1
|
Indoliya A, Pal K, Pattnaik AK, Poddar R. In vivo morphological study of obese development in mice model guided by swept-source optical coherence tomography (SSOCT). 3 Biotech 2022; 12:282. [PMID: 36276470 PMCID: PMC9482893 DOI: 10.1007/s13205-022-03351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/06/2022] [Indexed: 11/01/2022] Open
Abstract
This article shows the adequacy of the custom-built optical imaging system in the advancement investigation of obese mice. Obesity is defined as increased adipose/fatty mass resulting from a chronic imbalance between energy intake and expenditure. The in vivo investigation was performed for the tissue characterization of obese mice utilizing swept-source optical coherence tomography (SSOCT) for in situ examination and histology of delicate tissues in mice skin. It provides a noninvasive, painless visualization of the subsurface in life systems. Our SSOCT system's data is comparable to the regular invasive histology. Cross-assessment is done in various skin layers in obese mice like epidermis, papillary dermis, dermis, and fat tissue, which are likewise separated from the nonobese mice group. Histopathology results were further assessed with the obtained SSOCT results. This high precision of characterizing tissues using SSOCT helps us perform in vivo imaging and can also be used for the variable purpose of clinical practice.
Collapse
Affiliation(s)
- Abhishek Indoliya
- Biophotonics Lab, Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| | - Kaustav Pal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| | - Ashok Kumar Pattnaik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| | - Raju Poddar
- Biophotonics Lab, Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| |
Collapse
|
2
|
Huang PC, Iyer RR, Liu YZ, Boppart SA. Single-shot two-dimensional spectroscopic magnetomotive optical coherence elastography with graphics processing unit acceleration. OPTICS LETTERS 2020; 45:4124-4127. [PMID: 32735239 PMCID: PMC7539266 DOI: 10.1364/ol.397900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/23/2020] [Indexed: 05/03/2023]
Abstract
Biomechanical contrast within tissues can be assessed based on the resonant frequency probed by spectroscopic magnetomotive optical coherence elastography (MM-OCE). However, to date, in vivo MM-OCE imaging has not been achieved, mainly due to the constraints on imaging speed. Previously, spatially-resolved spectroscopic contrast was achieved in a "multiple-excitation, multiple-acquisition" manner, where seconds of coil cooling time set between consecutive imaging frames lead to total acquisition times of tens of minutes. Here, we demonstrate an improved data acquisition speed by providing a single chirped force excitation prior to magnetomotion imaging with a BM-scan configuration. In addition, elastogram reconstruction was accelerated by exploiting the parallel computing capability of a graphics processing unit (GPU). The accelerated MM-OCE platform achieved data acquisition in 2.9 s and post-processing in 0.6 s for a 2048-frame BM-mode stack. In addition, the elasticity sensing functionality was validated on tissue-mimicking phantoms with high spatial resolution. For the first time, to the best of our knowledge, MM-OCE images were acquired from the skin of a living mouse, demonstrating its feasibility for in vivo imaging.
Collapse
Affiliation(s)
- Pin-Chieh Huang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Larin KV, Scarcelli G, Yakovlev VV. Optical elastography and tissue biomechanics. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 31758675 PMCID: PMC6873628 DOI: 10.1117/1.jbo.24.11.110901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/31/2019] [Indexed: 05/18/2023]
Abstract
Mechanical forces play an important role in the behavior and development of biological systems and disease at all spatial scales, from cells and their constituents to tissues and organs. Such forces have a profound influence on the health, structural integrity, and normal function of cells and organs. Accurate knowledge of cell and tissue biomechanical properties is essential to map the distribution of forces and mechanical cues in biological systems. Cell and tissue biomechanical properties are also known to be important on their own as indicators of health or diseases state. Hence, optical elastography and biomechanics methods can aid in the understanding and clinical diagnosis of a wide variety of diseases. We provide a brief overview and highlight of the Optical Elastography and Tissue Biomechanics VI conference, which took place in San Francisco, February 2 and 3, 2019, as a part of Photonics West symposium.
Collapse
Affiliation(s)
- Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Giuliano Scarcelli
- University of Maryland, Department of Biomedical Engineering, College Park, Maryland, United States
| | - Vladislav V. Yakovlev
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|
4
|
Larin KV, Sampson DD. Optical coherence elastography - OCT at work in tissue biomechanics [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1172-1202. [PMID: 28271011 PMCID: PMC5330567 DOI: 10.1364/boe.8.001172] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence elastography (OCE), as the use of OCT to perform elastography has come to be known, began in 1998, around ten years after the rest of the field of elastography - the use of imaging to deduce mechanical properties of tissues. After a slow start, the maturation of OCT technology in the early to mid 2000s has underpinned a recent acceleration in the field. With more than 20 papers published in 2015, and more than 25 in 2016, OCE is growing fast, but still small compared to the companion fields of cell mechanics research methods, and medical elastography. In this review, we describe the early developments in OCE, and the factors that led to the current acceleration. Much of our attention is on the key recent advances, with a strong emphasis on future prospects, which are exceptionally bright.
Collapse
Affiliation(s)
- Kirill V Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas 77204-5060, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA;
| | - David D Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia;
| |
Collapse
|
5
|
Oldenburg AL, Blackmon RL, Sierchio JM. Magnetic and Plasmonic Contrast Agents in Optical Coherence Tomography. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6803913. [PMID: 27429543 PMCID: PMC4941814 DOI: 10.1109/jstqe.2016.2553084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optical coherence tomography (OCT) has gained widespread application for many biomedical applications, yet the traditional array of contrast agents used in incoherent imaging modalities do not provide contrast in OCT. Owing to the high biocompatibility of iron oxides and noble metals, magnetic and plasmonic nanoparticles, respectively, have been developed as OCT contrast agents to enable a range of biological and pre-clinical studies. Here we provide a review of these developments within the past decade, including an overview of the physical contrast mechanisms and classes of OCT system hardware addons needed for magnetic and plasmonic nanoparticle contrast. A comparison of the wide variety of nanoparticle systems is also presented, where the figures of merit depend strongly upon the choice of biological application.
Collapse
Affiliation(s)
- Amy L. Oldenburg
- Department of Physics and Astronomy, the Department of Biomedical Engineering, and the Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| | - Richard L. Blackmon
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| | - Justin M. Sierchio
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| |
Collapse
|
6
|
Huang PC, Pande P, Ahmad A, Marjanovic M, Spillman DR, Odintsov B, Boppart SA. Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6802816. [PMID: 28163565 PMCID: PMC5289667 DOI: 10.1109/jstqe.2015.2505147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic nanoparticles (MNPs) have been used in many diagnostic and therapeutic biomedical applications over the past few decades to enhance imaging contrast, steer drugs to targets, and treat tumors via hyperthermia. Optical coherence tomography (OCT) is an optical biomedical imaging modality that relies on the detection of backscattered light to generate high-resolution cross-sectional images of biological tissue. MNPs have been utilized as imaging contrast and perturbative mechanical agents in OCT in techniques called magnetomotive OCT (MM-OCT) and magnetomotive elastography (MM-OCE), respectively. MNPs have also been independently used for magnetic hyperthermia treatments, enabling therapeutic functions such as killing tumor cells. It is well known that the localized tissue heating during hyperthermia treatments result in a change in the biomechanical properties of the tissue. Therefore, we propose a novel dosimetric technique for hyperthermia treatment based on the viscoelasticity change detected by MM-OCE, further enabling the theranostic function of MNPs. In this paper, we first review the basic principles and applications of MM-OCT, MM-OCE, and magnetic hyperthermia, and present new preliminary results supporting the concept of MM-OCE-based hyperthermia dosimetry.
Collapse
Affiliation(s)
- Pin-Chieh Huang
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, and the Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Paritosh Pande
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Adeel Ahmad
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Marina Marjanovic
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, and the Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Darold R Spillman
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Boris Odintsov
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Stephen A Boppart
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, and the Departments of Electrical and Computer Engineering, Bioengineering, and Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (phone: 217-333-8598; fax: 217-333-5833; )
| |
Collapse
|
7
|
Kim J, Ahmad A, Li J, Marjanovic M, Chaney EJ, Suslick KS, Boppart SA. Intravascular magnetomotive optical coherence tomography of targeted early-stage atherosclerotic changes in ex vivo hyperlipidemic rabbit aortas. JOURNAL OF BIOPHOTONICS 2016; 9:109-16. [PMID: 25688525 PMCID: PMC4996077 DOI: 10.1002/jbio.201400128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/14/2014] [Accepted: 01/02/2015] [Indexed: 05/19/2023]
Abstract
We report the development of an intravascular magnetomotive optical coherence tomography (IV-MM-OCT) system used with targeted protein microspheres to detect early-stage atherosclerotic fatty streaks/plaques. Magnetic microspheres (MSs) were injected in vivo in rabbits, and after 30 minutes of in vivo circulation, excised ex vivo rabbit aorta samples specimens were then imaged ex vivo with our prototype IV-MM-OCT system. The alternating magnetic field gradient was provided by a unique pair of external custom-built electromagnetic coils that modulated the targeted magnetic MSs. The results showed a statistically significant MM-OCT signal from the aorta samples specimens injected with targeted MSs.
Collapse
Affiliation(s)
- Jongsik Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Adeel Ahmad
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Joanne Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Kenneth S. Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Department of Internal Medicine, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Corresponding author: , Phone: +01 217 333 8598, Fax: +01 217 333 5833
| |
Collapse
|
8
|
Ahmad A, Huang PC, Sobh NA, Pande P, Kim J, Boppart SA. Mechanical contrast in spectroscopic magnetomotive optical coherence elastography. Phys Med Biol 2015; 60:6655-68. [PMID: 26271056 DOI: 10.1088/0031-9155/60/17/6655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The viscoelastic properties of tissues are altered during pathogenesis of numerous diseases and can therefore be a useful indicator of disease status and progression. Several elastography studies have utilized the mechanical frequency response and the resonance frequencies of tissue samples to characterize their mechanical properties. However, using the resonance frequency as a source of mechanical contrast in heterogeneous samples is complicated because it not only depends on the viscoelastic properties but also on the geometry and boundary conditions. In an elastography technique called magnetomotive optical coherence elastography (MM-OCE), the controlled movement of magnetic nanoparticles (MNPs) within the sample is used to obtain the mechanical properties. Previous demonstrations of MM-OCE have typically used point measurements in elastically homogeneous samples assuming a uniform concentration of MNPs. In this study, we evaluate the feasibility of generating MM-OCE elastograms in heterogeneous samples based on a spectroscopic approach which involves measuring the magnetomotive response at different excitation frequencies. Biological tissues and tissue-mimicking phantoms with two elastically distinct regions placed in side-by-side and bilayer configurations were used for the experiments, and finite element method simulations were used to validate the experimental results.
Collapse
Affiliation(s)
- Adeel Ahmad
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana IL 61801, USA. Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 North Wright Street, Urbana IL 61801, USA
| | | | | | | | | | | |
Collapse
|