1
|
Timimi ZA. The impact of 980nm diode laser irradiation on the proliferation of mesenchymal stem cells derived from the umbilical cord's. Tissue Cell 2024; 91:102568. [PMID: 39303440 DOI: 10.1016/j.tice.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Various cell types can have their growth accelerated by using low-intensity laser radiation. The study is intended to look at the impacts of laser radiation at low energy intensity on the ability of mesenchymal stem cells (MSCs) generated from umbilical cords to proliferate as well as survive in low-nutrient conditions. The study applied two different energy densities, 2.5 j/cm2 and 5 j/cm2, using a 980 nm diode laser radiation. This allowed for the observation of the effects of these specific elements on the behavior of the cells in a controlled environment at various concentrations of fetal bovine (7.5 %, 10 %, 12.5 %, and 15 %). The cells were grown in a medium lacking in nutrients and were enriched with varying quantities of serum from fetal bovines. The MTT test was used to evaluate the mitochondrial activity of the cell. Following 72 hours, it was shown that cells treated with 2.5 j/cm2 and 10 % fetal bovine serum had significantly higher MTT test activity than cells treated with 5 j/cm2.The results of this study show that even in the presence of dietary deficiencies, low-intensity laser radiation therapy can stimulate the growth of mesenchymal stem cells isolated from umbilical cords.
Collapse
Affiliation(s)
- Zahra Al Timimi
- Laser Physics Department, College of Science for Women, University of Babylon, Hillah, Iraq.
| |
Collapse
|
2
|
de Araújo PPB, Martinez EF, Garcez AS, de Castro Raucci LMS, Soares AB, de Araújo VC, Teixeira LN. Effects of photobiomodulation on different phases of in vitro osteogenesis. Photochem Photobiol Sci 2024; 23:1565-1571. [PMID: 39060841 DOI: 10.1007/s43630-024-00616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The present study aimed to evaluate the effect of photobiomodulation therapy (PBM) on different stages of osteogenesis in vitro. For this, osteoblastic-like cells (Saos-2 cell lineage) were irradiated in two different periods: during the Proliferation phase (PP; from the second to the fourth day) and during the Differentiation phase (DP; from the seventh to the ninth day). The energy density used in the study was 1.5 J/ cm2. The following parameters were evaluated: 1) quantification of collagen type 1 (COL 1), osteopontin (OPN), and bone morphogenetic protein 2 (BMP-2); 2) quantification of alkaline phosphatase (ALP) activity; and 3) quantification of extracellular matrix (ECM) mineralization. Non-irradiated cultures were used as controls. The data were analyzed using the Student's t-test or one-way ANOVA, considering a significance level of 5%. The results indicated that COL 1 and BMP-2 quantification was higher in Saos-2 irradiated during the DP in relation to the control group at day 10 (p < 0.05). No differences were observed for other comparisons at this time point (p > 0.05). OPN expression was greater in PP compared with the other experimental groups at day 10 (p < 0.05). Irradiation did not affect ALP activity in Saos-2 regardless of the exposure phase and the time point evaluated (p > 0.05). At day 14, ECM mineralization was higher in Saos-2 cultures irradiated during the DP in relation to the PP (p < 0.05). In conclusion, the results suggested that the effects of PBM on osteoblastic cells may be influenced by the stage of cell differentiation.
Collapse
Affiliation(s)
| | - Elizabeth Ferreira Martinez
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Aguinaldo Silva Garcez
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | | | - Andresa Borges Soares
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Vera Cavalcanti de Araújo
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Lucas Novaes Teixeira
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil.
| |
Collapse
|
3
|
Nakatani A, Kunimatsu R, Sakata S, Tsuka Y, Miyauchi M, Takata T, Tanimoto K. High-frequency low-intensity semiconductor laser irradiation enhances osteogenic differentiation of human cementoblast lineage cells. Lasers Med Sci 2024; 39:174. [PMID: 38969931 PMCID: PMC11226468 DOI: 10.1007/s10103-024-04127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE Laser irradiation activates a range of cellular processes in the periodontal components and promotes tissue repair. However, its effect on osteogenic differentiation of human cementoblast lineage cells remains unclear. This study aimed to examine the effects of high-frequency semiconductor laser irradiation on the osteogenic differentiation of human cementoblast lineage (HCEM) cells. METHODS HCEM cells were cultured to reach 80% confluence and irradiated with a gallium-aluminum-arsenide (Ga-Al-As) semiconductor laser with a pulse width of 200 ns and wavelength of 910 at a dose of 0-2.0 J/cm2. The outcomes were assessed by analyzing the mRNA levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and type I collagen (COLL1) using real-time polymerase chain reaction (PCR) analysis 24 h after laser irradiation. Cell mineralization was evaluated using ALP activity, calcium deposition, and Alizarin Red staining. RESULTS The laser-irradiated HCEM cells showed significantly enhanced gene expression levels of ALP, RUNX2, and COLL1 as well as ALP activity and calcium concentration in the culture medium compared with the non-irradiated cells. In addition, enhanced calcification deposits were confirmed in the laser-irradiated group compared with the non-irradiated group at 21 and 28 days after the induction of osteogenic differentiation. CONCLUSION High-frequency semiconductor laser irradiation enhances the osteogenic differentiation potential of cultured HCEM cells, underscoring its potential utility for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ayaka Nakatani
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Shuzo Sakata
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Shunan University, Shunan City, Shunan, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
The Effects of Photobiomodulation on Bone Defect Repairing in a Diabetic Rat Model. Int J Mol Sci 2021; 22:ijms222011026. [PMID: 34681687 PMCID: PMC8541159 DOI: 10.3390/ijms222011026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to examine the prospective therapeutic effects of photobiomodulation on the healing of bone defects in diabetic mellitus (DM) using rat models to provide basic knowledge of photobiomodulation therapy (PBMT) during bone defect repair. For in vitro study, an Alizzarin red stain assay was used to evaluate the effect of PBMT on osteogenic differentiation. For in vivo study, micro-computed tomography (microCT) scan, H&E and IHC stain analysis were used to investigate the effect of PBMT on the healing of the experimental calvarial defect (3 mm in diameter) of a diabetic rat model. For in vitro study, the high glucose groups showed lower osteogenic differentiation in both irradiated and non-irradiated with PBMT when compared to the control groups. With the PBMT, all groups (control, osmotic control and high glucose) showed higher osteogenic differentiation when compared to the non-irradiated groups. For in vivo study, the hyperglycemic group showed significantly lower bone regeneration when compared to the control group. With the PBMT, the volume of bone regeneration was increasing and back to the similar level of the control group. The treatment of PBMT in 660 nm could improve the bone defect healing on a diabetic rat calvarial defect model.
Collapse
|
5
|
Pinto H, Goñi Oliver P, Sánchez-Vizcaíno Mengual E. The Effect of Photobiomodulation on Human Mesenchymal Cells: A Literature Review. Aesthetic Plast Surg 2021; 45:1826-1842. [PMID: 33616715 DOI: 10.1007/s00266-021-02173-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/03/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stem cell-based therapy is known to have the potential to induce angiogenesis. However, there are still some limitations regarding their clinical application. Photomodulation/photobiomodulation is non-invasive and non-toxic phototherapy able to stimulate cell viability, proliferation, differentiation, and migration, when the right irradiation parameters are applied. A review of the published articles on human conditioned-by-photobiomodulation mesenchymal cells in an in vitro set up was carried out. Our aim was to describe the studies' results and identify any possible tendency that might highlight the most suitable procedures. METHODS A search in English of the PubMed database was carried out with the search criteria: photobiomodulation or photoactivation or photomodulation, and mesenchymal cells. All irradiations applied in vitro, on human mesenchymal cells, with wavelengths ranged from 600 to 1000 nm. RESULTS The search yielded 42 original articles and five reviews. Finally, 37 articles were selected with a total of 43 procedures. Three procedures (7.0%) from 620 to 625 nm; 26 procedures (60.5%) from 625 to 740 nm; 13 procedures (30.2%) from 740 to 1000 nm; and one procedure (2.3%) with combinations of wavelengths. Of the 43 procedures, 14 assessed cell viability (n = 14/43, 32.6%); 34 cell proliferation (n = 34/43, 79.1%); 19 cell differentiation (n = 19/43, 44.2%); and three cell migration (n = 3/43, 7.0%). CONCLUSIONS Photobiomodulation is a promising technology that can impact on cell viability, differentiation, proliferation, or migration, leading to enhance its regenerative capacity. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Hernán Pinto
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Barcelona, Spain
| | - Paloma Goñi Oliver
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Barcelona, Spain
| | | |
Collapse
|
6
|
Agas D, Hanna R, Benedicenti S, De Angelis N, Sabbieti MG, Amaroli A. Photobiomodulation by Near-Infrared 980-nm Wavelengths Regulates Pre-Osteoblast Proliferation and Viability through the PI3K/Akt/Bcl-2 Pathway. Int J Mol Sci 2021; 22:ijms22147586. [PMID: 34299204 PMCID: PMC8304212 DOI: 10.3390/ijms22147586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND bone tissue regeneration remains a current challenge. A growing body of evidence shows that mitochondrial dysfunction impairs osteogenesis and that this organelle may be the target for new therapeutic options. Current literature illustrates that red and near-infrared light can affect the key cellular pathways of all life forms through interactions with photoacceptors within the cells' mitochondria. The current study aims to provide an understanding of the mechanisms by which photobiomodulation (PBM) by 900-nm wavelengths can induce in vitro molecular changes in pre-osteoblasts. METHODS The PubMed, Scopus, Cochrane, and Scholar databases were used. The manuscripts included in the narrative review were selected according to inclusion and exclusion criteria. The new experimental set-up was based on irradiation with a 980-nm laser and a hand-piece with a standard Gaussian and flat-top beam profile. MC3T3-E1 pre-osteoblasts were irradiated at 0.75, 0.45, and 0.20 W in continuous-wave emission mode for 60 s (spot-size 1 cm2) and allowed to generate a power density of 0.75, 0.45, and 0.20 W/cm2 and a fluence of 45, 27, and 12 J/cm2, respectively. The frequency of irradiation was once, three times (alternate days), or five times (every day) per week for two consecutive weeks. Differentiation, proliferation, and cell viability and their markers were investigated by immunoblotting, immunolabelling, fluorescein-FragELTM-DNA, Hoechst staining, and metabolic activity assays. RESULTS AND CONCLUSIONS The 980-nm wavelength can photobiomodulate the pre-osteoblasts, regulating their metabolic schedule. The cellular signal activated by 45 J/cm2, 0.75 W and 0.75 W/cm2 consist of the PI3K/Akt/Bcl-2 pathway; differentiation markers were not affected, nor do other parameters seem to stimulate the cells. Our previous and present data consistently support the window effect of 980 nm, which has also been described in extracted mitochondria, through activation of signalling PI3K/Akt/Bcl-2 and cyclin family, while the Wnt and Smads 2/3-β-catenin pathway was induced by 55 J/cm2, 0.9 W and 0.9 W/cm2.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032 Macerata, Italy; (D.A.); (M.G.S.)
| | - Reem Hanna
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK;
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Nicola De Angelis
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032 Macerata, Italy; (D.A.); (M.G.S.)
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
- Department of Orthopaedic Dentistry, First Moscow State Medical University (Sechenov University), 11991 Moscow, Russia
- Correspondence:
| |
Collapse
|
7
|
Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr Stem Cell Res Ther 2021; 15:400-413. [PMID: 32013851 DOI: 10.2174/1574888x15666200204123722] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stem cells have attracted the researchers interest, due to their applications in regenerative medicine. Their self-renewal capacity for multipotent differentiation, and immunomodulatory properties make them unique to significantly contribute to tissue repair and regeneration applications. Recently, stem cells have shown increased proliferation when irradiated with low-level laser therapy or Photobiomodulation Therapy (PBMT), which induces the activation of intracellular and extracellular chromophores and the initiation of cellular signaling. The purpose of this study was to evaluate this phenomenon in the literature. METHODS The literature investigated the articles written in English in four electronic databases of PubMed, Scopus, Google Scholar and Cochrane up to April 2019. Stem cell was searched by combining the search keyword of "low-level laser therapy" OR "low power laser therapy" OR "low-intensity laser therapy" OR "photobiomodulation therapy" OR "photo biostimulation therapy" OR "LED". In total, 46 articles were eligible for evaluation. RESULTS Studies demonstrated that red to near-infrared light is absorbed by the mitochondrial respiratory chain. Mitochondria are significant sources of reactive oxygen species (ROS). Mitochondria play an important role in metabolism, energy generation, and are also involved in mediating the effects induced by PBMT. PBMT may result in the increased production of (ROS), nitric oxide (NO), adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP). These changes, in turn, initiate cell proliferation and induce the signal cascade effect. CONCLUSION The findings of this review suggest that PBMT-based regenerative medicine could be a useful tool for future advances in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran;
and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, NRF SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Radiation Sciences Research Center, Laser Research
Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
8
|
Eslamian L, Ebadifar A, Mohebbi Rad M, Motamedian SR, Badiee MR, Mohammad Rahimi H, Farahani MH. Comparison of Single and Multiple Low-Level Laser Applications After Rapid Palatal Expansion on Bone Regeneration in Rats. J Lasers Med Sci 2021; 11:S37-S42. [PMID: 33995967 DOI: 10.34172/jlms.2020.s6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: This study was performed to compare the effects of single and multiple irradiations of low-level laser therapy (LLLT) on bone regeneration in a mid-palatal suture following rapid palatal expansion (RPE). Methods: In this animal study, 40 male Wistar rats underwent RPE for 7 days and were divided into 4 groups including A: single LLLT on day 7, B: Multiple LLLT on days 7, 9, 11, 13 and 15, C: control (no LLLT), and D: sacrificed on day 7. Animals in group D were used to determine the amount of suture expansion. LLLT was done by a diode laser set at an 808 nm wavelength with a useful power output of 100 mW and duration of 0.1 ms. LLLT was applied to three points. After three weeks of retention, the rats were sacrificed and beheaded and the maxilla was evaluated by occlusal radiography, µ-CT, and histomorphometric analyses. A comparison of the mean measurements between the groups was performed using ANOVA and the Tukey post hoc test. Results: Based on occlusal radiography and µCT, bone density in group B was significantly higher than group A and group C (P<0.05). There was no significant difference in bone density between group A and group C (P>0.05). Mean suture width (MSW) in group B was significantly lesser than the control group (P=0.027) while there was no significant difference between MSWnin groups A and B (P=0.116) and groups A and C (P=0.317). Conclusion: It may be concluded that multiple low-power laser irradiation improves bone regeneration after RPE while single irradiation does not have a positive effect.
Collapse
Affiliation(s)
- Ladan Eslamian
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aliasghar Ebadifar
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeed Reza Motamedian
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Badiee
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Mohammad Rahimi
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farahani
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration. Int J Mol Sci 2020; 21:ijms21239002. [PMID: 33256246 PMCID: PMC7730548 DOI: 10.3390/ijms21239002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease caused by periodontal bacteria. Recently, periodontal phototherapy, treatment using various types of lasers, has attracted attention. Photobiomodulation, the biological effect of low-power laser irradiation, has been widely studied. Although many types of lasers are applied in periodontal phototherapy, molecular biological effects of laser irradiation on cells in periodontal tissues are unclear. Here, we have summarized the molecular biological effects of diode, Nd:YAG, Er:YAG, Er,Cr:YSGG, and CO2 lasers irradiation on cells in periodontal tissues. Photobiomodulation by laser irradiation enhanced cell proliferation and calcification in osteoblasts with altering gene expression. Positive effects were observed in fibroblasts on the proliferation, migration, and secretion of chemokines/cytokines. Laser irradiation suppressed gene expression related to inflammation in osteoblasts, fibroblasts, human periodontal ligament cells (hPDLCs), and endothelial cells. Furthermore, recent studies have revealed that laser irradiation affects cell differentiation in hPDLCs and stem cells. Additionally, some studies have also investigated the effects of laser irradiation on endothelial cells, cementoblasts, epithelial cells, osteoclasts, and osteocytes. The appropriate irradiation power was different for each laser apparatus and targeted cells. Thus, through this review, we tried to shed light on basic research that would ultimately lead to clinical application of periodontal phototherapy in the future.
Collapse
|
10
|
Interaction between Laser Light and Osteoblasts: Photobiomodulation as a Trend in the Management of Socket Bone Preservation-A Review. BIOLOGY 2020; 9:biology9110409. [PMID: 33238412 PMCID: PMC7700402 DOI: 10.3390/biology9110409] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Dental implants are becoming an accepted tool, and thousands of implants are placed every year by specialists and general practitioners. However, more than 10% of bone surgeries and related procedures can show healing complications as a consequence of infections, tissue damage, or inadequate blood supply. In particular, a deficient blood supply impacts on the optimal healing process because of altered oxygen delivery to cells in the wound and a decrease in their energy supply. Researchers showed how red and infrared light affects key cellular pathways by interacting with specific photoacceptors located within the cell, particularly in mitochondria. Low-level laser therapy or photobiomodulation (PBM), as the recent medical subject heading defines it, is based on a light–cell interaction, which modifies cell metabolism by increasing oxygen consumption and ATP production through mitochondria. Although not all aspects of this interconnection are completely described, many in vitro and in vivo studies showed the benefit of PBM in wound defect management. For instance, treatment of bone with PBM results in a greater amount of new-formed osteoblasts and matrix, an increase in collagen synthesis, and microvascular reestablishment. In our review, we highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM for socket preservation is discussed. Abstract Bone defects are the main reason for aesthetic and functional disability, which negatively affect patient’s quality of life. Particularly, after tooth extraction, the bone of the alveolar process resorbs, limiting the optimal prosthetic implant placement. One of the major pathophysiological events in slowly- or non-healing tissues is a blood supply deficiency, followed by a significant decrease in cellular energy amount. The literature shows that photons at the red and infrared wavelengths can interact with specific photoacceptors located within the cell. Through this mechanism, photobiomodulation (PBM) can modify cellular metabolism, by increasing mitochondrial ATP production. Here, we present a review of the literature on the effect of PBM on bone healing, for the management of socket preservation. A search strategy was developed in line with the PRISMA statement. The PubMed and Scholar electronic databases were consulted to search for in vivo studies, with restrictions on the year (<50 years-old), language (English), bone socket preservation, and PBM. Following the search strategy, we identified 269 records, which became 14, after duplicates were removed and titles, abstract and inclusion-, exclusion-criteria were screened. Additional articles identified were 3. Therefore, 17 articles were included in the synthesis. We highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM is discussed.
Collapse
|
11
|
Sabino VG, Ginani F, da Silva TN, Cabral AA, Mota-Filho HG, Freire MCLC, de Souza Furtado P, Assumpção PWMC, Cabral LM, Moura CE, Rocha HAO, de Souza Picciani PH, Barboza CAG. Laser therapy increases the proliferation of preosteoblastic MC3T3-E1 cells cultured on poly(lactic acid) films. J Tissue Eng Regen Med 2020; 14:1792-1803. [PMID: 33010118 DOI: 10.1002/term.3134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 11/06/2022]
Abstract
This study aimed to verify the efficacy of low-level laser irradiation (LLLI) on the proliferation of MC3T3-E1 preosteoblasts cultured on poly(lactic acid) (PLA) films. The produced films were characterized by contact angle tests, scanning electron microscopy (SEM), atomic force microscopy, differential scanning calorimetry, and X-ray diffraction. The MC3T3-E1 cells were cultured as three different groups: Control-cultured on polystyrene plastic surfaces; PLA-cultured on PLA films; and PLA + Laser-cultured on PLA films and submitted to laser irradiation (660 nm; 30 mW; 4 J/cm2 ). Cell proliferation was analyzed by Trypan blue and Alamar blue assays at 24, 48, and 72 h after irradiation. Cell viability was assessed by Live/Dead assay, apoptosis-related events were evaluated by Annexin V/propidium iodide (PI) expression, and cell cycle events were analyzed by flow cytometry. Cell morphology on the surface of films was assessed by SEM. Cell counting and biochemical assay results indicate that the PLA + Laser group exhibited higher proliferation (p < 0.01) when compared with the Control and PLA groups. The Live/Dead and Annexin/PI assays indicate increased cell viability in the PLA + Laser group that also presented a higher percentage of cells in the proliferative cell cycle phases (S and G2/M). These findings were also confirmed by the higher cell density observed in the irradiated group through SEM images. The evidence from this study supports the idea that LLLI increases the proliferation of MC3T3-E1 cells on PLA surfaces, suggesting that it can be potentially applied in bone tissue engineering.
Collapse
Affiliation(s)
| | - Fernanda Ginani
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | - Lucio Mendes Cabral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Eduardo Moura
- Department of Animal Sciences, Federal Rural University of Semiarid Region, Mossoró, Brazil
| | | | | | | |
Collapse
|
12
|
Santinoni CS, Neves APC, Almeida BFM, Kajimoto NC, Pola NM, Caliente EA, Belem ELG, Lelis JB, Fucini SE, Messora MR, Garcia VG, Bomfim SRM, Ervolino E, Nagata MJH. Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J Biomed Mater Res A 2020; 109:849-858. [PMID: 32815657 DOI: 10.1002/jbm.a.37076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
The present study evaluated bone marrow aspirate (BMA) and low-level laser therapy (LLLT) on bone healing. It was created critical-size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt-related transcription factor-2 (Runx2), bone morphogenetic protein-2 (BMP-2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP-2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP-2, OPN, and OCN.
Collapse
Affiliation(s)
- Carolina S Santinoni
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), UNOESTE-University of Western Sao Paulo, Presidente Prudente, Brazil.,Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Adrieli P C Neves
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), UNOESTE-University of Western Sao Paulo, Presidente Prudente, Brazil.,Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Breno F M Almeida
- Division of Clinical, Surgery and Animal Reproduction, Veterinary School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Natália C Kajimoto
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Natália M Pola
- Division of Periodontics, Dental School of Pelotas, Federal University of Pelotas-UFPel, Pelotas, Brazil
| | - Eliana A Caliente
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Eduarda L G Belem
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Joilson B Lelis
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Stephen E Fucini
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil.,Periodontics, Private Practice, Hanover, New Hampshire, USA
| | - Michel R Messora
- Division of Periodontics, School of Dentistry of Ribeirão Preto, University of São Paulo-USP, São Paulo, Brazil
| | - Valdir G Garcia
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Suely R M Bomfim
- Division of Clinical, Surgery and Animal Reproduction, Veterinary School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Edilson Ervolino
- Division of Histology, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Maria J H Nagata
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| |
Collapse
|
13
|
In Vitro Production of Calcified Bone Matrix onto Wool Keratin Scaffolds via Osteogenic Factors and Electromagnetic Stimulus. MATERIALS 2020; 13:ma13143052. [PMID: 32650489 PMCID: PMC7411850 DOI: 10.3390/ma13143052] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
Abstract
Pulsed electromagnetic field (PEMF) has drawn attention as a potential tool to improve the ability of bone biomaterials to integrate into the surrounding tissue. We investigated the effects of PEMF (frequency, 75 Hz; magnetic induction amplitude, 2 mT; pulse duration, 1.3 ms) on human osteoblast-like cells (SAOS-2) seeded onto wool keratin scaffolds in terms of proliferation, differentiation, and production of the calcified bone extracellular matrix. The wool keratin scaffold offered a 3D porous architecture for cell guesting and nutrient diffusion, suggesting its possible use as a filler to repair bone defects. Here, the combined approach of applying a daily PEMF exposure with additional osteogenic factors stimulated the cells to increase both the deposition of bone-related proteins and calcified matrix onto the wool keratin scaffolds. Also, the presence of SAOS-2 cells, or PEMF, or osteogenic factors did not influence the compression behavior or the resilience of keratin scaffolds in wet conditions. Besides, ageing tests revealed that wool keratin scaffolds were very stable and showed a lower degradation rate compared to commercial collagen sponges. It is for these reasons that this tissue engineering strategy, which improves the osteointegration properties of the wool keratin scaffold, may have a promising application for long term support of bone formation in vivo.
Collapse
|
14
|
Incerti Parenti S, Tschon M, Sartori M, Visani A, Aroni E, Fini M, Alessandri-Bonetti G. Evidence from systematic reviews on photobiomodulation of human bone and stromal cells: Where do we stand? Arch Biochem Biophys 2020; 685:108333. [PMID: 32194044 DOI: 10.1016/j.abb.2020.108333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/17/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
Abstract
This study summarizes the available evidence from systematic reviews on the in vitro effects of photobiomodulation on the proliferation and differentiation of human bone and stromal cells by appraising their methodological quality. Improvements for future studies are also highlighted, with particular emphasis on in vitro protocols and cell-related characteristics. Six reviews using explicit eligibility criteria and methods selected in order to minimize bias were included. There was no compelling evidence on the cellular mechanisms of action or treatment parameters of photobiomodulation; compliance with quality assessment was poor. A rigorous description of laser parameters (wavelength, power, beam spot size, power density, energy density, repetition rate, pulse duration or duty cycle, exposure duration, frequency of treatments, and total radiant energy), exposure conditions (methods to ensure a uniform irradiation and to avoid cross-irradiation, laser-cell culture surface distance, lid presence during irradiation) and cell-related characteristics (cell type or line, isolation and culture conditions, donor-related factors where applicable, tissue source, cell phenotype, cell density, number of cell passages in culture) should be included among eligibility criteria for study inclusion. These methodological improvements will maximize the contribution of in vitro studies on the effects of photobiomodulation on human bone and stromal cells to evidence-based translational research.
Collapse
Affiliation(s)
- Serena Incerti Parenti
- Unit of Orthodontics, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via San Vitale 59, 40125, Bologna, Italy.
| | - Matilde Tschon
- Preclinical and Surgical Studies Laboratory, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Maria Sartori
- Preclinical and Surgical Studies Laboratory, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Andrea Visani
- Laboratory of Biomechanics and Technology Innovation, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Elena Aroni
- Unit of Orthodontics, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via San Vitale 59, 40125, Bologna, Italy.
| | - Milena Fini
- Preclinical and Surgical Studies Laboratory, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Giulio Alessandri-Bonetti
- Unit of Orthodontics, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via San Vitale 59, 40125, Bologna, Italy.
| |
Collapse
|
15
|
Bloise N, Massironi A, Della Pina C, Alongi J, Siciliani S, Manfredi A, Biggiogera M, Rossi M, Ferruti P, Ranucci E, Visai L. Extra-Small Gold Nanospheres Decorated With a Thiol Functionalized Biodegradable and Biocompatible Linear Polyamidoamine as Nanovectors of Anticancer Molecules. Front Bioeng Biotechnol 2020; 8:132. [PMID: 32195232 PMCID: PMC7065572 DOI: 10.3389/fbioe.2020.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/10/2020] [Indexed: 12/29/2022] Open
Abstract
Gold nanoparticles are elective candidate for cancer therapy. Current efforts are devoted to developing innovative methods for their synthesis. Besides, understanding their interaction with cells have become increasingly important for their clinical application. This work aims to describe a simple approach for the synthesis of extra-small gold nanoparticles for breast cancer therapy. In brief, a biocompatible and biodegradable polyamidoamine (named AGMA1-SH), bearing 20%, on a molar basis, thiol-functionalized repeat units, is employed to stabilize and coat extra-small gold nanospheres of different sizes (2.5, 3.5, and 5 nm in gold core), and to generate a nanoplatform for the link with Trastuzumab monoclonal antibody for HER2-positive breast cancer targeting. Dynamic light scattering, transmission electron microscopy, ultraviolet visible spectroscopy, X-ray powder diffraction, circular dichroism, protein quantification assays are used for the characterization. The targeting properties of the nanosystems are explored to achieve enhanced and selective uptake of AGMA1-SH-gold nanoparticles by in vitro studies against HER-2 overexpressing cells, SKBR-3 and compared to HER-2 low expressing cells, MCF-7, and normal fibroblast cell line, NIH-3T3. In vitro physicochemical characterization demonstrates that gold nanoparticles modified with AGMA1-SH are more stable in aqueous solution than the unmodified ones. Additionally, the greater gold nanoparticles size (5-nm) is associated with a higher stability and conjugation efficiency with Trastuzumab, which retains its folding and anticancer activity after the conjugation. In particular, the larger Trastuzumab functionalized nanoparticles displays the highest efficacy (via the pro-apoptotic protein increase, anti-apoptotic components decrease, survival-proliferation pathways downregulation) and internalization (via the activation of the classical clathrin-mediated endocytosis) in HER-2 overexpressing SKBR-3 cells, without eliciting significant effects on the other cell lines. The use of biocompatible AGMA1-SH for producing covalently stabilized gold nanoparticles to achieve selective targeting, cytotoxicity and uptake is completely novel, offering an important advancement for developing new anticancer conjugated-gold nanoparticles.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine (DMM), Biochemistry Unit, Center for Health Technologies (CHT), UdR INSTM University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A, IRCCS, Pavia, Italy
| | - Alessio Massironi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, Pisa, Italy
| | - Cristina Della Pina
- Dipartimento di Chimica, Università degli Studi di Milano e CNR-ISTM, Milan, Italy
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Stella Siciliani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Rossi
- Dipartimento di Chimica, Università degli Studi di Milano e CNR-ISTM, Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | | | - Livia Visai
- Department of Molecular Medicine (DMM), Biochemistry Unit, Center for Health Technologies (CHT), UdR INSTM University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A, IRCCS, Pavia, Italy
| |
Collapse
|
16
|
Dos Santos DA, de Guzzi Plepis AM, da Conceição Amaro Martins V, Cardoso GBC, Santos AR, Iatecola A, Andrade TN, Monteiro FM, Calegari ARA, Chacon EL, Cunha MR. Effects of the combination of low-level laser therapy and anionic polymer membranes on bone repair. Lasers Med Sci 2019; 35:813-821. [PMID: 31463820 DOI: 10.1007/s10103-019-02864-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022]
Abstract
In view of the limitations of bone reconstruction surgeries using autologous grafts as a gold standard, tissue engineering is emerging as an alternative, which permits the fabrication and improvement of scaffolds to stimulate osteogenesis and angiogenesis, processes that are essential for bone repair. Polymers are used to mimic the extracellular bone matrix and support cell growth. In addition, bone neoformation can be induced by external factors such as laser irradiation, which stimulates bone metabolism. The objective of this study was to evaluate the regeneration of bone defects using collagen and elastin membranes derived from intestinal serosa and bovine auricular cartilage combined with low-level laser application. Thirty-six Wistar rats were operated to create a 3-mm defect in the distal metaphysis of the left femur and divided into six groups: G1 (control, no treatment); G2 (laser); G3 (elastin graft), G4 (elastin+laser); G5 (collagen graft); G6 (collagen+laser). The animals were sacrificed 6 weeks after surgery and the femurs were removed for analysis of bone repair. Macroscopic and radiological results showed the absence of an infectious process in the surgical area. This was confirmed by histological analysis, which revealed no inflammatory infiltrate. Histomorphometry showed that the formation of new bone started from the margins of the bone defect and its volume was greater in elastin+laser and collagen+laser. We conclude that newly formed bone in the graft area was higher in the groups that received the biomaterials and laser. The collagen and elastin matrices showed biocompatibility.
Collapse
Affiliation(s)
- Daniel Alves Dos Santos
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering, University of São Paulo, USP, Trabalhador São Carlense av., 400, São Carlos, São Paulo, Brazil
| | | | - Guinea Brasil Camargo Cardoso
- Materials Engineering Department, Faculty of Mechanical Engineering, State University of Campinas, Campinas, São Paulo, Brazil
| | - Arnaldo Rodrigues Santos
- Center of Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Amilton Iatecola
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Tiago Neves Andrade
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Fabrício Moreira Monteiro
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Amanda Regina Alves Calegari
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Erivelto Luis Chacon
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil
| | - Marcelo Rodrigues Cunha
- Department of Morphology and Pathology, Faculty of Medicine of Jundiaí, Francisco Telles st., 250, Vila Arens, Jundiaí, São Paulo, 13202-550, Cx Postal 1295, Brazil. .,Interunit Postgraduate Program in Bioengineering, University of São Paulo, USP, Trabalhador São Carlense av., 400, São Carlos, São Paulo, Brazil.
| |
Collapse
|
17
|
Scalize PH, de Sousa LG, Gonçalves LMN, Pitol DL, Palinkas M, Coppi AA, Righeti MA, Ricardo V, Bombonato‐Prado KF, Regalo SCH, Siessere S. Low-level laser therapy enhances the number of osteocytes in calvaria bone defects of ovariectomized rats. Animal Model Exp Med 2019; 2:51-57. [PMID: 31016287 PMCID: PMC6431244 DOI: 10.1002/ame2.12056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Osteoporosis can make bone repair difficult. Low-level laser therapy (LLLT) has been shown to be a promising tool for bone neoformation. This study aimed to analyze the effect of LLLT on calvaria bone defects of ovariectomized rats using stereology. METHODS Fifty-four Wistar rats were subjected to bilateral ovariectomy, and bone defects were created in calvaria after 150 days. The animals were divided into nine groups (n = 6 per group), and 24 hours after the bone defects were created they received 3, 6 or 12 sessions of LLLT at 0, 20 or 30 J/cm2, using a 780-nm low-intensity GaAlAs laser. One-way ANOVA followed by Tukey's post hoc test was used for data processing. A difference of P < 0.05 was considered statistically significant. The parameters evaluated were osteocyte density (Nv ost), total osteocyte number (Nto ost), trabecular surface density (Sv t), and trabecular surface area (Sa t). RESULTS Data obtained showed that Nto ost, Sv t, and Sa t in group G2 rats were significantly different from G1 (0 J/cm2) (P < 0.05). Compared to group G4, G5 presented higher values for the parameters Sv t and Sa t, and G6 presented significantly higher values for almost all the analyzed parameters (Nv ost, Nto ost, Sv t, and Sa t) (P < 0.05). Compared to group G7, G8 showed a higher value only for the parameter Sa t, and G9 showed significantly higher values for parameters Nv ost, Nto ost, Sv t, and Sa t. CONCLUSION We conclude that LLLT stimulated bone neoformation and contributed to an increase in the total number of osteocytes, especially with a laser energy density of 30 J/cm2 given for 6 and 12 sessions.
Collapse
Affiliation(s)
- Priscilla Hakime Scalize
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Luiz Gustavo de Sousa
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Lígia Maria Napolitano Gonçalves
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Dimitrius Leonardo Pitol
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Marcelo Palinkas
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Antônio Augusto Coppi
- Faculty of Health and Medical SciencesSchool of Veterinary MedicineUniversity of SurreyGuildfordSurreyUK
| | - Mariah Acioli Righeti
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Vitória Ricardo
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Karina Fittipaldi Bombonato‐Prado
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Simone Cecílio Hallak Regalo
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Selma Siessere
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| |
Collapse
|
18
|
Hanna R, Agas D, Benedicenti S, Ferrando S, Laus F, Cuteri V, Lacava G, Sabbieti MG, Amaroli A. A Comparative Study Between the Effectiveness of 980 nm Photobiomodulation Delivered by Hand-Piece With Gaussian vs. Flat-Top Profiles on Osteoblasts Maturation. Front Endocrinol (Lausanne) 2019; 10:92. [PMID: 30842754 PMCID: PMC6391326 DOI: 10.3389/fendo.2019.00092] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/01/2019] [Indexed: 12/19/2022] Open
Abstract
Photobiomodulation (PBM) is a clinically accepted tool in regenerative medicine and dentistry to improve tissue healing and repair and to restore the functional disability. The current in vitro study aimed to investigate the photobiomodulatory effects of 980 nm wavelength (the real energy at the target: ~0.9 W, ~0.9 W/cm2, 60 s, ~55 J/cm2 and a single energy ~55 J in CW) on MC3T3-E1 pre-osteoblast, delivered with flattop profile in comparison to the standard profile. The laser groupings and their associated energies were: Group 1 - once per week (total energy 110 J); Group 2 - three times per week (alternate day) (total energy 330 J); Group 3 - five times per week (total energy 550 J). The metabolic activity and the osteoblasts maturation were analyzed by alkaline phosphatase assay, alizarin red S histological staining, immunoblot and/or double immunolabeling analysis for Bcl2, Bax, Runx-2, Osx, Dlx5, osteocalcin, and collagen Type 1. Our data, for the first time, prove that laser irradiation of 980 nm wavelength with flat-top beam profile delivery system, compared to standard-Gaussian profile, has improved photobiomodulatory efficacy on pre-osteoblastic cells differentiation. Mechanistically, the irradiation enhances the pre-osteoblast differentiation through activation of Wnt signaling and activation of Smads 2/3-βcatenin pathway.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical and Diagnostic Sciences, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Department of Oral Surgery, Dental Institute, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, Laser Therapy Centre, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Giovanna Lacava
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
19
|
Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR. Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 2019; 34:115-126. [PMID: 30264177 PMCID: PMC6344244 DOI: 10.1007/s10103-018-2620-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Tissue engineering aims to take advantage of the ability of undifferentiated stem cells to differentiate into multiple cell types to repair damaged tissue. Photobiomodulation uses either lasers or light-emitting diodes to promote stem cell proliferation and differentiation. The present study aimed to investigate single and dual combinations of laser wavelengths on mesenchymal stem cells (MSCs). MSCs were derived from rabbit iliac bone marrow. One control and eight laser irradiated groups were designated as Infrared (IR, 810 nm), Red (R, 660 nm), Green (G, 532 nm), Blue (B, 485 nm), IR-R, IR-B, R-G, and B-G. Irradiation was repeated daily for 21 days and cell proliferation, osseous, or cartilaginous differentiation was then measured. RT-PCR biomarkers were SOX9, aggrecan, COL 2, and COL 10 expression for cartilage and ALP, COL 1, and osteocalcin expression for bone. Cellular proliferation was increased in all irradiated groups except G. All cartilage markers were significantly increased by IR and IR-B except COL 10 which was suppressed by IR-B combination. ALP expression was highest in R and IR groups during osseous differentiation. ALP was decreased by combinations of IR with B and with R, and also by G alone. R and B-G groups showed stimulated COL 1 expression; however, COL 1 was suppressed in IR-B, IR-R, and G groups. IR significantly increased osteocalcin expression, but in B, B-G, and G groups it was reduced. Cartilage differentiation was stimulated by IR and IR-B laser irradiation. The effects of single or combined laser irradiation were not clear-cut on osseous differentiation. Stimulatory effects on osteogenesis were seen for R and IR lasers, while G laser had inhibitory effects.
Collapse
Affiliation(s)
- Reza Fekrazad
- Periodontics Department, Dentistry School, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and ResearchNetwork (USERN), Tehran, Iran.
| | - Sohrab Asefi
- Orthodontic Department, Dentistry School, International Campus of Tehran University of Medical Sciences, Tehran, Iran
| | | | - Leila Taghiar
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sima Bordbar
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
20
|
P R GA, H M C, D F S, M A C, A M P M, K R F, A C M R. Association of Bioglass/Collagen/Magnesium composites and low level irradiation: effects on bone healing in a model of tibial defect in rats. Laser Ther 2018; 27:271-282. [PMID: 31182902 DOI: 10.5978/islsm.27_18-or-25] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022]
Abstract
Background and Aims Bioglass (BG) and Magnesium (Mg) composites have been used for bone tissue engineering proposes due to its osteogenic activity and increased mechanical properties respectively. The introduction of Collagen (Col) is a common and efficient approach for bone tissue engineering applications toward cell proliferation. Recently, studies demonstrated that BG/Col/Mg composites presented proper mechanical properties and were non-cytotoxic. Although the osteogenic potential of BG/Col/Mg composites, in specific situations, biomaterials may not be capable of stimulating bone tissue. Therefore, combining biomaterial matrices and effective post-operative therapies (such as low level lasertherapy; LLLT) may be necessary to appropriately stimulate bone tissue. In this context, the aim of this study was to develop intra- and extra-operatively bone regenerative therapeutical strategies, based on the association of Col-enriched BG/Mg composites with LLLT. Materials and Methods Thereby, an in vivo study, using tibial defect in Wistar rats, was performed in order to investigate the bone regenerative capacity. LLLT treatment (Ga-Al-As laser 808 nm, 30 mW, 2.8 J, 94 s) was performed 3 times a week, in non-consecutive days. Histology, histomorphometry, immunohistochemical analysis and mechanical test were done after 15 and 45 days post-implantation. Results The results showed that Col could be successfully introduced into BG/Mg and the association of BG/Mg/Col and LLLT constituted an optimized treatment for accelerating material degradation and increasing bone deposition. Additionally, mechanical tests showed an increased maximal load for BG/Mg + LLLT compared to other groups. Conclusions These results lead us to conclude that the Col enriched BG/Mg composites irradiated with LLLT presented superior biological and mechanical properties, demonstrating to be a promising bone graft.
Collapse
Affiliation(s)
- Gabbai-Armelin P R
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Caliari H M
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Silva D F
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Cruz M A
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Magri A M P
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Fernandes K R
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Renno A C M
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| |
Collapse
|
21
|
Ether-Oxygen Containing Electrospun Microfibrous and Sub-Microfibrous Scaffolds Based on Poly(butylene 1,4-cyclohexanedicarboxylate) for Skeletal Muscle Tissue Engineering. Int J Mol Sci 2018; 19:ijms19103212. [PMID: 30336625 PMCID: PMC6214009 DOI: 10.3390/ijms19103212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023] Open
Abstract
We report the study of novel biodegradable electrospun scaffolds from poly(butylene 1,4-cyclohexandicarboxylate-co-triethylene cyclohexanedicarboxylate) (P(BCE-co-TECE)) as support for in vitro and in vivo muscle tissue regeneration. We demonstrate that chemical composition, i.e., the amount of TECE co-units (constituted of polyethylene glycol-like moieties), and fibre morphology, i.e., aligned microfibrous or sub-microfibrous scaffolds, are crucial in determining the material biocompatibility. Indeed, the presence of ether linkages influences surface wettability, mechanical properties, hydrolytic degradation rate, and density of cell anchoring points of the studied materials. On the other hand, electrospun scaffolds improve cell adhesion, proliferation, and differentiation by favouring cell alignment along fibre direction (fibre morphology), also allowing for better cell infiltration and oxygen and nutrient diffusion (fibre size). Overall, C2C12 myogenic cells highly differentiated into mature myotubes when cultured on microfibres realised with the copolymer richest in TECE co-units (micro-P73 mat). Lastly, when transplanted in the tibialis anterior muscles of healthy, injured, or dystrophic mice, micro-P73 mat appeared highly vascularised, colonised by murine cells and perfectly integrated with host muscles, thus confirming the suitability of P(BCE-co-TECE) scaffolds as substrates for skeletal muscle tissue engineering.
Collapse
|
22
|
Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C. Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study. Int J Mol Sci 2018; 19:ijms19071946. [PMID: 29970828 PMCID: PMC6073131 DOI: 10.3390/ijms19071946] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Photobiomodulation (PBM) has been used for bone regenerative purposes in different fields of medicine and dentistry, but contradictory results demand a skeptical look for its potential benefits. This in vitro study compared PBM potentiality by red (635 ± 5 nm) or near-infrared (NIR, 808 ± 10 nm) diode lasers and violet-blue (405 ± 5 nm) light-emitting diode operating in a continuous wave with a 0.4 J/cm2 energy density, on human osteoblast and mesenchymal stromal cell (hMSC) viability, proliferation, adhesion and osteogenic differentiation. PBM treatments did not alter viability (PI/Syto16 and MTS assays). Confocal immunofluorescence and RT-PCR analyses indicated that red PBM (i) on both cell types increased vinculin-rich clusters, osteogenic markers expression (Runx-2, alkaline phosphatase, osteopontin) and mineralized bone-like nodule structure deposition and (ii) on hMSCs induced stress fiber formation and upregulated the expression of proliferation marker Ki67. Interestingly, osteoblast responses to red light were mediated by Akt signaling activation, which seems to positively modulate reactive oxygen species levels. Violet-blue light-irradiated cells behaved essentially as untreated ones and NIR irradiated ones displayed modifications of cytoskeleton assembly, Runx-2 expression and mineralization pattern. Although within the limitations of an in vitro experimentation, this study may suggest PBM with 635 nm laser as potential effective option for promoting/improving bone regeneration.
Collapse
Affiliation(s)
- Alessia Tani
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, via dell' Olivuzzo 162, 50143 Florence, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
23
|
Na S, TruongVo T, Jiang F, Joll JE, Guo Y, Utreja A, Chen J. Dose analysis of photobiomodulation therapy on osteoblast, osteoclast, and osteocyte. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 30030913 DOI: 10.1117/1.jbo.23.7.075008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to evaluate the effects of varying light doses on the viability and cellular activity of osteoblasts, osteocytes, and osteoclasts. A light application device was developed to apply 940-nm wavelength light from light-emitting diodes on three cultured cells, MC3T3-E1, MLO-A5, and RANKL-treated RAW264.7 cells. The doses (energy density) on cells were 0, 1, 5, and 7.5 J / cm2. The corresponding light power densities at the cell site were 0, 1.67, 8.33, and 12.5 mW / cm2, respectively, and the duration was 10 min. The results showed that the three cell types respond differently to light and their responses were dose dependent. Low-dose treatment (1 J / cm2) enhanced osteoblast proliferation, osteoclast differentiation, and osteoclastic bone resorption activity. Osteocyte proliferation was not affected by both low- and high-dose (5 J / cm2) treatments. While 1 J / cm2 did not affect viability of all three cell types, 5 J / cm2 significantly decreased viability of osteocytes and osteoclasts. Osteoblast viability was negatively impacted by the higher dose (7.5 J / cm2). The findings suggest that optimal doses exist for osteoblast and osteoclast, which can stimulate cell activities, and there is a safe dose range for each type of cell tested.
Collapse
Affiliation(s)
- Sungsoo Na
- Indiana University-Purdue University Indianapolis, Department of Biomedical Engineering, Indianapoli, United States
| | - ThucNhi TruongVo
- Indiana University-Purdue University Indianapolis, Department of Biomedical Engineering, Indianapoli, United States
| | - Feifei Jiang
- Indiana University-Purdue University Indianapolis, Department of Mechanical Engineering, Indianapoli, United States
| | - Jeffery E Joll
- Indiana University-Purdue University Indianapolis, Department of Biomedical Engineering, Indianapoli, United States
| | - Yunxia Guo
- Indiana University-Purdue University Indianapolis, Department of Biomedical Engineering, Indianapoli, United States
| | - Achint Utreja
- Indiana University-Purdue University Indianapolis, Department of Orthodontics and Oral Facial Geneti, United States
| | - Jie Chen
- Indiana University-Purdue University Indianapolis, Department of Mechanical Engineering, Indianapoli, United States
- Indiana University-Purdue University Indianapolis, Department of Orthodontics and Oral Facial Geneti, United States
| |
Collapse
|
24
|
Bloise N, Petecchia L, Ceccarelli G, Fassina L, Usai C, Bertoglio F, Balli M, Vassalli M, Cusella De Angelis MG, Gavazzo P, Imbriani M, Visai L. The effect of pulsed electromagnetic field exposure on osteoinduction of human mesenchymal stem cells cultured on nano-TiO2 surfaces. PLoS One 2018; 13:e0199046. [PMID: 29902240 PMCID: PMC6002089 DOI: 10.1371/journal.pone.0199046] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are considered a great promise in the repair and regeneration of bone. Considerable efforts have been oriented towards uncovering the best strategy to promote stem cells osteogenic differentiation. In previous studies, hBM-MSCs exposed to physical stimuli such as pulsed electromagnetic fields (PEMFs) or directly seeded on nanostructured titanium surfaces (TiO2) were shown to improve their differentiation to osteoblasts in osteogenic condition. In the present study, the effect of a daily PEMF-exposure on osteogenic differentiation of hBM-MSCs seeded onto nanostructured TiO2 (with clusters under 100 nm of dimension) was investigated. TiO2-seeded cells were exposed to PEMF (magnetic field intensity: 2 mT; intensity of induced electric field: 5 mV; frequency: 75 Hz) and examined in terms of cell physiology modifications and osteogenic differentiation. Results showed that PEMF exposure affected TiO2-seeded cells osteogenesis by interfering with selective calcium-related osteogenic pathways, and greatly enhanced hBM-MSCs osteogenic features such as the expression of early/late osteogenic genes and protein production (e.g., ALP, COL-I, osteocalcin and osteopontin) and ALP activity. Finally, PEMF-treated cells resulted to secrete into conditioned media higher amounts of BMP-2, DCN and COL-I than untreated cell cultures. These findings confirm once more the osteoinductive potential of PEMF, suggesting that its combination with TiO2 nanostructured surface might be a great option in bone tissue engineering applications.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine (DMM), Centre for Health Technologies (C.H.T.), INSTM Unit, University of Pavia, Pavia, Italy
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
- * E-mail: (NB); (LV)
| | | | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, Centre for Health Technologies (C.H.T.), Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (C.H.T.), University of Pavia, Pavia, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Federico Bertoglio
- Department of Molecular Medicine (DMM), Centre for Health Technologies (C.H.T.), INSTM Unit, University of Pavia, Pavia, Italy
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Martina Balli
- Department of Public Health, Experimental Medicine and Forensic, Centre for Health Technologies (C.H.T.), Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Maria Gabriella Cusella De Angelis
- Department of Public Health, Experimental Medicine and Forensic, Centre for Health Technologies (C.H.T.), Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Marcello Imbriani
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
- Department of Public Health, Experimental Medicine and Forensic, Centre for Health Technologies (C.H.T.), Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine (DMM), Centre for Health Technologies (C.H.T.), INSTM Unit, University of Pavia, Pavia, Italy
- Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
- * E-mail: (NB); (LV)
| |
Collapse
|
25
|
Cristofaro F, Gigli M, Bloise N, Chen H, Bruni G, Munari A, Moroni L, Lotti N, Visai L. Influence of the nanofiber chemistry and orientation of biodegradable poly(butylene succinate)-based scaffolds on osteoblast differentiation for bone tissue regeneration. NANOSCALE 2018; 10:8689-8703. [PMID: 29701213 DOI: 10.1039/c8nr00677f] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Innovative nanofibrous scaffolds have attracted considerable attention in bone tissue engineering, due to their ability to mimic the hierarchical architecture of an extracellular matrix. Aiming at investigating how the polymer chemistry and fiber orientation of electrospun scaffolds (ES) based on poly(butylene succinate) (PBS) and poly(butylene succinate/diglycolate) (P(BS80BDG20)) affect human osteoblast differentiation, uniaxially aligned (a-) and randomly (r-) distributed nanofibers were produced. Although human osteoblastic SAOS-2 cells were shown to be viable and adherent onto all ES materials, a-P(BS80BDG20) exhibited the best performance both in terms of cellular phosphorylated focal adhesion kinase expression and in terms of alkaline phosphatase activity, calcified bone matrix deposition and quantitative gene expression of bone specific markers during differentiation. It has been hypothesized that the presence of ether linkages may lead to an increased density of hydrogen bond acceptors along the P(BS80BDG20) backbone, which, by interacting with cell membrane components, can in turn promote a better cell attachment on the copolymer mats with respect to the PBS homopolymer. Furthermore, although displaying the same chemical structure, r-P(BS80BDG20) scaffolds showed a reduced cell attachment and osteogenic differentiation in comparison with a-P(BS80BDG20), evidencing the importance of nanofiber alignment. Thus, the coupled action of polymer chemical structure and nanofiber alignment played a significant role in promoting the biological interaction.
Collapse
Affiliation(s)
- Francesco Cristofaro
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The impact of photobiomodulation on osteoblast-like cell: a review. Lasers Med Sci 2018; 33:1147-1158. [DOI: 10.1007/s10103-018-2486-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
|
27
|
Effects of 915 nm laser irradiation on human osteoblasts: a preliminary in vitro study. Lasers Med Sci 2018; 33:1189-1195. [PMID: 29450763 DOI: 10.1007/s10103-018-2453-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/23/2018] [Indexed: 01/13/2023]
Abstract
Photobiomodulation (PBM) is a non-invasive treatment that uses laser or led devices making its effects a response to light and not to heat. The possibility of accelerating dental implant osteointegration and orthodontic movements and the need to treat refractory bone lesions, such as bisphosphonate related osteonecrosis of the jaws, has led researchers to consider the effects of PBM on bone for dentistry purposes. The aim of our study was to investigate the effects of 915 nm light supplied with a GaAs diode laser on human osteoblasts in vitro. Osteoblasts were isolated from mandibular cortical bone of a young healthy donor. The irradiation parameters were as follows: doses = 5, 15 and 45 J/cm2; power densities = 0.12 and 1.25 W/cm2; and irradiation times = 41.7, 125 and 375 s. We performed one irradiation per day for 3 and 6 days to study proliferation and differentiation, respectively. Microscopic analysis showed a greater amount of bone nodules in samples treated with 5 J/cm2 and 0.12 W/cm2 compared to controls (56.00 ± 10.44 vs 19.67 ± 7.64, P = 0.0075). Cell growth and quantification of calcium deposition did not show any differences when comparing irradiated and non-irradiated samples. Photobiomodulation, with the parameters investigated in the present study, positively modulated the mineralization process in human osteoblasts, inducing the formation of a greater amount of bone nodules, but did not increase cell proliferation.
Collapse
|
28
|
Gunji H, Kunimatsu R, Tsuka Y, Yoshimi Y, Sumi K, Awada T, Nakajima K, Kimura A, Hiraki T, Hirose N, Yanoshita M, Tanimoto K. Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats. Lasers Surg Med 2018; 50:772-780. [PMID: 29399884 DOI: 10.1002/lsm.22797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Tooth movement during orthodontic treatment is associated with bone neoplasticity and bone resorption on the tension and pressure sides. Previous clinical studies have suggested that low-power laser irradiation can accelerate tooth movement during orthodontic treatment, although the underlying mechanism remains unclear. In this study, we used a high-frequency near-infrared diode laser that generates less heat and examined the histologic changes in periodontal tissue during experimental tooth movement with laser irradiation. METHODS A nickel-titanium closed coil was mounted between the maxillary left side first molar and incisor of rats to model experimental tooth movement. The laser-irradiation and the control groups were set, and the amount of movement of the first molar on 7th and 14th days after the start of pulling of the first molar tooth on the maxillary left was measured by three-dimensional analysis of µCT. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and TRAP staining and immunohistochemical staining for RANKL, OPG, ALP, and proliferating cell nuclear antigen (PCNA). Changes in tissue temperature following laser irradiation were also examined. RESULTS Laser irradiation significantly increased tooth movement compared with non-irradiated controls. Histologic staining of the pressure-side mesial root in laser-irradiated rats revealed enhanced RANKL expression and increased numbers of TRAP-positive cells compared with controls. By contrast, on the tension side, laser irradiation led to increased expression of ALP and PCNA. These data indicate that high-frequency near-infrared diode laser irradiation on the pressure side upregulates RANKL expression and accelerates osteoclast differentiation, facilitating bone resorption, whereas bone formation is induced on the tension side. CONCLUSION This study demonstrates that high-frequency near-infrared diode laser irradiation of periodontal tissue leads to metabolic activation, which ultimately increases the rate of tooth movement. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hidemi Gunji
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yuki Yoshimi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Keisuke Sumi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuya Awada
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kengo Nakajima
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Aya Kimura
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoka Hiraki
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Naoto Hirose
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Makoto Yanoshita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
29
|
Kunimatsu R, Gunji H, Tsuka Y, Yoshimi Y, Awada T, Sumi K, Nakajima K, Kimura A, Hiraki T, Abe T, Naoto H, Yanoshita M, Tanimoto K. Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts. Lasers Med Sci 2018; 33:959-966. [PMID: 29302842 DOI: 10.1007/s10103-017-2426-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
Laser irradiation activates a range of cellular processes and can promote tissue repair. Here, we examined the effects of high-frequency near-infrared (NIR) diode laser irradiation on the proliferation and migration of mouse calvarial osteoblastic cells (MC3T3-E1). MC3T3-E1 cells were cultured and exposed to high-frequency (30 kHz) 910-nm diode laser irradiation at a dose of 0, 1.42, 2.85, 5.7, or 17.1 J/cm2. Cell proliferation was evaluated with BrdU and ATP concentration assays. Cell migration was analyzed by quantitative assessment of wound healing using the Incucyt® ZOOM system. In addition, phosphorylation of mitogen-activated protein kinase (MAPK) family members including p38 mitogen-activated protein kinase (p38), stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK), and extracellular signal-regulated protein kinase (ERK)1/2) after laser irradiation was examined with western blotting. Compared to the control, cell proliferation was significantly increased by laser irradiation at a dose of 2.85, 5.7, or 17.1 J/cm2. Laser irradiation at a dose of 2.85 J/cm2 induced MC3T3-E1 cells to migrate more rapidly than non-irradiated control cells. Irradiation with the high-frequency 910-nm diode laser at a dose of 2.85 J/cm2 induced phosphorylation of MAPK/ERK1/2 15 and 30 min later. However, phosphorylation of p38 MAPK and SAPK/JNK was not changed by NIR diode laser irradiation at a dose of 2.85 J/cm2. Irradiation with a high-frequency NIR diode laser increased cell division and migration of MT3T3-E1 cells, possibly via MAPK/ERK signaling. These observations may be important for enhancing proliferation and migration of osteoblasts to improve regeneration of bone tissues.
Collapse
Affiliation(s)
- Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Hidemi Gunji
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yuki Yoshimi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuya Awada
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Keisuke Sumi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kengo Nakajima
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Aya Kimura
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoka Hiraki
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takaharu Abe
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hirose Naoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Makoto Yanoshita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
30
|
Çakmak AS, Çakmak S, Vatansever HS, Gümüşderelioğlu M. Photostimulation of osteogenic differentiation on silk scaffolds by plasma arc light source. Lasers Med Sci 2017; 33:785-794. [DOI: 10.1007/s10103-017-2414-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/04/2017] [Indexed: 02/01/2023]
|
31
|
Comparison of the in vitro effects of low-level laser therapy and low-intensity pulsed ultrasound therapy on bony cells and stem cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 133:36-48. [PMID: 29126668 DOI: 10.1016/j.pbiomolbio.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
To compare the in vitro effectiveness of Low-Level Laser Therapy (LLLT) and Low Intensity Pulsed Ultrasound (LIPUS) on bony cells and related stem cells. In this study, we aim to systematically review the published scientific literature which explores the use of LLLT and LIPUS to biostimulate the activity or the proliferation of bony cells or stem cells in vitro. We searched the database PubMed for LLLT or LIPUS, with/without bone, osteoblast, osteocyte, stem cells, the human osteosarcoma cell line (MG63), bone-forming cells, and cell culture (or in vitro). These studies were subdivided into categories exploring the effect of LLLT or LIPUS on bony cells, stem cells, and other related cells. 75 articles were found between 1987 and 2016; these included: 50 full paper articles on LLLT and 25 full papers on LIPUS. These articles met the eligibility criteria and were included in our review. A detailed and concise description of the LLLT and the LIPUS protocols and their individual effects on bony cells or stem cells and their results are presented in five tables. Based on the main results and the conclusions of the reviewed articles in the current work, both, LLLT and LIPUS, apply a biostimulatory effect on osteoblasts, osteocytes, and enhance osteoblast proliferation and differentiation on different bony cell lines used in in vitro studies, and therefore, these may be useful tools for bone regeneration therapy. Moreover, in consideration of future cell therapy protocols, both, LLLT and LIPUS (especially LLLT), enhnce a significant increase in the initial number of SCs before differentiation, thus increasing the number of differentiated cells for tissue engineering, regenerative medicine, and healing. Further studies are necessary to determine the LLLT or the LIPUS parameters, which are optimal for biostimsulating bony cells and SCs for bone healing and regenerative medicine.
Collapse
|
32
|
Effect of in vivo low-level laser therapy on bone marrow-derived mesenchymal stem cells in ovariectomy-induced osteoporosis of rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:29-36. [DOI: 10.1016/j.jphotobiol.2017.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 11/21/2022]
|
33
|
Pinheiro CCG, de Pinho MC, Aranha AC, Fregnani E, Bueno DF. Low Power Laser Therapy: A Strategy to Promote the Osteogenic Differentiation of Deciduous Dental Pulp Stem Cells from Cleft Lip and Palate Patients. Tissue Eng Part A 2017; 24:569-575. [PMID: 28699387 DOI: 10.1089/ten.tea.2017.0115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dental pulp stem cells (DPSCs) can undergo several types of differentiation, including osteogenic differentiation. One osteogenesis-inducing factor that has been previously described is in vitro low-power laser irradiation of cells. Laser irradiation promotes the acceleration of bone matrix mineralization of the cell strain. However, no consensus exists regarding the dose and treatment time. We used DPSC strains from cleft lip and palate patients because new bone tissue engineering strategies have used DPSCs in preclinical and clinical trials for the rehabilitation of alveolar bone clefts. Optimizing bone tissue engineering techniques for cleft and lip palate patients by applying low-power laser therapy (LPLT) to DPSCs obtained from these patients can help improve current strategies to quickly close large alveolar clefts. The aim of this study was to investigate the effects of LPLT at different energy densities in DPSC strains obtained from cleft lip and palate patients during in vitro osteogenic differentiation. Ten DPSC strains were obtained from cleft lip and palate patients and then used in the following study groups: group 1: control, the strains underwent osteogenic differentiation for 21 days; and groups 2, 3, and 4: the strains were irradiated each day with a low-power red laser (660 nm) (5, 10, and 20 J) during 21 days of osteogenic differentiation. Using Bonferroni's test, a statistically significant difference in the mean values was found between the irradiated groups (2, 3, and 4) and the control group (p < 0.001). However, no significant difference in osteogenic potential was found among the irradiated groups. Our findings showed that the osteogenic potential of DPSCs increases with red laser irradiation at 5, 10, and 20 J, and this treatment could be considered a new approach for preconditioning these cells to be used in bone tissue engineering.
Collapse
Affiliation(s)
- Carla C G Pinheiro
- Instituto de Ensino e Pesquisa, Hospital Sírio Libanês , São Paulo, São Paulo, Bela Vista, Brazil
| | - Milena C de Pinho
- Instituto de Ensino e Pesquisa, Hospital Sírio Libanês , São Paulo, São Paulo, Bela Vista, Brazil
| | - Ana Cecilia Aranha
- Instituto de Ensino e Pesquisa, Hospital Sírio Libanês , São Paulo, São Paulo, Bela Vista, Brazil
| | - Eduardo Fregnani
- Instituto de Ensino e Pesquisa, Hospital Sírio Libanês , São Paulo, São Paulo, Bela Vista, Brazil
| | - Daniela F Bueno
- Instituto de Ensino e Pesquisa, Hospital Sírio Libanês , São Paulo, São Paulo, Bela Vista, Brazil
| |
Collapse
|
34
|
Bozkurt SB, Hakki EE, Kayis SA, Dundar N, Hakki SS. Biostimulation with diode laser positively regulates cementoblast functions, in vitro. Lasers Med Sci 2017; 32:911-919. [PMID: 28332131 DOI: 10.1007/s10103-017-2192-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the effects of diode laser biostimulation on cementoblasts (OCCM.30). A total of 40 root plates were obtained from healthy third molar teeth and assigned to the following two groups: (1) control group and (2) laser-treated group. Root plates were placed into the cell culture inserts, and OCCM.30 cells were seeded onto root plates. Cells were irradiated with a low level of diode laser (power: 0.3 W in continuous wave, 60 s/cm2). Proliferation and mineralized tissue-associated gene's and BMP's messenger RNA (mRNA) expressions of cementoblasts were evaluated. Total RNAs were isolated on day 3 and integrin-binding sialoprotein (Ibsp), bone gamma-carboxyglutamate protein (Bglap), Type I collagen (Col1a1), osteoblastic transcription factor, runt-related transcription factor (Runx2), and Bone Morphogenetic Protein (BMP)-2, 3, 4, 6, and 7 mRNA expressions were determined using quantitative RT-PCR. von Kossa staining was performed to evaluate biomineralization of OCCM.30 cells. In the proliferation experiment, while there was no significant difference until 96 h, laser irradiation retarded the decrease in cell proliferation trend after 96 h compared to the untreated control group. Statistically significant increase in Ibsp, Bglap, and BMP-2,3,6,7 mRNA expressions were noted in the laser groups when compared to the untreated control group (p < 0.05). Laser irradiation induced mineralized nodule formation of cementoblasts. The results of this study reveal that the biostimulation setting of diode laser modulates the behavior of cementoblasts inducing mineralized tissue-associated gene's mRNA expressions and mineralization. Therefore, biostimulation can be used during regenerative periodontal therapies to trigger cells with periodontal attachment apparatus.
Collapse
Affiliation(s)
| | - Erdogan E Hakki
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Molecular Genetics & Biotechnology Laboratories, Selcuk University, Konya, Turkey
| | - Seyit Ali Kayis
- Faculty of Medicine, Department of Biostatistics, Karabuk University, Karabuk, Turkey
| | - Niyazi Dundar
- Faculty of Dentistry, Research Center, Selcuk University, Konya, Turkey
| | - Sema S Hakki
- Faculty of Dentistry, Research Center, Selcuk University, Konya, Turkey. .,Faculty of Dentistry, Department of Periodontology, Selcuk University, 42079, Konya, Turkey.
| |
Collapse
|
35
|
Bölükbaşı Ateş G, Ak Can A, Gülsoy M. Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts. Lasers Med Sci 2017; 32:591-599. [PMID: 28116535 DOI: 10.1007/s10103-017-2153-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 01/10/2023]
Abstract
Photobiomodulation (PBM) describes light-induced photochemical reactions achieved by the application of red or near infrared lasers/LED light with low energy densities. This noninvasive and painless method has been used in some clinical areas but controversial outcomes demand a skeptical look for its promising and potential effects. In this detailed in vitro study, the osteoblast cells were irradiated with 635 and 809 nm diode lasers at energy densities of 0.5, 1, and 2 J/cm2. Cell viability, proliferation, bone formation, and osteoblast differentiation were evaluated by methylthiazole tetrazolium (MTT) assay, Alamar Blue assay, acridine orange/propidium iodide staining, alkaline phosphatase (ALP) activity, Alizarin red staining, and reverse-transcription polymerase chain reaction (RT-PCR) to test the expression of collagen type I, ALPL, and osteocalcin. The results indicate that studied energy doses have a transient effect (48 h after laser irradiation) on the osteoblast viability and proliferation. Similarly, laser irradiation did not appear to have any effect on ALP activity. These results were confirmed by RT-PCR analysis of osteoblast markers. This study suggests that several irradiation parameters and variations in the methods should be clearly established in the laboratory before laser treatment becomes a postulated application for bone tissue regeneration in clinical level.
Collapse
Affiliation(s)
- Gamze Bölükbaşı Ateş
- Institute of Biomedical Engineering, Bogazici University, Uskudar, Istanbul, Turkey, 34684.
| | - Ayşe Ak Can
- Engineering Faculty, Biomedical Engineering, Erzincan University, Erzincan, Turkey, 24100
| | - Murat Gülsoy
- Institute of Biomedical Engineering, Bogazici University, Uskudar, Istanbul, Turkey, 34684
| |
Collapse
|
36
|
Oliveira FA, Matos AA, Santesso MR, Tokuhara CK, Leite AL, Bagnato VS, Machado MA, Peres-Buzalaf C, Oliveira RC. Low intensity lasers differently induce primary human osteoblast proliferation and differentiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:14-21. [DOI: 10.1016/j.jphotobiol.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/04/2016] [Indexed: 01/18/2023]
|
37
|
Scavone M, Armentano I, Fortunati E, Cristofaro F, Mattioli S, Torre L, Kenny JM, Imbriani M, Arciola CR, Visai L. Antimicrobial Properties and Cytocompatibility of PLGA/Ag Nanocomposites. MATERIALS 2016; 9:ma9010037. [PMID: 28787836 PMCID: PMC5456580 DOI: 10.3390/ma9010037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to investigate the antimicrobial properties of multifunctional nanocomposites based on poly(dl-Lactide-co-Glycolide) (PLGA) and increasing concentration of silver (Ag) nanoparticles and their effects on cell viability for biomedical applications. PLGA nanocomposite films, produced by solvent casting with 1 wt%, 3 wt% and 7 wt% of Ag nanoparticles were investigated and surface properties were characterized by atomic force microscopy and contact angle measurements. Antibacterial tests were performed using an Escherichia coli RB and Staphylococcus aureus 8325-4 strains. The cell viability and morphology were performed with a murine fibroblast cell line (L929) and a human osteosarcoma cell line (SAOS-2) by cell viability assay and electron microscopy observations. Matrix protein secretion and deposition were also quantified by enzyme-linked immunosorbent assay (ELISA). The results suggest that the PLGA film morphology can be modified introducing a small percentage of silver nanoparticles, which induce the onset of porous round-like microstructures and also affect the wettability. The PLGA/Ag films having silver nanoparticles of more than 3 wt% showed antibacterial effects against E. coli and S. aureus. Furthermore, silver-containing PLGA films displayed also a good cytocompatibility when assayed with L929 and SAOS-2 cells; indicating the PLGA/3Ag nanocomposite film as a promising candidate for tissue engineering applications.
Collapse
Affiliation(s)
- Mariangela Scavone
- Unité Mixte de Recherche (UMR) S949, Inserm, Strasbourg 67000, France.
- Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg 67000, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France.
- Université de Strasbourg, Strasbourg 67000, France.
| | - Ilaria Armentano
- Materials Engineering Center, UdR INSTM, University of Perugia, Terni 05100, Italy.
| | - Elena Fortunati
- Materials Engineering Center, UdR INSTM, University of Perugia, Terni 05100, Italy.
| | - Francesco Cristofaro
- Department of Molecular Medicine, INSTM UdR of Pavia, Biochemistry Unit, "A Castellani", Viale Taramelli, 3/b-27100 Pavia, Center for Health Technologies (C.H.T.), University of Pavia, Pavia 27100, Italy.
| | - Samantha Mattioli
- Materials Engineering Center, UdR INSTM, University of Perugia, Terni 05100, Italy.
| | - Luigi Torre
- Materials Engineering Center, UdR INSTM, University of Perugia, Terni 05100, Italy.
| | - Jose M Kenny
- Materials Engineering Center, UdR INSTM, University of Perugia, Terni 05100, Italy.
| | - Marcello Imbriani
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, Pavia 27100, Italy.
- Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS Pavia 27100, Italy.
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, and DIMES, University of Bologna, Via di Barbiano 1/10-40136, Bologna, Italy.
| | - Livia Visai
- Department of Molecular Medicine, INSTM UdR of Pavia, Biochemistry Unit, "A Castellani", Viale Taramelli, 3/b-27100 Pavia, Center for Health Technologies (C.H.T.), University of Pavia, Pavia 27100, Italy.
- Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS Pavia 27100, Italy.
| |
Collapse
|
38
|
Petecchia L, Sbrana F, Utzeri R, Vercellino M, Usai C, Visai L, Vassalli M, Gavazzo P. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca(2+)-related mechanisms. Sci Rep 2015; 5:13856. [PMID: 26364969 PMCID: PMC4568470 DOI: 10.1038/srep13856] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/07/2015] [Indexed: 12/22/2022] Open
Abstract
Exposure to Pulsed Electromagnetic Field (PEMF) has been shown to affect proliferation and differentiation of human mesenchymal stem cells derived from bone marrow stroma (BM-hMSC). These cells offer considerable promise in the field of regenerative medicine, but their clinical application is hampered by major limitations such as poor availability and the time required to differentiate up to a stage suitable for implantation. For this reason, several research efforts are focusing on identifying strategies to speed up the differentiation process. In this work we investigated the in vitro effect of PEMF on Ca2+-related mechanisms promoting the osteogenic differentiation of BM-hMSC. Cells were daily exposed to PEMF while subjected to osteogenic differentiation and various Ca2+-related mechanisms were monitored using multiple approaches for identifying functional and structural modifications related to this process. The results indicate that PEMF exposure promotes chemically induced osteogenesis by mechanisms that mainly interfere with some of the calcium-related osteogenic pathways, such as permeation and regulation of cytosolic concentration, leaving others, such as extracellular deposition, unaffected. The PEMF effect is primarily associated to early enhancement of intracellular calcium concentration, which is proposed here as a reliable hallmark of the osteogenic developmental stage.
Collapse
Affiliation(s)
- Loredana Petecchia
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Francesca Sbrana
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Roberto Utzeri
- Institute for Macromolecular Studies, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Marco Vercellino
- Dept. of Molecular Medicine, Centre for Health Technologies (C.H.T.), INSTM UdR of Pavia, University of Pavia, Italy.,Dept. of Occupational Medicine, Ergonomy and Disability, Laboratory of Nanotechnology, Salvatore Maugeri Foundation, IRCCS, Pavia, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Livia Visai
- Dept. of Molecular Medicine, Centre for Health Technologies (C.H.T.), INSTM UdR of Pavia, University of Pavia, Italy.,Dept. of Occupational Medicine, Ergonomy and Disability, Laboratory of Nanotechnology, Salvatore Maugeri Foundation, IRCCS, Pavia, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|
39
|
Crisan L, Soritau O, Baciut M, Baciut G, Crisan BV. The influence of laser radiation on human osteoblasts cultured on nanostructured composite substrates. ACTA ACUST UNITED AC 2015; 88:224-32. [PMID: 26528075 PMCID: PMC4576783 DOI: 10.15386/cjmed-433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/08/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Carbon-based nanomaterials such as carbon nanotubes, graphene oxide and graphene have been explored by researchers as well as the industry. Graphene is a new nanomaterial which has commercial and scientific advantages. Laser therapy has proven highly useful in biomedicine, with the use of different laser types and energies for distinct purposes. The low level laser therapy (LLLT) can have anti-inflammatory, analgesic and biostimulant effects. Recent research has shown that laser radiation has different effects on osteoblasts. The aim of this study was to identify the influence of laser radiation on human osteoblastic cells cultured on nanostructured composite substrates. MATERIALS AND METHODS Four types of substrates were created using colloidal suspensions of nanostructured composites in PBS at a concentration of 30 μg/ml. We used human osteoblasts isolated from patella bone pieces harvested during arthroplasty. Irradiation of osteoblasts cultured on nanostructured composite substrates was made with a semiconductor laser model BTL-10 having a wavelength of 830 nm. The proliferation activity of osteoblast cells was assessed using the MTT assay. After laser irradiation procedure the viability and proliferation of osteoblast cells were analyzed using fluorescein diacetate (FDA) staining. RESULTS The osteoblast cells viability and proliferation were evaluated with MTT assay at 30 minutes, 24 hours, 5 days and 10 days after laser irradiation. In the first 30 minutes there were no significant differences between the irradiated and non-irradiated cells. At 24 hours after laser irradiation procedure a significant increase of MTT values in case of irradiated osteoblasts cultivated on nanostructured hydroxyapatite, nanostructured hydroxyapatite with gold nanoparticles and 1.6% and 3.15% graphenes composites substrates was observed. A more marked proliferation rate was observed after 10 days of irradiation for irradiated osteoblasts seeded on nanostructured hydroxyapatite with gold nanoparticles and graphenes containing substrate. Using FDA staining we obtained very similar results with MTT test. CONCLUSIONS The association between the 830 nm laser irradiation of osteoblasts and their long-term cultivation of the nanostructured composite substrates induces the cell proliferation and differentiation and therefore it will be a useful alternative for bone regeneration therapy.
Collapse
Affiliation(s)
- Liana Crisan
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Olga Soritau
- Radiotherapy, Tumor and Radiobiology Laboratory, The Institute of Oncology Prof. Dr. Ion Chiricuţă, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Implantology and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan Vasile Crisan
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
40
|
Laser phototherapy enhances mesenchymal stem cells survival in response to the dental adhesives. ScientificWorldJournal 2015; 2015:671789. [PMID: 25879065 PMCID: PMC4386606 DOI: 10.1155/2015/671789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/03/2014] [Indexed: 01/27/2023] Open
Abstract
Background. We investigated the influence of laser phototherapy (LPT) on the survival of human mesenchymal stem cells (MSCs) submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2). After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey's test (P < 0.05). Results. Different cell types showed different viabilities in response to the same materials. Substances leached from adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives.
Collapse
|
41
|
Effect of Frequent Application of Low-Level Laser Therapy on Corticotomized Tooth Movement in Dogs: A Pilot Study. J Oral Maxillofac Surg 2014; 72:1182.e1-12. [DOI: 10.1016/j.joms.2014.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
|