1
|
Strasser F, Ritsch-Marte M, Bernet S. Quantitative phase imaging with optical differentiation by spatially variable amplitude filters. OPTICS LETTERS 2025; 50:353-356. [PMID: 39815507 DOI: 10.1364/ol.540669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025]
Abstract
We present a non-interferometric technique for quantitative phase imaging (QPI) that is cost-effective, easily integrated into standard microscopes, and capable of wide-field imaging with noncoherent light. Our method measures the phase gradient through optical differentiation using spatially variable amplitude filters, accommodating a range of transmission functions, including commercially available variable neutral-density filters. This flexibility is made possible by a general relationship we derive. The approach is demonstrated by recovering phase information from a microsphere with a phase shift exceeding 2π, without the need for phase unwrapping. Additionally, we image multiple HeLa cells across a large field of view.
Collapse
|
2
|
Gao W, Bai Y, Yang Y, Jia L, Mi Y, Cui W, Liu D, Shakoor A, Zhao L, Li J, Luo T, Sun D, Jiang Z. Intelligent sensing for the autonomous manipulation of microrobots toward minimally invasive cell surgery. APPLIED PHYSICS REVIEWS 2024; 11. [DOI: 10.1063/5.0211141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The physiology and pathogenesis of biological cells have drawn enormous research interest. Benefiting from the rapid development of microfabrication and microelectronics, miniaturized robots with a tool size below micrometers have widely been studied for manipulating biological cells in vitro and in vivo. Traditionally, the complex physiological environment and biological fragility require human labor interference to fulfill these tasks, resulting in high risks of irreversible structural or functional damage and even clinical risk. Intelligent sensing devices and approaches have been recently integrated within robotic systems for environment visualization and interaction force control. As a consequence, microrobots can be autonomously manipulated with visual and interaction force feedback, greatly improving accuracy, efficiency, and damage regulation for minimally invasive cell surgery. This review first explores advanced tactile sensing in the aspects of sensing principles, design methodologies, and underlying physics. It also comprehensively discusses recent progress on visual sensing, where the imaging instruments and processing methods are summarized and analyzed. It then introduces autonomous micromanipulation practices utilizing visual and tactile sensing feedback and their corresponding applications in minimally invasive surgery. Finally, this work highlights and discusses the remaining challenges of current robotic micromanipulation and their future directions in clinical trials, providing valuable references about this field.
Collapse
Affiliation(s)
- Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yunfei Bai
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yujie Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Lanlan Jia
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Yingbiao Mi
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Wenji Cui
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Dehua Liu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum and Minerals 3 , Dhahran 31261,
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Tao Luo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University 4 , Xiamen 361102,
| | - Dong Sun
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
- Department of Biomedical Engineering, City University of Hong Kong 5 , Hong Kong 999099,
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| |
Collapse
|
3
|
Wang H, Zhang L, Huang J, Yang Z, Fan C, Yuan L, Zhao H, Zhang Z, Liu X. Imaging the intracellular refractive index distribution (IRID) for dynamic label-free living colon cancer cells via circularly depolarization decay model (CDDM). BIOMEDICAL OPTICS EXPRESS 2024; 15:2451-2465. [PMID: 38633098 PMCID: PMC11019712 DOI: 10.1364/boe.518957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Label-free detection of intracellular substances for living cancer cells remains a significant hurdle in cancer pathogenesis research. Although the sensitivity of light polarization to intracellular substances has been validated, current studies are predominantly focused on tissue lesions, thus label-free detection of substances within individual living cancer cells is still a challenge. The main difficulty is to find specific detection methods along with corresponding characteristic parameters. With refractive index as an endogenous marker of substances, this study proposes a detection method of intracellular refractive index distribution (IRID) for label-free living colon cancer (LoVo) cells. Utilizing the circular depolarization decay model (CDDM) to calculate the degree of circular polarization (DOCP) modulated by the cell allows for the derivation of the IRID on the focal plane. Experiments on LoVo cells demonstrated the refractive index of single cell can be accurately and precisely measured, with precision of 10-3 refractive index units (RIU). Additionally, chromatin content during the interphases (G1, S, G2) of cell cycle was recorded at 56.5%, 64.4%, and 71.5%, respectively. A significantly finer IRID can be obtained compared to the phase measurement method. This method is promising in providing a dynamic label-free intracellular substances detection method in cancer pathogenesis studies.
Collapse
Affiliation(s)
- Huijun Wang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lu Zhang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jie Huang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zewen Yang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chen Fan
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li Yuan
- First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hong Zhao
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaolong Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Provincey, Fuzhou 350025, China
| |
Collapse
|
4
|
Kumar M, Murata T, Matoba O. Live Cell Imaging by Single-Shot Common-Path Wide Field-of-View Reflective Digital Holographic Microscope. SENSORS (BASEL, SWITZERLAND) 2024; 24:720. [PMID: 38339437 PMCID: PMC10857047 DOI: 10.3390/s24030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Quantitative phase imaging by digital holographic microscopy (DHM) is a nondestructive and label-free technique that has been playing an indispensable role in the fields of science, technology, and biomedical imaging. The technique is competent in imaging and analyzing label-free living cells and investigating reflective surfaces. Herein, we introduce a new configuration of a wide field-of-view single-shot common-path off-axis reflective DHM for the quantitative phase imaging of biological cells that leverages several advantages, including being less-vibration sensitive to external perturbations due to its common-path configuration, also being compact in size, simple in optical design, highly stable, and cost-effective. A detailed description of the proposed DHM system, including its optical design, working principle, and capability for phase imaging, is presented. The applications of the proposed system are demonstrated through quantitative phase imaging results obtained from the reflective surface (USAF resolution test target) as well as transparent samples (living plant cells). The proposed system could find its applications in the investigation of several biological specimens and the optical metrology of micro-surfaces.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Systems Science, Graduate School of System Informatics, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
- Center of Optical Scattering Image Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | - Takashi Murata
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi 243-0292, Japan
| | - Osamu Matoba
- Department of Systems Science, Graduate School of System Informatics, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
- Center of Optical Scattering Image Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Jamali R, Rad VF, Razaghi M, Mohamadnia Z, Khorasani M, Moradi AR. Digital holographic microscopy of spiropyran-based dynamic materials. J Microsc 2023; 292:78-89. [PMID: 37694978 DOI: 10.1111/jmi.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Spiropyran (SP)-based dynamic materials undergo structural changes in response to external stimuli. In this paper, we show that digital holographic microscopy (DHM) is an effective candidate for characterisation of SPs (embedded in polymer matrices) and for monitoring of their dynamical changes. The polymer matrices are polylactic acid (PLA) and poly(methyl methacrylate) (PMMA) films, which are decorated with SPs and immobilised on graphene quantum dots (GQDs). GQDs are modified by benzylamines prior to the loading of SP species because of the enhancement of hydrophobic characteristics. UV irradiation is used as the external stimulus and the dynamical changes of the samples before and after UV irradiation are measured. DHM is arranged on a novel self-referencing setup, which substantially reduces the sensitivity of DHM to environmental vibrations. Morphometric information for characterisation of the samples is obtained by analysis of the recorded digital holograms. The experimental results demonstrate the potential of the presented technique to serve as an alternative technique for surface measurement methodologies such as atomic force microscope and stylus profiler for surface characterisation of similar materials.
Collapse
Affiliation(s)
- Ramin Jamali
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Vahideh Farzam Rad
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Masoumeh Razaghi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mojtaba Khorasani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
6
|
Micó V, Rogalski M, Picazo-Bueno JÁ, Trusiak M. Single-shot wavelength-multiplexed phase microscopy under Gabor regime in a regular microscope embodiment. Sci Rep 2023; 13:4257. [PMID: 36918618 PMCID: PMC10015059 DOI: 10.1038/s41598-023-31300-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Phase imaging microscopy under Gabor regime has been recently reported as an extremely simple, low cost and compact way to update a standard bright-field microscope with coherent sensing capabilities. By inserting coherent illumination in the microscope embodiment and producing a small defocus distance of the sample at the input plane, the digital sensor records an in-line Gabor hologram of the target sample, which is then numerically post-processed to finally achieve the sample's quantitative phase information. However, the retrieved phase distribution is affected by the two well-known drawbacks when dealing with Gabor's regime, that is, coherent noise and twin image disturbances. Here, we present a single-shot technique based on wavelength multiplexing for mitigating these two effects. A multi-illumination laser source (including 3 diode lasers) illuminates the sample and a color digital sensor (conventional RGB color camera) is used to record the wavelength-multiplexed Gabor hologram in a single exposure. The technique is completed by presenting a novel algorithm based on a modified Gerchberg-Saxton kernel to finally retrieve an enhanced quantitative phase image of the sample, enhanced in terms of coherent noise removal and twin image minimization. Experimental validations are performed in a regular Olympus BX-60 upright microscope using a 20X 0.46NA objective lens and considering static (resolution test targets) and dynamic (living spermatozoa) phase samples.
Collapse
Affiliation(s)
- Vicente Micó
- Departamento de Óptica y Optometría y Ciencias de la Visión, Universidad de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain.
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02‑525, Warsaw, Poland
| | - José Ángel Picazo-Bueno
- Departamento de Óptica y Optometría y Ciencias de la Visión, Universidad de Valencia, C/Doctor Moliner 50, 46100, Burjassot, Spain
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02‑525, Warsaw, Poland
| |
Collapse
|
7
|
Picazo-Bueno JÁ, Barroso Á, Ketelhut S, Schnekenburger J, Micó V, Kemper B. Single capture bright field and off-axis digital holographic microscopy. OPTICS LETTERS 2023; 48:876-879. [PMID: 36790964 DOI: 10.1364/ol.478674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We report on a single capture approach for simultaneous incoherent bright field (BF) and laser-based quantitative phase imaging (QPI). Common-path digital holographic microscopy (DHM) is implemented in parallel with BF imaging within the optical path of a commercial optical microscope to achieve spatially multiplexed recording of white light images and digital off-axis holograms, which are subsequently numerically demultiplexed. The performance of the proposed multimodal concept is firstly determined by investigations on microspheres. Then, the application for label-free dual-mode QPI and BF imaging of living pancreatic tumor cells is demonstrated.
Collapse
|
8
|
Fanous MJ, He S, Sengupta S, Tangella K, Sobh N, Anastasio MA, Popescu G. White blood cell detection, classification and analysis using phase imaging with computational specificity (PICS). Sci Rep 2022; 12:20043. [PMID: 36414631 PMCID: PMC9681839 DOI: 10.1038/s41598-022-21250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Treatment of blood smears with Wright's stain is one of the most helpful tools in detecting white blood cell abnormalities. However, to diagnose leukocyte disorders, a clinical pathologist must perform a tedious, manual process of locating and identifying individual cells. Furthermore, the staining procedure requires considerable preparation time and clinical infrastructure, which is incompatible with point-of-care diagnosis. Thus, rapid and automated evaluations of unlabeled blood smears are highly desirable. In this study, we used color spatial light interference microcopy (cSLIM), a highly sensitive quantitative phase imaging (QPI) technique, coupled with deep learning tools, to localize, classify and segment white blood cells (WBCs) in blood smears. The concept of combining QPI label-free data with AI for the purpose of extracting cellular specificity has recently been introduced in the context of fluorescence imaging as phase imaging with computational specificity (PICS). We employed AI models to first translate SLIM images into brightfield micrographs, then ran parallel tasks of locating and labelling cells using EfficientNet, which is an object detection model. Next, WBC binary masks were created using U-net, a convolutional neural network that performs precise segmentation. After training on digitally stained brightfield images of blood smears with WBCs, we achieved a mean average precision of 75% for localizing and classifying neutrophils, eosinophils, lymphocytes, and monocytes, and an average pixel-wise majority-voting F1 score of 80% for determining the cell class from semantic segmentation maps. Therefore, PICS renders and analyzes synthetically stained blood smears rapidly, at a reduced cost of sample preparation, providing quantitative clinical information.
Collapse
Affiliation(s)
- Michae J Fanous
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA.
| | - Shenghua He
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA
| | | | - Nahil Sobh
- NCSA Center for Artificial Intelligence Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Běhal J, Borrelli F, Mugnano M, Bianco V, Capozzoli A, Curcio C, Liseno A, Miccio L, Memmolo P, Ferraro P. Developing a Reliable Holographic Flow Cyto-Tomography Apparatus by Optimizing the Experimental Layout and Computational Processing. Cells 2022; 11:2591. [PMID: 36010667 PMCID: PMC9406712 DOI: 10.3390/cells11162591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Digital Holographic Tomography (DHT) has recently been established as a means of retrieving the 3D refractive index mapping of single cells. To make DHT a viable system, it is necessary to develop a reliable and robust holographic apparatus in order that such technology can be utilized outside of specialized optics laboratories and operated in the in-flow modality. In this paper, we propose a quasi-common-path lateral-shearing holographic optical set-up to be used, for the first time, for DHT in a flow-cytometer modality. The proposed solution is able to withstand environmental vibrations that can severely affect the interference process. Furthermore, we have scaled down the system while ensuring that a full 360° rotation of the cells occurs in the field-of-view, in order to retrieve 3D phase-contrast tomograms of single cells flowing along a microfluidic channel. This was achieved by setting the camera sensor at 45° with respect to the microfluidic direction. Additional optimizations were made to the computational elements to ensure the reliable retrieval of 3D refractive index distributions by demonstrating an effective method of tomographic reconstruction, based on high-order total variation. The results were first demonstrated using realistic 3D numerical phantom cells to assess the performance of the proposed high-order total variation method in comparison with the gold-standard algorithm for tomographic reconstructions: namely, filtered back projection. Then, the proposed DHT system and the processing pipeline were experimentally validated for monocytes and mouse embryonic fibroblast NIH-3T3 cells lines. Moreover, the repeatability of these tomographic measurements was also investigated by recording the same cell multiple times and quantifying the ability to provide reliable and comparable tomographic reconstructions, as confirmed by a correlation coefficient greater than 95%. The reported results represent various steps forward in several key aspects of in-flow DHT, thus paving the way for its use in real-world applications.
Collapse
Affiliation(s)
- Jaromír Běhal
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Francesca Borrelli
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Martina Mugnano
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Amedeo Capozzoli
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Claudio Curcio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Angelo Liseno
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università di Napoli Federico II, 80125 Napoli, Italy
| | - Lisa Miccio
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Pasquale Memmolo
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (CNR-ISASI), 80078 Pozzuoli, Italy
| |
Collapse
|
10
|
Li Y, Liu L, Liu Y, Wang M, Zhong Z, Shan M. Off-axis common-path digital holography using a cube beam splitter. APPLIED OPTICS 2022; 61:5062-5066. [PMID: 36256184 DOI: 10.1364/ao.458168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/16/2022] [Indexed: 06/16/2023]
Abstract
An off-axis common-path digital holography is built up by inserting a 45° tilted cube beam splitter (CBS) into a 4f system that is described in this paper. Two apertures are set as the input of the 4f system, where one supports the object, and the other is vacant. The CBS divides the incoming beam into two copies, which are symmetrical with each other along the semi-reflecting layer. Due to the separation of two beams in a Fourier plane and the flipping of the field of view induced by the CBS, an off-axis hologram can be captured. Moreover, the carrier frequency can be easily modulated by translating the CBS perpendicular to the optical axis. The new proposed scheme has high light utilization, a compact setup, and high temporal stability. The experiments are carried out to demonstrate the validity and stability of the proposed method.
Collapse
|
11
|
Single-Shot 3D Topography of Transmissive and Reflective Samples with a Dual-Mode Telecentric-Based Digital Holographic Microscope. SENSORS 2022; 22:s22103793. [PMID: 35632202 PMCID: PMC9144696 DOI: 10.3390/s22103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
Common path DHM systems are the most robust DHM systems as they are based on self-interference and are thus less prone to external fluctuations. A common issue amongst these DHM systems is that the two replicas of the sample’s information overlay due to self-interference, making them only suitable for imaging sparse samples. This overlay has restricted the use of common-path DHM systems in material science. The overlay can be overcome by limiting the sample’s field of view to occupy only half of the imaging field of view or by using an optical spatial filter. In this work, we have implemented optical spatial filtering in a common-path DHM system using a Fresnel biprism. We have analyzed the optimal pinhole size by evaluating the frequency content of the reconstructed phase images of a star target. We have also measured the accuracy of the system and the sensitivity to noise for different pinhole sizes. Finally, we have proposed the first dual-mode common-path DHM system using a Fresnel biprism. The performance of the dual-model DHM system has been evaluated experimentally using transmissive and reflective microscopic samples.
Collapse
|
12
|
Pack CG. Application of quantitative cell imaging using label-free optical diffraction tomography. Biophys Physicobiol 2021; 18:244-253. [PMID: 34745809 PMCID: PMC8550874 DOI: 10.2142/biophysico.bppb-v18.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
The cell is three-dimensionally and dynamically organized into cellular compartments, including the endoplasmic reticulum, mitochondria, vesicles, and nucleus, which have high relative molecular density. The structure and functions of these compartments and organelles may be deduced from the diffusion and interaction of related biomolecules. Among these cellular components, various protein molecules can freely access the nucleolus or mitotic chromosome through Brownian diffusion, even though they have a densely packed structure. However, physicochemical properties of the nucleolus and chromosomes, such as molecular density and volume, are not yet fully understood under changing cellular conditions. Many studies have been conducted based on high-resolution imaging and analysis techniques using fluorescence. However, there are limitations in imaging only fluorescently labeled molecules, and cytotoxicity occurs during three-dimensional imaging. Alternatively, the recently developed label-free three-dimensional optical diffraction tomography (ODT) imaging technique can divide various organelles in cells into volumes and analyze them by refractive index, although specific molecules cannot be observed. A previous study established an analytical method that provides comprehensive insights into the physical properties of the nucleolus and mitotic chromosome by utilizing the advantages of ODT and fluorescence techniques, such as fluorescence correlation spectroscopy and confocal laser scanning microscopy. This review article summarizes a recent study and discusses the future aspects of the ODT for cellular compartments.
Collapse
Affiliation(s)
- Chan-Gi Pack
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
13
|
Boonruangkan J, Farrokhi H, Rohith TM, Kwok S, Carney TJ, Su PC, Kim YJ. Label-free quantitative measurement of cardiovascular dynamics in a zebrafish embryo using frequency-comb-referenced-quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210182RR. [PMID: 34773396 PMCID: PMC8589177 DOI: 10.1117/1.jbo.26.11.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Real-time monitoring of the heart rate and blood flow is crucial for studying cardiovascular dysfunction, which leads to cardiovascular diseases. AIM This study aims at in-depth understanding of high-speed cardiovascular dynamics in a zebrafish embryo model for various biomedical applications via frequency-comb-referenced quantitative phase imaging (FCR-QPI). APPROACH Quantitative phase imaging (QPI) has emerged as a powerful technique in the field of biomedicine but has not been actively applied to the monitoring of circulatory/cardiovascular parameters, due to dynamic speckles and low frame rates. We demonstrate FCR-QPI to measure heart rate and blood flow in a zebrafish embryo. FCR-QPI utilizes a high-speed photodetector instead of a conventional camera, so it enables real-time monitoring of individual red blood cell (RBC) flow. RESULTS The average velocity of zebrafish's RBCs was measured from 192.5 to 608.8 μm / s at 24 to 28 hour-post-fertilization (hpf). In addition, the number of RBCs in a pulsatile blood flow was revealed to 16 cells/pulse at 48 hpf. The heart rates corresponded to 94 and 142 beats-per-minute at 24 and 48 hpf. CONCLUSIONS This approach will newly enable in-depth understanding of the cardiovascular dynamics in the zebrafish model and possible usage for drug discovery applications in biomedicine.
Collapse
Affiliation(s)
- Jeeranan Boonruangkan
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
| | - Hamid Farrokhi
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
| | - Thazhe M. Rohith
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
| | - Samuel Kwok
- Nanyang Technological University, Lee Kong Chian, School of Medicine, Singapore
| | - Tom J. Carney
- Nanyang Technological University, Lee Kong Chian, School of Medicine, Singapore
| | - Pei-Chen Su
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
| | - Young-Jin Kim
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Ma S, Liu Q, Yu Y, Luo Y, Wang S. Quantitative phase imaging in digital holographic microscopy based on image inpainting using a two-stage generative adversarial network. OPTICS EXPRESS 2021; 29:24928-24946. [PMID: 34614837 DOI: 10.1364/oe.430524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Based on the hologram inpainting via a two-stage Generative Adversarial Network (GAN), we present a precise phase aberration compensation method in digital holographic microscopy (DHM). In the proposed methodology, the interference fringes of the sample area in the hologram are firstly removed by the background segmentation via edge detection and morphological image processing. The vacancy area is then inpainted with the fringes generated by a deep learning algorithm. The image inpainting finally results in a sample-free reference hologram containing the total aberration of the system. The phase aberrations could be deleted by subtracting the unwrapped phase of the sample-free hologram from our inpainting network results, in no need of any complex spectrum centering procedure, prior knowledge of the system, or manual intervention. With a full and proper training of the two-stage GAN, our approach can robustly realize a distinct phase mapping, which overcomes the drawbacks of multiple iterations, noise interference or limited field of view in the recent methods using self-extension, Zernike polynomials fitting (ZPF) or geometrical transformations. The validity of the proposed procedure is confirmed by measuring the surface of preprocessed silicon wafer with a Michelson interferometer digital holographic inspection platform. The results of our experiment indicate the viability and accuracy of the presented method. Additionally, this work can pave the way for the evaluation of new applications of GAN in DHM.
Collapse
|
15
|
Fanous M, Shi C, Caputo MP, Rund LA, Johnson RW, Das T, Kuchan MJ, Sobh N, Popescu G. Label-free screening of brain tissue myelin content using phase imaging with computational specificity (PICS). APL PHOTONICS 2021; 6:076103. [PMID: 34291159 PMCID: PMC8278825 DOI: 10.1063/5.0050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 05/03/2023]
Abstract
Inadequate myelination in the central nervous system is associated with neurodevelopmental complications. Thus, quantitative, high spatial resolution measurements of myelin levels are highly desirable. We used spatial light interference microcopy (SLIM), a highly sensitive quantitative phase imaging (QPI) technique, to correlate the dry mass content of myelin in piglet brain tissue with dietary changes and gestational size. We combined SLIM micrographs with an artificial intelligence (AI) classifying model that allows us to discern subtle disparities in myelin distributions with high accuracy. This concept of combining QPI label-free data with AI for the purpose of extracting molecular specificity has recently been introduced by our laboratory as phase imaging with computational specificity. Training on 8000 SLIM images of piglet brain tissue with the 71-layer transfer learning model Xception, we created a two-parameter classification to differentiate gestational size and diet type with an accuracy of 82% and 80%, respectively. To our knowledge, this type of evaluation is impossible to perform by an expert pathologist or other techniques.
Collapse
Affiliation(s)
| | - Chuqiao Shi
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Megan P. Caputo
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Laurie A. Rund
- Laboratory of Integrative Immunology & Behavior, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Tapas Das
- Abbott Nutrition, Discovery Research, Columbus, Ohio 43219, USA
| | - Matthew J. Kuchan
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, Ohio 43219, USA
| | | | | |
Collapse
|
16
|
Kumar M, Matoba O, Quan X, Rajput SK, Awatsuji Y, Tamada Y. Single-shot common-path off-axis digital holography: applications in bioimaging and optical metrology [Invited]. APPLIED OPTICS 2021; 60:A195-A204. [PMID: 33690370 DOI: 10.1364/ao.404208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
The demand for single-shot and common-path holographic systems has become increasingly important in recent years, as such systems offer various advantages compared to their counterparts. Single-shot holographic systems, for example, reduce computational complexity as only a single hologram with the object information required to process, making them more suitable for the investigation of dynamic events; and common-path holographic systems are less vibration-sensitive, compact, inexpensive, and high in temporal phase stability. We have developed a single-shot common-path off-axis digital holographic setup based on a beam splitter and pinhole. In this paper, we present a concise review of the proposed digital holographic system for several applications, including the quantitative phase imaging to investigate the morphological and quantitative parameters, as a metrological tool for testing of micro-optics, industrial inspection and measurement, and sound field imaging and visualization.
Collapse
|
17
|
Kumar M, Quan X, Awatsuji Y, Tamada Y, Matoba O. Single-shot common-path off-axis dual-wavelength digital holographic microscopy. APPLIED OPTICS 2020; 59:7144-7152. [PMID: 32902476 DOI: 10.1364/ao.395001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
A single-shot common-path off-axis self-interference dual-wavelength digital holographic microscopic (DHM) system based on a cube beam splitter is demonstrated to expand the phase range in a stepped microstructure and for simultaneous measurement of the refractive index and physical thickness of a specimen. In the system, two laser beams with wavelengths of 532 nm and 632.8 nm are used. These laser beams are combined to transilluminate the object under study, then the object beam is divided into two beams by using a beam splitter oriented in such a way that both the beams propagate in almost the same direction, with an appropriate lateral separation between them. One of the object beams is spatially filtered at its Fourier plane, using a pinhole to generate a reference spherical beam free from the object information. The reference beam interferes with the object beam to form a digital hologram at the faceplate of the image sensor. The phase information is extracted from a single recorded digital hologram using the phase aberration compensation method that is based on principal component analysis (PCA). Owing to the common-path configuration, the system shows high temporal phase stability and it is less vibration-sensitive compared to counterparts such as a Mach-Zehnder type DHM. The performance of the dual-wavelength DHM system is verified in two different application fields by conducting the experiments using microsphere beads and living plant cells.
Collapse
|
18
|
Hayes-Rounds C, Bogue-Jimenez B, Garcia-Sucerquia J, Skalli O, Doblas A. Advantages of Fresnel biprism-based digital holographic microscopy in quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-11. [PMID: 32755077 PMCID: PMC7399475 DOI: 10.1117/1.jbo.25.8.086501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/23/2020] [Indexed: 05/30/2023]
Abstract
SIGNIFICANCE The hallmarks of digital holographic microscopy (DHM) compared with other quantitative phase imaging (QPI) methods are high speed, accuracy, spatial resolution, temporal stability, and polarization-sensitivity (PS) capability. The above features make DHM suitable for real-time quantitative PS phase imaging in a broad number of biological applications aimed at understanding cell growth and dynamic changes occurring during physiological processes and/or in response to pharmaceutical agents. AIM The insertion of a Fresnel biprism (FB) in the image space of a light microscope potentially turns any commercial system into a DHM system enabling QPI with the five desired features in QPI simultaneously: high temporal sensitivity, high speed, high accuracy, high spatial resolution, and PS. To the best of our knowledge, this is the first FB-based DHM system providing these five features all together. APPROACH The performance of the proposed system was calibrated with a benchmark phase object. The PS capability has been verified by imaging human U87 glioblastoma cells. RESULTS The proposed FB-based DHM system provides accurate phase images with high spatial resolution. The temporal stability of our system is in the order of a few nanometers, enabling live-cell studies. Finally, the distinctive behavior of the cells at different polarization angles (e.g., PS capability) can be observed with our system. CONCLUSIONS We have presented a method to turn any commercial light microscope with monochromatic illumination into a PS QPI system. The proposed system provides accurate quantitative PS phase images in a new, simple, compact, and cost-effective format, thanks to the low cost (a few hundred dollars) involved in implementing this simple architecture, enabling the use of this QPI technique accessible to most laboratories with standard light microscopes.
Collapse
Affiliation(s)
- Charity Hayes-Rounds
- The University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee 38152, USA
| | - Brian Bogue-Jimenez
- The University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee 38152, USA
| | | | - Omar Skalli
- The University of Memphis, Department of Biological Sciences, Memphis, Tennessee 38152, USA
| | - Ana Doblas
- The University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee 38152, USA
| |
Collapse
|
19
|
O’Connor T, Anand A, Andemariam B, Javidi B. Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4491-4508. [PMID: 32923059 PMCID: PMC7449709 DOI: 10.1364/boe.399020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 05/14/2023]
Abstract
We demonstrate a successful deep learning strategy for cell identification and disease diagnosis using spatio-temporal cell information recorded by a digital holographic microscopy system. Shearing digital holographic microscopy is employed using a low-cost, compact, field-portable and 3D-printed microscopy system to record video-rate data of live biological cells with nanometer sensitivity in terms of axial membrane fluctuations, then features are extracted from the reconstructed phase profiles of segmented cells at each time instance for classification. The time-varying data of each extracted feature is input into a recurrent bi-directional long short-term memory (Bi-LSTM) network which learns to classify cells based on their time-varying behavior. Our approach is presented for cell identification between the morphologically similar cases of cow and horse red blood cells. Furthermore, the proposed deep learning strategy is demonstrated as having improved performance over conventional machine learning approaches on a clinically relevant dataset of human red blood cells from healthy individuals and those with sickle cell disease. The results are presented at both the cell and patient levels. To the best of our knowledge, this is the first report of deep learning for spatio-temporal-based cell identification and disease detection using a digital holographic microscopy system.
Collapse
Affiliation(s)
- Timothy O’Connor
- Biomedical Engineering Department, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Arun Anand
- Applied Physics Department, Faculty of Tech. & Engineering, M.S. University of Baroda, Vadodara 390001, India
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Farmington, Connecticut 06030, USA
| | - Bahram Javidi
- Electrical and Computer Engineering Department, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
20
|
Patorski K, Zdańkowski P, Trusiak M. Grating deployed total-shear 3-beam interference microscopy with reduced temporal coherence. OPTICS EXPRESS 2020; 28:6893-6908. [PMID: 32225927 DOI: 10.1364/oe.383201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Interference microscopy is a powerful optical imaging technique providing quantitative phase distribution information to characterize various type technical and biomedical objects. Static and dynamic objects and processes can be investigated. In this paper we propose very compact, common-path and partially coherent diffraction grating-based interference microscopy system for studying small objects like single cells with low densities being sparsely distributed in the field of view. Simple binary amplitude diffraction grating is the only additional element to be introduced into a conventional microscope optical system. By placing it at a proper distance in front of the microscope image plane the total-shear operation mode is deployed resulting in interferograms of the object-reference beam type. Depending on the grating to image plane separation distance two or three-beam interferograms are generated. The latter ones are advantageous since they contain achromatic second harmonics in the interferogram intensity distributions. This feature enables to use reduced temporal coherence light sources for the microscope to reduce coherent noise and parasitic interference patterns. For this purpose we employ the laser diode with driving current below the threshold one. Results of conducted experiments including automatic computer processing of interferograms fully corroborate analytical description of the proposed method and illustrate its capabilities for studying static and dynamic phase objects.
Collapse
|
21
|
Guo R, Mirsky SK, Barnea I, Dudaie M, Shaked NT. Quantitative phase imaging by wide-field interferometry with variable shearing distance uncoupled from the off-axis angle. OPTICS EXPRESS 2020; 28:5617-5628. [PMID: 32121778 DOI: 10.1364/oe.385437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/12/2020] [Indexed: 05/20/2023]
Abstract
We introduce a new shearing interferometry module for digital holographic microscopy, in which the off-axis angle, which defines the interference fringe frequency, is not coupled to the shearing distance, as is the case in most shearing interferometers. Thus, it enables the selection of shearing distance based on the spatial density of the sample, without losing spatial frequency content due to overlapping of the complex wave fronts in the spatial frequency domain. Our module is based on a 4f imaging unit and a diffraction grating, in which the hologram is generated from two mutually coherent, partially overlapping sample beams, with adjustable shearing distance, as defined by the position of the grating, but with a constant off-axis angle, as defined by the grating period. The module is simple, easy to align, and presents a nearly common-path geometry. By placing this module as an add-on unit at the exit port of an inverted microscope, quantitative phase imaging can easily be performed. The system is characterized by a 2.5 nm temporal stability and a 3.4 nm spatial stability, without using anti-vibration techniques. We provide quantitative phase imaging experiments of silica beads with different shearing distances, red blood cell fluctuations, and cancer cells flowing in a micro-channel, which demonstrate the capability and versatility of our approach in different imaging scenarios.
Collapse
|
22
|
Kim TK, Lee BW, Fujii F, Lee KH, Lee S, Park Y, Kim JK, Lee SW, Pack CG. Mitotic Chromosomes in Live Cells Characterized Using High-Speed and Label-Free Optical Diffraction Tomography. Cells 2019; 8:cells8111368. [PMID: 31683735 PMCID: PMC6912651 DOI: 10.3390/cells8111368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
The cell nucleus is a three-dimensional, dynamic organelle organized into subnuclear compartments such as chromatin and nucleoli. The structure and function of these compartments are maintained by diffusion and interactions between related factors as well as by dynamic and structural changes. Recent studies using fluorescent microscopic techniques suggest that protein factors can access and are freely mobile in heterochromatin and in mitotic chromosomes, despite their densely packed structure. However, the physicochemical properties of the chromosome during cell division are not fully understood. In the present study, characteristic properties such as the refractive index (RI), volume of the mitotic chromosomes, and diffusion coefficient (D) of fluorescent probes inside the chromosome were quantified using an approach combining label-free optical diffraction tomography with complementary confocal laser-scanning microscopy and fluorescence correlation spectroscopy. Variations in these parameters correlated with osmotic conditions, suggesting that changes in RI are consistent with those of the diffusion coefficient for mitotic chromosomes and cytosol. Serial RI tomography images of chromosomes in live cells during mitosis were compared with three-dimensional confocal micrographs to demonstrate that compaction and decompaction of chromosomes induced by osmotic change were characterized by linked changes in chromosome RI, volume, and the mobilities of fluorescent proteins.
Collapse
Affiliation(s)
- Tae-Keun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Byong-Wook Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Fumihiko Fujii
- Division of Physical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan.
| | | | - Sanghwa Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - YongKeun Park
- Tomocube Inc., Daejeon 34051, Korea.
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Jun Ki Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Sang-Wook Lee
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
23
|
Min J, Yao B, Trendafilova V, Ketelhut S, Kastl L, Greve B, Kemper B. Quantitative phase imaging of cells in a flow cytometry arrangement utilizing Michelson interferometer-based off-axis digital holographic microscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900085. [PMID: 31169960 DOI: 10.1002/jbio.201900085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 05/23/2023]
Abstract
We combined Michelson-interferometer-based off-axis digital holographic microscopy (DHM) with a common flow cytometry (FCM) arrangement. Utilizing object recognition procedures and holographic autofocusing during the numerical reconstruction of the acquired off-axis holograms, sharply focused quantitative phase images of suspended cells in flow were retrieved without labeling, from which biophysical cellular features of distinct cells, such as cell radius, refractive index and dry mass, can be subsequently retrieved in an automated manner. The performance of the proposed concept was first characterized by investigations on microspheres that were utilized as test standards. Then, we analyzed two types of pancreatic tumor cells with different morphology to further verify the applicability of the proposed method for quantitative live cell imaging. The retrieved biophysical datasets from cells in flow are found in good agreement with results from comparative investigations with previously developed DHM methods under static conditions, which demonstrates the effectiveness and reliability of our approach. Our results contribute to the establishment of DHM in imaging FCM and prospect to broaden the application spectrum of FCM by providing complementary quantitative imaging as well as additional biophysical cell parameters which are not accessible in current high-throughput FCM measurements.
Collapse
Affiliation(s)
- Junwei Min
- Biomedical Technology Center, University of Muenster, Muenster, Germany
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China
| | | | - Steffi Ketelhut
- Biomedical Technology Center, University of Muenster, Muenster, Germany
| | - Lena Kastl
- Biomedical Technology Center, University of Muenster, Muenster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology-, University Hospital Muenster, Muenster, Germany
| | - Björn Kemper
- Biomedical Technology Center, University of Muenster, Muenster, Germany
| |
Collapse
|
24
|
Kim TK, Lee BW, Fujii F, Kim JK, Pack CG. Physicochemical Properties of Nucleoli in Live Cells Analyzed by Label-Free Optical Diffraction Tomography. Cells 2019; 8:cells8070699. [PMID: 31295945 PMCID: PMC6679011 DOI: 10.3390/cells8070699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
The cell nucleus is three-dimensionally and dynamically organized by nuclear components with high molecular density, such as chromatin and nuclear bodies. The structure and functions of these components are represented by the diffusion and interaction of related factors. Recent studies suggest that the nucleolus can be assessed using various protein probes, as the probes are highly mobile in this organelle, although it is known that they have a densely packed structure. However, physicochemical properties of the nucleolus itself, such as molecular density and volume when cellular conditions are changed, are not yet fully understood. In this study, physical parameters such as the refractive index (RI) and volume of the nucleoli in addition to the diffusion coefficient (D) of fluorescent probe protein inside the nucleolus are quantified and compared by combining label-free optical diffraction tomography (ODT) with confocal laser scanning microscopy (CLSM)-based fluorescence correlation spectroscopy (FCS). 3D evaluation of RI values and corresponding RI images of nucleoli in live HeLa cells successfully demonstrated varying various physiological conditions. Our complimentary method suggests that physical property of the nucleolus in live cell is sensitive to ATP depletion and transcriptional inhibition, while it is insensitive to hyper osmotic pressure when compared with the cytoplasm and nucleoplasm. The result demonstrates that the nucleolus has unique physicochemical properties when compared with other cellular components.
Collapse
Affiliation(s)
- Tae-Keun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Byong-Wook Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Fumihiko Fujii
- Division of Physical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Jun Ki Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
25
|
Sun T, Zhuo Z, Zhang W, Lu P, Lu J. Quantitative phase imaging based on simple Michelson-type lateral shearing interferometry with rotational right-angle prisms. APPLIED OPTICS 2019; 58:3459-3466. [PMID: 31044843 DOI: 10.1364/ao.58.003459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
By using a kind of simple Michelson-type lateral shearing interferometry, in this paper, the precise quantitative phase measurement of transparent microscopic objects is realized successfully. For this interferometry, on the basis of the fundamental structure of the traditional Michelson interferometer, the two plane mirrors are replaced with two ordinary right-angle prisms. In the beginning, the ridges of the two right-angle prisms are set to align with the optical axis and be in the vertical direction. Subsequently, to achieve the lateral shear, one of these two right-angle prisms is rotated around its ridge. Furthermore, the goal to obtain more lateral shear can be achieved by introducing a bigger rotating angle or rotating another prism simultaneously. In addition, owing to the simple structure of the Michelson interferometer and the inexpensive optical components used, the system is compact, portable, easy to operate, and low cost. The experimental results show the practicability of this system.
Collapse
|
26
|
Picazo-Bueno JA, Trusiak M, Micó V. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube. OPTICS EXPRESS 2019; 27:5655-5669. [PMID: 30876163 DOI: 10.1364/oe.27.005655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 05/21/2023]
Abstract
Slightly off-axis digital holographic microscopy (SO-DHM) has recently emerged as a novel experimental arrangement for quantitative phase imaging (QPI). It offers improved capabilities in conventional on-axis and off-axis interferometric configurations. In this contribution, we report on a single-shot SO-DHM approach based on an add-on module adapted to the exit port of a regular microscope. The module employs a beamsplitter (BS) cube interferometer and includes, in addition, a Stokes lens (SL) for astigmatism compensation. Each recorded frame contains two fields of view (FOVs) of the sample, where each FOV is a hologram which is phase shifted by π rads with respect to the other. These two simultaneously recorded holograms are numerically processed, in order to retrieve complex amplitude distribution with enhanced quality. The tradeoff is done in the FOV which becomes penalized as a consequence of the simultaneous recording of the two holograms in a single snapshot. Experimental validation is presented for a wide variety of samples using a regular Olympus BX-60 upright microscope. The proposed approach provides an optimized use of the imaging system, in terms of the space-bandwidth product, in comparison with off-axis configuration; allows the analysis of fast-dynamic events, owing to its single-shot capability when compared with on-axis arrangement; and becomes easily implementable in conventional white-light microscopes for upgrading them into holographic microscopes for QPI.
Collapse
|
27
|
Moon I, Jaferzadeh K, Ahmadzadeh E, Javidi B. Automated quantitative analysis of multiple cardiomyocytes at the single-cell level with three-dimensional holographic imaging informatics. JOURNAL OF BIOPHOTONICS 2018; 11:e201800116. [PMID: 30027630 DOI: 10.1002/jbio.201800116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/18/2018] [Indexed: 05/21/2023]
Abstract
Cardiomyocytes derived from human pluripotent stem cells are a promising tool for disease modeling, drug compound testing, and cardiac toxicity screening. Bio-image segmentation is a prerequisite step in cardiomyocyte image analysis by digital holography (DH) in microscopic configuration and has provided satisfactory results. In this study, we quantified multiple cardiac cells from segmented 3-dimensional DH images at the single-cell level and measured multiple parameters describing the beating profile of each individual cell. The beating profile is extracted by monitoring dry-mass distribution during the mechanical contraction-relaxation activity caused by cardiac action potential. We present a robust two-step segmentation method for cardiomyocyte low-contrast image segmentation based on region and edge information. The segmented single-cell contains mostly the nucleus of the cell since it is the best part of the cardiac cell, which can be perfectly segmented. Clustering accuracy was assessed by a silhouette index evaluation for k-means clustering and the Dice similarity coefficient (DSC) of the final segmented image. 3D representation of single of cardiomyocytes. The cell contains mostly the nucleus section and a small area of cytoplasm.
Collapse
Affiliation(s)
- Inkyu Moon
- Department of Robotics Engineering, DGIST, Daegu, South Korea
| | | | - Ezat Ahmadzadeh
- Department of Computer Engineering, Chosun University, Gwangju, South Korea
| | - Bahram Javidi
- Department of Electrical and Computer Engineering, U-2157, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
28
|
Berto P, Guillon M, Bon P. Wrapping-free numerical refocusing of scalar electromagnetic fields. APPLIED OPTICS 2018; 57:6582-6586. [PMID: 30117899 DOI: 10.1364/ao.57.006582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Numerical refocusing in any plane is one powerful feature granted by measuring both the amplitude and the phase of a coherent light beam. Here, we introduce a method based on the first Rytov approximation of scalar electromagnetic fields that (i) allows numerical propagation without requiring phase unwrapping after propagation and (ii) limits the effect of artificial phase singularities that appear upon numerical defocusing when the measurement noise is mixing with the signal. We demonstrate the feasibility of this method with both scalar electromagnetic field simulations and real acquisitions of microscopic biological samples imaged at high numerical aperture.
Collapse
|
29
|
Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Patel N, Trivedi V, Mahajan S, Chhaniwal V, Fournier C, Lee S, Javidi B, Anand A. Wavefront division digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:2779-2784. [PMID: 30258690 PMCID: PMC6154202 DOI: 10.1364/boe.9.002779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 05/29/2023]
Abstract
Digital holographic microscopy is the state of the art quantitative phase imaging of micro-objects including living cells. It is an ideal tool to image and quantify cell thickness profiles with nanometer thickness resolution. Digital holographic techniques usually are implemented using a two-beam setup that may be bulky and may not be field portable. Self-referencing techniques provide compact geometry but suffer from a reduction of the field of view. Here, we discuss the development of a wavefront division digital holographic microscope providing the full field of view with a compact system. The proposed approach uses a wavefront division module consisting of two lenses. The developed microscope is tested experimentally by measuring the physical and mechanical properties of red blood cells.
Collapse
Affiliation(s)
- Nimit Patel
- Optics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
| | - Vismay Trivedi
- Optics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
| | - Swapnil Mahajan
- Optics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
| | - Vani Chhaniwal
- Optics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
| | - Corinne Fournier
- Laboratoire Hubert Curien, UMR 5516, CNRS, Université Jean Monnet, 18 rue du Professeur Benoît Lauras, F-42000 Saint-Etienne, France
| | - Seonoh Lee
- HICS Company Inc., 6F, 39, Banpo-daero 14-gil, Seocho-gu, Seoul 06652, South Korea
| | - Bahram Javidi
- Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, CT 06269-4157, USA
| | - Arun Anand
- Optics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
| |
Collapse
|
31
|
Picazo-Bueno JÁ, Trusiak M, García J, Patorski K, Micó V. Hilbert-Huang single-shot spatially multiplexed interferometric microscopy. OPTICS LETTERS 2018; 43:1007-1010. [PMID: 29489765 DOI: 10.1364/ol.43.001007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/18/2018] [Indexed: 05/21/2023]
Abstract
Hilbert-Huang single-shot spatially multiplexed interferometric microscopy (H2S2MIM) is presented as the implementation of a robust, fast, and accurate single-shot phase estimation algorithm with an extremely simple, low-cost, and highly stable way to convert a bright field microscope into a holographic one using partially coherent illumination. Altogether, H2S2MIM adds high-speed (video frame rate) quantitative phase imaging capability to a commercially available nonholographic microscope with improved phase reconstruction (coherence noise reduction). The technique has been validated using a 20×/0.46 NA objective in a regular Olympus BX-60 upright microscope for static, as well as dynamic, samples showing perfect agreement with the results retrieved from a temporal phase-shifting algorithm.
Collapse
|
32
|
Picazo-Bueno JÁ, Cojoc D, Iseppon F, Torre V, Micó V. Single-shot, dual-mode, water-immersion microscopy platform for biological applications. APPLIED OPTICS 2018; 57:A242-A249. [PMID: 29328152 DOI: 10.1364/ao.57.00a242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
A single-shot water-immersion digital holographic microscope combined with broadband (white light) illumination mode is presented. This double imaging platform allows conventional incoherent visualization with phase holographic imaging of inspected samples. The holographic architecture is implemented at the image space (that is, after passing the microscope lens), thus reducing the sensitivity of the system to vibrations and/or thermal changes in comparison to regular interferometers. Because of the off-axis holographic recording principle, quantitative phase images of live biosamples can be recorded in a single camera snapshot at full-field geometry without any moving parts. And, the use of water-immersion imaging lenses maximizes the achievable resolution limit. This dual-mode microscope platform is first calibrated using microbeads, then applied to the characterization of fixed cells (neuroblastoma, breast cancer, and hippocampal neuronal cells) and, finally, validated for visualization of dynamic living cells (hippocampal neurons).
Collapse
|
33
|
Vora P, Trivedi V, Mahajan S, Patel N, Joglekar M, Chhaniwal V, Moradi AR, Javidi B, Anand A. Wide field of view common-path lateral-shearing digital holographic interference microscope. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-11. [PMID: 29235271 DOI: 10.1117/1.jbo.22.12.126001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/16/2017] [Indexed: 05/12/2023]
Abstract
Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.
Collapse
Affiliation(s)
- Priyanka Vora
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
- Uka Tarsadia University, Department of Physics, Bardoli, Gujarat, India
| | - Vismay Trivedi
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Swapnil Mahajan
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Nimit Patel
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Mugdha Joglekar
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Vani Chhaniwal
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| | - Ali-Reza Moradi
- Institute for Research in Fundamental Sciences, School of Nano Science, Tehran, Iran
- Institute for Advanced Studies in Basic Sciences, Optics Research Center, Zanjan, Iran
| | - Bahram Javidi
- University of Connecticut, Department of Electrical and Computer Engineering, Storrs, Connecticut, United States
| | - Arun Anand
- The Maharaja Sayajirao University of Baroda, Faculty of Technology and Engineering, Department of Ap, India
| |
Collapse
|
34
|
Liu L, Shan M, Zhong Z, Liu B, Luan G, Diao M, Zhang Y. Simultaneous dual-wavelength off-axis flipping digital holography. OPTICS LETTERS 2017; 42:4331-4334. [PMID: 29088156 DOI: 10.1364/ol.42.004331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
We develop a two-wavelength off-axis digital holography for quantitative phase imaging using flipping in a single interferogram shot. The interference is performed by flipping the relative position of a sample and reference beam, and the two-wavelength information is spatially multiplexed onto a monochromatic charge-coupled device camera simultaneously using polarization modulation. Due to the interferogram containing two-wavelength information with orthogonal interference fringes, the two-wavelength unwrapped information on the phase and thickness for the sample is extracted from a single shot. Our setup requires no pinholes, gratings, or dichroic mirrors with straightforward alignment. We demonstrate the operation of the setup with a step target and circular pillar.
Collapse
|
35
|
Rostykus M, Moser C. Compact lensless off-axis transmission digital holographic microscope. OPTICS EXPRESS 2017; 25:16652-16659. [PMID: 28789166 DOI: 10.1364/oe.25.016652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Current compact lensless holographic microscopes are based on either multiple angle in-line holograms, multiple wavelength illumination or a combination thereof. Complex computational algorithms are necessary to retrieve the phase image which slows down the visualization of the image. Here we propose a simple compact lensless transmission holographic microscope with an off-axis configuration which simplifies considerably the computational processing to visualize the phase images and opens the possibility of real time phase imaging using off the shelf smart phone processors and less than $3 worth of optics and detectors, suitable for broad educational dissemination. This is achieved using a side illumination and analog hologram gratings to shape the reference and signal illumination beams from one light source. We demonstrate experimentally imaging of cells with a field of view (FOV) of ~12mm2, and a resolution of ~3.9μm.
Collapse
|
36
|
Ma C, Li Y, Zhang J, Li P, Xi T, Di J, Zhao J. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer. OPTICS EXPRESS 2017; 25:13659-13667. [PMID: 28788908 DOI: 10.1364/oe.25.013659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We propose a compact and easy-to-align lateral shearing common-path digital holographic microscopy, which is based on a slightly trapezoid Sagnac interferometer to create two laterally sheared beams and form off-axis geometry. In this interferometer, the two beams pass through a set of identical optical elements in opposite directions and have nearly the same optical path difference. Without any vibration isolation, the temporal stability of the setup is found to be around 0.011 rad. Compared with highly simple lateral shearing interferometer, the off-axis angle of the setup can be easily adjusted and quantitatively controlled, meanwhile the image quality is not degraded. The experiments for measuring the static and dynamic specimens are performed to demonstrate the capability and applicability.
Collapse
|
37
|
Merola F, Barroso Á, Miccio L, Memmolo P, Mugnano M, Ferraro P, Denz C. Biolens behavior of RBCs under optically-induced mechanical stress. Cytometry A 2017; 91:527-533. [DOI: 10.1002/cyto.a.23085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Francesco Merola
- Istituto di Scienze Applicate e Sistemi Intelligenti del CNR (ISASI-CNR); Via Campi Flegrei 34 Pozzuoli 80078 Italy
| | - Álvaro Barroso
- Institute of Applied Physics, University of Muenster; Corrensstrasse 2-4 Muenster 48149 Germany
| | - Lisa Miccio
- Istituto di Scienze Applicate e Sistemi Intelligenti del CNR (ISASI-CNR); Via Campi Flegrei 34 Pozzuoli 80078 Italy
| | - Pasquale Memmolo
- Istituto di Scienze Applicate e Sistemi Intelligenti del CNR (ISASI-CNR); Via Campi Flegrei 34 Pozzuoli 80078 Italy
| | - Martina Mugnano
- Istituto di Scienze Applicate e Sistemi Intelligenti del CNR (ISASI-CNR); Via Campi Flegrei 34 Pozzuoli 80078 Italy
| | - Pietro Ferraro
- Istituto di Scienze Applicate e Sistemi Intelligenti del CNR (ISASI-CNR); Via Campi Flegrei 34 Pozzuoli 80078 Italy
| | - Cornelia Denz
- Institute of Applied Physics, University of Muenster; Corrensstrasse 2-4 Muenster 48149 Germany
| |
Collapse
|
38
|
Kastl L, Isbach M, Dirksen D, Schnekenburger J, Kemper B. Quantitative phase imaging for cell culture quality control. Cytometry A 2017; 91:470-481. [PMID: 28264140 DOI: 10.1002/cyto.a.23082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
The potential of quantitative phase imaging (QPI) with digital holographic microscopy (DHM) for quantification of cell culture quality was explored. Label-free QPI of detached single cells in suspension was performed by Michelson interferometer-based self-interference DHM. Two pancreatic tumor cell lines were chosen as cellular model and analyzed for refractive index, volume, and dry mass under varying culture conditions. Firstly, adequate cell numbers for reliable statistics were identified. Then, to characterize the performance and reproducibility of the method, we compared results from independently repeated measurements and quantified the cellular response to osmolality changes of the cell culture medium. Finally, it was demonstrated that the evaluation of QPI images allows the extraction of absolute cell parameters which are related to cell layer confluence states. In summary, the results show that QPI enables label-free imaging cytometry, which provides novel complementary integral biophysical data sets for sophisticated quantification of cell culture quality with minimized sample preparation. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Lena Kastl
- Biomedical Technology Center, University of Muenster, Mendelstr. 17, Muenster, D-48149, Germany
| | - Michael Isbach
- Biomedical Technology Center, University of Muenster, Mendelstr. 17, Muenster, D-48149, Germany
| | - Dieter Dirksen
- Department of Prosthetic Dentistry and Biomaterials, University of Muenster, Waldeyerstraße 30, Muenster, D-48149, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center, University of Muenster, Mendelstr. 17, Muenster, D-48149, Germany
| | - Björn Kemper
- Biomedical Technology Center, University of Muenster, Mendelstr. 17, Muenster, D-48149, Germany
| |
Collapse
|
39
|
Picazo-Bueno JÁ, Zalevsky Z, García J, Micó V. Superresolved spatially multiplexed interferometric microscopy. OPTICS LETTERS 2017; 42:927-930. [PMID: 28248333 DOI: 10.1364/ol.42.000927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Superresolution capability by angular and time multiplexing is implemented onto a regular microscope. The technique, named superresolved spatially multiplexed interferometric microscopy (S2MIM), follows our previously reported SMIM technique [Opt. Express22, 14929 (2014)OPEXFF1094-408710.1364/OE.22.014929, J. Biomed. Opt.21, 106007 (2016)JBOPFO1083-366810.1117/1.JBO.21.10.106007] improved with superresolved imaging. All together, S2MIM updates a commercially available non-holographic microscope into a superresolved holographic one. Validation is presented for an Olympus BX-60 upright microscope with resolution test targets.
Collapse
|
40
|
Goto Y, Okamoto A, Wakayama Y, Ogawa K, Nozawa J, Tomita A, Tsuritani T. Reference-free holographic diversity interferometry via iterative measurements for high accuracy phase detection. OPTICS EXPRESS 2016; 24:24739-24749. [PMID: 27828194 DOI: 10.1364/oe.24.024739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To obtain a phase distribution without the use of an optical path besides an object beam, a reference-free holographic diversity interferometry (RF-HDI) has been proposed. Although the RF-HDI can generate an internal reference beam from the object beam, the method has a problem of measurement accuracy due to insufficient power of the internal reference beam. To solve the problem, we newly propose a RF-HDI via iterative measurements. Our method improves the measurement accuracy by utilizing iterative measurements and feedback of each obtained phase image to the measurement system. In the experiment, the phase image, which has a random pattern, can be measured as an object beam with a higher accuracy than in the conventional RF-HDI. To support this result, we also evaluated the wavefront accuracy and optical power efficiency of an internal reference beam in this method. As a result, we verified that our method enables us to generate an internal reference beam that has the wavefront of a near single plane wave and a higher power efficiency than the conventional RF-HDI. In addition, our method can be applied to measurement for the modal content in an optical fiber, atmosphere turbulence, etc., where it is difficult to prepare an external reference beam with a high coherency.
Collapse
|
41
|
Picazo-Bueno JÁ, Zalevsky Z, García J, Ferreira C, Micó V. Spatially multiplexed interferometric microscopy with partially coherent illumination. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:106007. [PMID: 27786343 DOI: 10.1117/1.jbo.21.10.106007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/06/2016] [Indexed: 05/21/2023]
Abstract
We have recently reported on a simple, low cost, and highly stable way to convert a standard microscope into a holographic one [Opt. Express 22, 14929 (2014)]. The method, named spatially multiplexed interferometric microscopy (SMIM), proposes an off-axis holographic architecture implemented onto a regular (nonholographic) microscope with minimum modifications: the use of coherent illumination and a properly placed and selected one-dimensional diffraction grating. In this contribution, we report on the implementation of partially (temporally reduced) coherent illumination in SMIM as a way to improve quantitative phase imaging. The use of low coherence sources forces the application of phase shifting algorithm instead of off-axis holographic recording to recover the sample’s phase information but improves phase reconstruction due to coherence noise reduction. In addition, a less restrictive field of view limitation (1/2) is implemented in comparison with our previously reported scheme (1/3). The proposed modification is experimentally validated in a regular Olympus BX-60 upright microscope considering a wide range of samples (resolution test, microbeads, swine sperm cells, red blood cells, and prostate cancer cells).
Collapse
Affiliation(s)
- José Ángel Picazo-Bueno
- Universitat de Valencia, Departamento de Óptica, C/Doctor Moliner 50, Burjassot 46100, Spain
| | - Zeev Zalevsky
- Bar-Ilan University, Faculty of Engineering, Ramat-Gan 52900, Israel
| | - Javier García
- Universitat de Valencia, Departamento de Óptica, C/Doctor Moliner 50, Burjassot 46100, Spain
| | - Carlos Ferreira
- Universitat de Valencia, Departamento de Óptica, C/Doctor Moliner 50, Burjassot 46100, Spain
| | - Vicente Micó
- Universitat de Valencia, Departamento de Óptica, C/Doctor Moliner 50, Burjassot 46100, Spain
| |
Collapse
|
42
|
Di J, Li Y, Xie M, Zhang J, Ma C, Xi T, Li E, Zhao J. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry. APPLIED OPTICS 2016; 55:7287-7293. [PMID: 27661364 DOI: 10.1364/ao.55.007287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A dual-wavelength common-path digital holographic microscopy based on a single parallel glass plate is presented to achieve quantitative phase imaging, which combines the dual-wavelength technique with lateral shearing interferometry. Two illumination laser beams with different wavelengths (λ1=532 nm and λ2=632.8 nm) are reflected by the front and back surfaces of the parallel glass plate to create the lateral shear and form the digital hologram, and then the hologram is reconstructed to obtain the phase distribution with a synthetic wavelength Λ=3339.8 nm. The experimental configuration is very compact, with the advantages of vibration resistance and measurement range extension. The experimental results of the laser-ablated pit, groove, and staircase specimens show the feasibility of the proposed configuration.
Collapse
|
43
|
Roitshtain D, Turko NA, Javidi B, Shaked NT. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel. OPTICS LETTERS 2016; 41:2354-7. [PMID: 27177001 DOI: 10.1364/ol.41.002354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.
Collapse
|
44
|
Baek Y, Lee K, Yoon J, Kim K, Park Y. White-light quantitative phase imaging unit. OPTICS EXPRESS 2016; 24:9308-15. [PMID: 27137546 DOI: 10.1364/oe.24.009308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduce the white-light quantitative phase imaging unit (WQPIU) as a practical realization of quantitative phase imaging (QPI) on standard microscope platforms. The WQPIU is a compact stand-alone unit which measures sample induced phase delay under white-light illumination. It does not require any modification of the microscope or additional accessories for its use. The principle of the WQPIU based on lateral shearing interferometry and phase shifting interferometry provides a cost-effective and user-friendly use of QPI. The validity and capacity of the presented method are demonstrated by measuring quantitative phase images of polystyrene beads, human red blood cells, HeLa cells and mouse white blood cells. With speckle-free imaging capability due to the use of white-light illumination, the WQPIU is expected to expand the scope of QPI in biological sciences as a powerful but simple imaging tool.
Collapse
|
45
|
Sarshar M, Lu T, Anvari B. Combined optical micromanipulation and interferometric topography (COMMIT). BIOMEDICAL OPTICS EXPRESS 2016; 7:1365-74. [PMID: 27446661 PMCID: PMC4929647 DOI: 10.1364/boe.7.001365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 05/13/2023]
Abstract
Optical tweezers have emerged as a prominent light-based tool for pico-Newton (pN) force microscopy in mechanobiological studies. However, the efficacy of optical tweezers are limited in applications where concurrent metrology of the nano-sized structures under interrogation is essential to the quantitative analysis of its mechanical properties and various mechanotransduction events. We have developed an all-optical platform delivering pN force resolution in parallel with nano-scale structural imaging of the biological sample by combining optical tweezers with interferometric quantitative phase microscopy. These capabilities allow real-time micromanipulation and label-free measurement of sample's nanostructures and nanomechanical responses, opening avenues to a wide range of new research possibilities and applications in biology.
Collapse
|
46
|
Fusco S, Memmolo P, Miccio L, Merola F, Mugnano M, Paciello A, Ferraro P, Netti PA. Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation. RSC Adv 2016. [DOI: 10.1039/c5ra26305k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cells are suspended and stretched using two microbeads. The formation of inner cytoskeleton structures is reported using displacement, QPM phase change and fluorescent micrographs.
Collapse
Affiliation(s)
- Sabato Fusco
- Istituto Italiano di Tecnologia
- IIT@CRIB
- Napoli 80125
- Italy
| | - Pasquale Memmolo
- Istituto Italiano di Tecnologia
- IIT@CRIB
- Napoli 80125
- Italy
- CNR – Istituto di Scienze Applicate e Sistemi Intelligenti
| | - Lisa Miccio
- CNR – Istituto di Scienze Applicate e Sistemi Intelligenti
- Pozzuoli
- Italy
| | - Francesco Merola
- CNR – Istituto di Scienze Applicate e Sistemi Intelligenti
- Pozzuoli
- Italy
| | - Martina Mugnano
- CNR – Istituto di Scienze Applicate e Sistemi Intelligenti
- Pozzuoli
- Italy
| | | | - Pietro Ferraro
- CNR – Istituto di Scienze Applicate e Sistemi Intelligenti
- Pozzuoli
- Italy
| | - Paolo A. Netti
- Istituto Italiano di Tecnologia
- IIT@CRIB
- Napoli 80125
- Italy
- DCMIPE
| |
Collapse
|
47
|
Antonopoulos GC, Steltner B, Heisterkamp A, Ripken T, Meyer H. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework. PLoS One 2015; 10:e0143186. [PMID: 26599984 PMCID: PMC4657957 DOI: 10.1371/journal.pone.0143186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/01/2015] [Indexed: 11/21/2022] Open
Abstract
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.
Collapse
Affiliation(s)
| | - Benjamin Steltner
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hanover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz Universität Hannover, Hanover, Germany
| | - Tammo Ripken
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hanover, Germany
| | - Heiko Meyer
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hanover, Germany
| |
Collapse
|
48
|
Characterization Method for 3D Substructure of Nuclear Cell Based on Orthogonal Phase Images. BIOMED RESEARCH INTERNATIONAL 2015; 2015:917640. [PMID: 26355740 PMCID: PMC4555359 DOI: 10.1155/2015/917640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022]
Abstract
A set of optical models associated with blood cells are introduced in this paper. All of these models are made up of different parts possessing symmetries. The wrapped phase images as well as the unwrapped ones from two orthogonal directions related to some of these models are obtained by simulation technique. Because the phase mutation occurs on the boundary between nucleus and cytoplasm as well as on the boundary between cytoplasm and environment medium, the equation of inflexion curve is introduced to describe the size, morphology, and substructure of the nuclear cell based on the analysis of the phase features of the model. Furthermore, a mononuclear cell model is discussed as an example to verify this method. The simulation result shows that characterization with inflexion curve based on orthogonal phase images could describe the substructure of the cells availably, which may provide a new way to identify the typical biological cells quickly without scanning.
Collapse
|
49
|
Turko NA, Barnea I, Blum O, Korenstein R, Shaked NT. Detection and controlled depletion of cancer cells using photothermal phase microscopy. JOURNAL OF BIOPHOTONICS 2015; 8:755-763. [PMID: 25400214 DOI: 10.1002/jbio.201400095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/17/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
We present a dual-modality technique based on wide-field photothermal (PT) interferometric phase imaging and simultaneous PT ablation to selectively deplete specific cell populations labelled by plasmonic nanoparticles. This combined technique utilizes the plasmonic reaction of gold nanoparticles under optical excitation to produce PT imaging contrast by inducing local phase changes when the excitation power is weak, or ablation of selected cells when increasing the excitation power. Controlling the entire process is carried out by dynamic quantitative phase imaging of all cells (labelled and unlabelled). We demonstrate our ability to detect and specifically ablate in vitro cancer cells over-expressing epidermal growth factor receptors (EGFRs), labelled with plasmonic nanoparticles, in the presence of either EGFR under-expressing cancer cells or white blood cells. The latter demonstration establishes an initial model for depletion of circulating tumour cells in blood. The proposed system is able to image in wide field the label-free quantitative phase profile together with the PT phase profile of the sample, and provides the ability of both detection and selective cell ablation in a controlled environment. Quantitative phase imaging with molecular specificity and specific cell depletion. (a) Label-free quantitative phase profiles of mixed population of EGFR(+) /EGFR(-) cancer cells. (b) When weak modulated PT excitation is applied, selective phase contrast is generated in the modulation frequency only for the EGFR(+) cancer cells labelled with plasmonic nanoparticles. (c) When stronger modulated PT excitation is applied, selective ablation of the EGFR(+) cancer cells labelled with plasmonic nanoparticles occurs. White scalebars represent 10 µm upon sample.
Collapse
Affiliation(s)
- Nir Abraham Turko
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Itay Barnea
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omry Blum
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Rafi Korenstein
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natan Tzvi Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
50
|
Mahajan S, Trivedi V, Vora P, Chhaniwal V, Javidi B, Anand A. Highly stable digital holographic microscope using Sagnac interferometer. OPTICS LETTERS 2015; 40:3743-3746. [PMID: 26274649 DOI: 10.1364/ol.40.003743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Interferometric microscopy has grown into a very potent tool for quantitative phase imaging of biological samples. Among the interfermetric methods, microscopy by digital holography is one of the most effective techniques, especially for studying dynamics of cells. Imaging of cell fluctuations requires digital holographic setups with high temporal stability. Common path setups in which the object and the reference beams encounter the same set of optical elements provide better temporal stability compared to two-beam setups. Here, we present a compact, easy-to-implement, common path digital holographic microscope based on Sagnac interferometer geometry. The microscope is implemented using a diode laser module employing a CCD array or a webcam sensor to record holograms. The system was tested for three-dimensional imaging capability, numerical focusing ability, and temporal stability. Sub-nanometer temporal stability without external vibration isolation components was obtained in both cases. The higher temporal stability makes the microscope compatible to image cell fluctuations, which is demonstrated by imaging the oscillation of the cell membrane of human red blood cells.
Collapse
|