1
|
Pajnič M, Drašler B, Šuštar V, Krek JL, Štukelj R, Šimundić M, Kononenko V, Makovec D, Hägerstrand H, Drobne D, Kralj-Iglič V. Effect of carbon black nanomaterial on biological membranes revealed by shape of human erythrocytes, platelets and phospholipid vesicles. J Nanobiotechnology 2015; 13:28. [PMID: 25886274 PMCID: PMC4391140 DOI: 10.1186/s12951-015-0087-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We studied the effect of carbon black (CB) agglomerated nanomaterial on biological membranes as revealed by shapes of human erythrocytes, platelets and giant phospholipid vesicles. Diluted human blood was incubated with CB nanomaterial and observed by different microscopic techniques. Giant unilamellar phospholipid vesicles (GUVs) created by electroformation were incubated with CB nanomaterial and observed by optical microscopy. Populations of erythrocytes and GUVs were analyzed: the effect of CB nanomaterial was assessed by the average number and distribution of erythrocyte shape types (discocytes, echinocytes, stomatocytes) and of vesicles in test suspensions, with respect to control suspensions. Ensembles of representative images were created and analyzed using computer aided image processing and statistical methods. In a population study, blood of 14 healthy human donors was incubated with CB nanomaterial. Blood cell parameters (concentration of different cell types, their volumes and distributions) were assessed. RESULTS We found that CB nanomaterial formed micrometer-sized agglomerates in citrated and phosphate buffered saline, in diluted blood and in blood plasma. These agglomerates interacted with erythrocyte membranes but did not affect erythrocyte shape locally or globally. CB nanomaterial agglomerates were found to mediate attractive interaction between blood cells and to present seeds for formation of agglomerate - blood cells complexes. Distortion of disc shape of resting platelets due to incubation with CB nanomaterial was not observed. CB nanomaterial induced bursting of GUVs while the shape of the remaining vesicles was on the average more elongated than in control suspension, indicating indirect osmotic effects of CB nanomaterial. CONCLUSIONS CB nanomaterial interacts with membranes of blood cells but does not have a direct effect on local or global membrane shape in physiological in vitro conditions. Blood cells and GUVs are convenient and ethically acceptable methods for the study of effects of various substances on biological membranes and therefrom derived effects on organisms.
Collapse
Affiliation(s)
- Manca Pajnič
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Barbara Drašler
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Vid Šuštar
- Lymphocyte Cytoskeleton Group, Institute of Biomedicine/Pathology, BioCity, University of Turku, Tykistökatu 6B, Turku, SF-20520, Finland.
| | - Judita Lea Krek
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Roman Štukelj
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Metka Šimundić
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Veno Kononenko
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Darko Makovec
- J. Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia.
| | - Henry Hägerstrand
- Department of Biosciences, BioCity, Åbo Akademi University, BioCity, Artillerigatan 6, Åbo/Turku, SF-20520, Finland.
| | - Damjana Drobne
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
2
|
Zupanc J, Drašler B, Boljte S, Kralj-Iglič V, Iglič A, Erdogmus D, Drobne D. Lipid vesicle shape analysis from populations using light video microscopy and computer vision. PLoS One 2014; 9:e113405. [PMID: 25426933 PMCID: PMC4245123 DOI: 10.1371/journal.pone.0113405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022] Open
Abstract
We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1–50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness). This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected.
Collapse
Affiliation(s)
- Jernej Zupanc
- Seyens Ltd., Ljubljana, Slovenia
- University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
- * E-mail:
| | - Barbara Drašler
- University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Sabina Boljte
- University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | | | - Aleš Iglič
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Deniz Erdogmus
- Northeastern University, Boston, Massachusetts, United States of America
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| |
Collapse
|
3
|
Piccinini F, Bevilacqua A, Lucarelli E. Automated image mosaics by non-automated light microscopes: the MicroMos software tool. J Microsc 2013; 252:226-50. [PMID: 24111790 DOI: 10.1111/jmi.12084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/16/2013] [Indexed: 12/20/2022]
Abstract
Light widefield microscopes and digital imaging are the basis for most of the analyses performed in every biological laboratory. In particular, the microscope's user is typically interested in acquiring high-detailed images for analysing observed cells and tissues, meanwhile being representative of a wide area to have reliable statistics. The microscopist has to choose between higher magnification factor and extension of the observed area, due to the finite size of the camera's field of view. To overcome the need of arrangement, mosaicing techniques have been developed in the past decades for increasing the camera's field of view by stitching together more images. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Or alternatively, the methods are conceived just to provide visually pleasant mosaics not suitable for quantitative analyses. This work presents a tool for building mosaics of images acquired with nonautomated light microscopes. The method proposed is based on visual information only and the mosaics are built by incrementally stitching couples of images, making the approach available also for online applications. Seams in the stitching regions as well as tonal inhomogeneities are corrected by compensating the vignetting effect. In the experiments performed, we tested different registration approaches, confirming that the translation model is not always the best, despite the fact that the motion of the sample holder of the microscope is apparently translational and typically considered as such. The method's implementation is freely distributed as an open source tool called MicroMos. Its usability makes building mosaics of microscope images at subpixel accuracy easier. Furthermore, optional parameters for building mosaics according to different strategies make MicroMos an easy and reliable tool to compare different registration approaches, warping models and tonal corrections.
Collapse
Affiliation(s)
- F Piccinini
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Italy
| | | | | |
Collapse
|
4
|
Šimundić M, Drašler B, Šuštar V, Zupanc J, Štukelj R, Makovec D, Erdogmus D, Hägerstrand H, Drobne D, Kralj-Iglič V. Effect of engineered TiO2 and ZnO nanoparticles on erythrocytes, platelet-rich plasma and giant unilamelar phospholipid vesicles. BMC Vet Res 2013; 9:7. [PMID: 23311901 PMCID: PMC3549938 DOI: 10.1186/1746-6148-9-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/08/2013] [Indexed: 01/28/2023] Open
Abstract
Background Massive industrial production of engineered nanoparticles poses questions about health risks to living beings. In order to understand the underlying mechanisms, we studied the effects of TiO2 and ZnO agglomerated engineered nanoparticles (EPs) on erythrocytes, platelet-rich plasma and on suspensions of giant unilamelar phospholipid vesicles. Results Washed erythrocytes, platelet-rich plasma and suspensions of giant unilamelar phospholipid vesicles were incubated with samples of EPs. These samples were observed by different microscopic techniques. We found that TiO2 and ZnO EPs adhered to the membrane of washed human and canine erythrocytes. TiO2 and ZnO EPs induced coalescence of human erythrocytes. Addition of TiO2 and ZnO EPs to platelet-rich plasma caused activation of human platelets after 24 hours and 3 hours, respectively, while in canine erythrocytes, activation of platelets due to ZnO EPs occurred already after 1 hour. To assess the effect of EPs on a representative sample of giant unilamelar phospholipid vesicles, analysis of the recorded populations was improved by applying the principles of statistical physics. TiO2 EPs did not induce any notable effect on giant unilamelar phospholipid vesicles within 50 minutes of incubation, while ZnO EPs induced a decrease in the number of giant unilamelar phospholipid vesicles that was statistically significant (p < 0,001) already after 20 minutes of incubation. Conclusions These results indicate that TiO2 and ZnO EPs cause erythrocyte aggregation and could be potentially prothrombogenic, while ZnO could also cause membrane rupture.
Collapse
Affiliation(s)
- Metka Šimundić
- Biomedical Research Group, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hamada T, Morita M, Miyakawa M, Sugimoto R, Hatanaka A, Vestergaard MC, Takagi M. Size-Dependent Partitioning of Nano/Microparticles Mediated by Membrane Lateral Heterogeneity. J Am Chem Soc 2012; 134:13990-6. [DOI: 10.1021/ja301264v] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tsutomu Hamada
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi,
Ishikawa 923-1292, Japan
| | - Masamune Morita
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi,
Ishikawa 923-1292, Japan
| | - Makiyo Miyakawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi,
Ishikawa 923-1292, Japan
| | - Ryoko Sugimoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi,
Ishikawa 923-1292, Japan
| | - Ai Hatanaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi,
Ishikawa 923-1292, Japan
| | - Mun’delanji C. Vestergaard
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi,
Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi,
Ishikawa 923-1292, Japan
| |
Collapse
|
6
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:142-7. [PMID: 22374141 DOI: 10.1097/med.0b013e3283520fe6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Valant J, Drobne D, Novak S. Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods. CHEMOSPHERE 2012; 87:19-25. [PMID: 22189379 DOI: 10.1016/j.chemosphere.2011.11.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to find out whether ingested titanium dioxide nanoparticles (nano-TiO(2)) cause cell membrane damage by direct contact or by lipid peroxidation. We assessed lipid peroxidation and digestive gland cell membrane stability of animals fed on food dosed with nano-TiO(2). Conventional toxicity measures were completed to determine if cellular effects are propagated to higher levels of biological complexity. An invertebrate model organism (Porcellio scaber, Isopoda, Crustacea) was fed with food containing nanosized TiO(2) and the result confirmed that at higher exposure concentrations after 3 d exposure, nano-TiO(2) destabilized cell membranes but lipid peroxidation was not detected. Oxidative stress as evidenced by lipid peroxidation was observed at longer exposure durations and high exposure doses. These data suggest that cell membranes are destabilized by direct interactions between nanoparticles and cell membrane, not solely via oxidative stress.
Collapse
Affiliation(s)
- Janez Valant
- Department of Biology, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
8
|
Yoo J, Larina IV, Larin KV, Dickinson ME, Liebling M. Increasing the field-of-view of dynamic cardiac OCT via post-acquisition mosaicing without affecting frame-rate or spatial resolution. BIOMEDICAL OPTICS EXPRESS 2011; 2:2614-22. [PMID: 22091446 PMCID: PMC3184870 DOI: 10.1364/boe.2.002614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 05/19/2023]
Abstract
Optical coherence tomography (OCT) allows imaging dynamic structures and fluid flow within scattering tissue, such as the beating heart and blood flow in murine embryos. For any given system, the frame rate, spatial resolution, field-of-view (FOV), and signal-to-noise ratio (SNR) are interconnected: favoring one aspect limits at least one of the others due to optical, instrumentation, and software constraints. Here we describe a spatio-temporal mosaicing technique to reconstruct high-speed, high spatial-resolution, and large-field-of-view OCT sequences. The technique is applicable to imaging any cyclically moving structure and operates on multiple, spatially overlapping tiled image sequences (each sequence acquired sequentially at a given spatial location) and effectively decouples the (rigid) spatial alignment and (non-rigid) temporal registration problems. Using this approach we reconstructed full-frame OCT sequences of the beating embryonic rat heart (11.5 days post coitus) and compared it to direct imaging on the same system, demonstrating a six-fold improvement of the frame rate without compromising spatial resolution, FOV, or SNR.
Collapse
Affiliation(s)
- JeaBuem Yoo
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106,
USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030,
USA
| | - Kirill V. Larin
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030,
USA
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204,
USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030,
USA
| | - Michael Liebling
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106,
USA
| |
Collapse
|
9
|
Zupanc J, Drobne D, Ster B. Markov random field model for segmenting large populations of lipid vesicles from micrographs. J Liposome Res 2011; 21:315-23. [DOI: 10.3109/08982104.2011.573794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|