treatment targets and organs at risk. Complementary tissue scans, such as magnetic resonance imaging (MRI) and positron electron emission (PET) scans, have all improved a physician’s ability to more specifically identify target tissues, and in some cases, international guidelines have even been issued. Moreover, efforts to combine PET and MR to define solid tumors for radiotherapy planning and treatment evaluation are also gaining traction. Keeping these advances in mind, we present brief overviews of other up-and-coming key imaging concepts that appear promising for initial treatment target definition or treatment response from radiation therapy.
Collapse
Affiliation(s)
- Paul Russell Roberts
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Ashesh B Jani
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd, Atlanta, GA, 30322, USA
| | - Satyaseelan Packianathan
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Ashley Albert
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Rahul Bhandari
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Srinivasan Vijayakumar
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA.
| |
Collapse
|
43
|
Zafar H, Leahy M, Wijns W, Kolios M, Zafar J, Johnson N, Sharif F. Photoacoustic cardiovascular imaging: a new technique for imaging of atherosclerosis and vulnerable plaque detection. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Visualization of age-related vascular alterations in facial skin using optical coherence tomography-based angiography. J Dermatol Sci 2018; 90:96-98. [DOI: 10.1016/j.jdermsci.2017.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/16/2017] [Accepted: 11/10/2017] [Indexed: 11/22/2022]
|
45
|
Erfanzadeh M, Kumavor PD, Zhu Q. Laser scanning laser diode photoacoustic microscopy system. PHOTOACOUSTICS 2018; 9:1-9. [PMID: 29201646 PMCID: PMC5699884 DOI: 10.1016/j.pacs.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 05/05/2023]
Abstract
The development of low-cost and fast photoacoustic microscopy systems enhances the clinical applicability of photoacoustic imaging systems. To this end, we present a laser scanning laser diode-based photoacoustic microscopy system. In this system, a 905 nm, 325 W maximum output peak power pulsed laser diode with 50 ns pulsewidth is utilized as the light source. A combination of aspheric and cylindrical lenses is used for collimation of the laser diode beam. Two galvanometer scanning mirrors steer the beam across a focusing aspheric lens. The lateral resolution of the system was measured to be ∼21 μm using edge spread function estimation. No averaging was performed during data acquisition. The imaging speed is ∼370 A-lines per second. Photoacoustic microscopy images of human hairs, ex vivo mouse ear, and ex vivo porcine ovary are presented to demonstrate the feasibility and potentials of the proposed system.
Collapse
Affiliation(s)
- Mohsen Erfanzadeh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Patrick D. Kumavor
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Corresponding author.
| |
Collapse
|
46
|
Breathnach A, Concannon E, Dorairaj JJ, Shaharan S, McGrath J, Jose J, Kelly JL, Leahy MJ. Preoperative measurement of cutaneous melanoma and nevi thickness with photoacoustic imaging. J Med Imaging (Bellingham) 2018; 5:015004. [PMID: 29487881 PMCID: PMC5809700 DOI: 10.1117/1.jmi.5.1.015004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technology, which can potentially be used in the clinic to preoperatively measure melanoma thickness and guide biopsy depth and sample location. We recruited 27 patients with pigmented cutaneous lesions suspicious for melanoma to test the feasibility of a handheld linear-array photoacoustic probe in imaging lesion architecture and measuring tumor depth. The probe was assessed in terms of measurement accuracy, image quality, and ease of application. Photoacoustic scans included single wavelength, spectral unmixing, and three-dimensional (3-D) scans. The photoacoustically measured lesion thickness gave a high correlation with the histological thickness measured from resected surgical samples (r=0.99, P<0.001 for melanomas, r=0.98, P<0.001 for nevi). Thickness measurements were possible for 23 of 26 cases for nevi and all (6) cases for melanoma. Our results show that handheld, linear-array PAI is highly reliable in measuring cutaneous lesion thickness in vivo, and can potentially be used to inform biopsy procedure and improve patient management.
Collapse
Affiliation(s)
- Aedán Breathnach
- National University of Ireland (NUI), Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, Galway, Ireland
| | - Elizabeth Concannon
- University Hospital Galway, University College Hospital Galway, Department of Plastic and Reconstructive Surgery, Ireland
| | - Jemima J Dorairaj
- University Hospital Galway, University College Hospital Galway, Department of Plastic and Reconstructive Surgery, Ireland
| | - Shazrinizam Shaharan
- University Hospital Galway, University College Hospital Galway, Department of Plastic and Reconstructive Surgery, Ireland
| | - James McGrath
- National University of Ireland (NUI), Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, Galway, Ireland
| | - Jithin Jose
- FUJIFILM Visualsonics Inc., Amsterdam, The Netherlands
| | - Jack L Kelly
- University Hospital Galway, University College Hospital Galway, Department of Plastic and Reconstructive Surgery, Ireland
| | - Martin J Leahy
- National University of Ireland (NUI), Tissue Optics and Microcirculation Imaging Facility, National Biophotonics and Imaging Platform, Galway, Ireland.,Royal College of Surgeons (RCSI), National Biophotonics and Imaging Platform, Dublin, Ireland
| |
Collapse
|
47
|
Abstract
Raster-scan optoacoustic mesoscopy (RSOM), also termed photoacoustic mesoscopy, offers novel insights into vascular morphology and pathophysiological biomarkers of skin inflammation in vivo at depths unattainable by other optical imaging methods. Using ultra-wideband detection and focused ultrasound transducers, RSOM can achieve axial resolution of 4 micron and lateral resolution of 20 micron to depths of several millimeters. However, motion effects may deteriorate performance and reduce the effective resolution. To provide high-quality optoacoustic images in clinical measurements, we developed a motion correction algorithm for RSOM. The algorithm is based on observing disruptions of the ultrasound wave front generated by the vertical movement of the melanin layer at the skin surface. From the disrupted skin surface, a smooth synthetic surface is generated, and the offset between the two surfaces is used to correct for the relative position of the ultrasound detector. We test the algorithm in measurements of healthy and psoriatic human skin and achieve effective resolution up to 5-fold higher than before correction. We discuss the performance of the correction algorithm and its implications in the context of multispectral mesoscopy.
Collapse
|
48
|
Shah A, Delgado-Goni T, Casals Galobart T, Wantuch S, Jamin Y, Leach MO, Robinson SP, Bamber J, Beloueche-Babari M. Detecting human melanoma cell re-differentiation following BRAF or heat shock protein 90 inhibition using photoacoustic and magnetic resonance imaging. Sci Rep 2017; 7:8215. [PMID: 28811486 PMCID: PMC5557970 DOI: 10.1038/s41598-017-07864-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/04/2017] [Indexed: 01/26/2023] Open
Abstract
Targeted therapies specific to the BRAF-MEK-ERK signaling pathway have shown great promise in the treatment of malignant melanoma in the last few years, with these drugs now commonly used in clinic. Melanoma cells treated using these agents are known to exhibit increased levels of melanin pigment and tyrosinase activity. In this study we assessed the potential of non-invasive imaging approaches (photoacoustic imaging (PAI) and magnetic resonance imaging (MRI)) to detect melanin induction in SKMEL28 human melanoma cells, following inhibition of Hsp90 and BRAF signaling using 17-AAG and vemurafenib, respectively. We confirmed, using western blot and spectrophotometry, that Hsp90 or BRAF inhibitor-induced melanoma cell differentiation resulted in an upregulation of tyrosinase and melanin expression levels, in comparison to control cells. This post-treatment increase in cellular pigmentation induced a significant increase in PAI signals that are spectrally identifiable and shortening of the MRI relaxation times T 1 and [Formula: see text]. This proof-of-concept study demonstrates the potential of MRI and PAI for detecting the downstream cellular changes induced by Hsp90 and BRAF-MEK-targeted therapies in melanoma cells with potential significance for in vivo imaging.
Collapse
Affiliation(s)
- Anant Shah
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
- Joint Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Teresa Delgado-Goni
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Teresa Casals Galobart
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Slawomir Wantuch
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Yann Jamin
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Simon P Robinson
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Jeffrey Bamber
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
- Joint Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Mounia Beloueche-Babari
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom.
| |
Collapse
|
49
|
Ul Haq I, Nagaoka R, Siregar S, Saijo Y. Sparse-representation-based denoising of photoacoustic images. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7a44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Schwarz M, Soliman D, Omar M, Buehler A, Ovsepian SV, Aguirre J, Ntziachristos V. Optoacoustic Dermoscopy of the Human Skin: Tuning Excitation Energy for Optimal Detection Bandwidth With Fast and Deep Imaging in vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1287-1296. [PMID: 28278460 DOI: 10.1109/tmi.2017.2664142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Optoacoustic (photoacoustic) dermoscopy offers two principal advantages over conventional optical imaging applied in dermatology. First, it yields high-resolution cross-sectional images of the skin at depths not accessible to other non-invasive optical imaging methods. Second, by resolving absorption spectra at multiple wavelengths, it enables label-free 3D visualization of morphological and functional features. However, the relation of pulse energy to generated bandwidth and imaging depth remains poorly defined. In this paper, we apply computer models to investigate the optoacoustic frequency response generated by simulated skin. We relate our simulation results to experimental measurements of the detection bandwidth as a function of optical excitation energy in phantoms and human skin. Using raster-scan optoacoustic mesoscopy, we further compare the performance of two broadband ultrasonic detectors (a bandwidth of 20-180 and 10-90MHz) in acquiring optoacoustic readouts. Based on the findings of this paper, we propose energy ranges required for skin imaging with considerations of laser safety standards.
Collapse
|