1
|
Chuchin VY, Masharskaya AA, Belikov AV. Investigation of Changes in the Reflection Spectrum of Human Blood When Exposed to Laser Radiation With Wavelengths of 450 or 980 nm. JOURNAL OF BIOPHOTONICS 2024:e202400251. [PMID: 39428559 DOI: 10.1002/jbio.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVES This study aimed to determine and explain changes in the reflectance spectrum of human blood in vitro when exposed to laser radiation at wavelengths of 450 or 980 nm. METHODS Reflectance spectra of venous blood samples were measured before and after exposure to a single pulse of 450 or 980 nm laser radiation. A numerical optical model based on the Monte Carlo method was applied. RESULTS Laser irradiation at 450 and 980 nm caused the most significant changes in the reflectance spectrum around 600 nm, associated with alterations in blood oxygen saturation. The maximum efficiency of reducing oxygen saturation was 0.20%/W for 980 nm and 0.72%/W for 450 nm, likely due to differences in blood absorption at these wavelengths. CONCLUSIONS The greatest change in intensity reflectance spectra and oxygen saturation of human venous blood occurs when exposed to laser radiation at 450 nm, not at 980 nm.
Collapse
Affiliation(s)
- V Yu Chuchin
- ITMO University, Saint-Petersburg, Russia
- "NPP Volo" LLC, Saint-Petersburg, Russia
| | | | - A V Belikov
- ITMO University, Saint-Petersburg, Russia
- Pavlov First St. Petersburg State Medical University, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Nazarian S, Gkouzionis I, Kawka M, Jamroziak M, Lloyd J, Darzi A, Patel N, Elson DS, Peters CJ. Real-time Tracking and Classification of Tumor and Nontumor Tissue in Upper Gastrointestinal Cancers Using Diffuse Reflectance Spectroscopy for Resection Margin Assessment. JAMA Surg 2022; 157:e223899. [PMID: 36069888 PMCID: PMC9453631 DOI: 10.1001/jamasurg.2022.3899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Importance Cancers of the upper gastrointestinal tract remain a major contributor to the global cancer burden. The accurate mapping of tumor margins is of particular importance for curative cancer resection and improvement in overall survival. Current mapping techniques preclude a full resection margin assessment in real time. Objective To evaluate whether diffuse reflectance spectroscopy (DRS) on gastric and esophageal cancer specimens can differentiate tissue types and provide real-time feedback to the operator. Design, Setting, and Participants This was a prospective ex vivo validation study. Patients undergoing esophageal or gastric cancer resection were prospectively recruited into the study between July 2020 and July 2021 at Hammersmith Hospital in London, United Kingdom. Tissue specimens were included for patients undergoing elective surgery for either esophageal carcinoma (adenocarcinoma or squamous cell carcinoma) or gastric adenocarcinoma. Exposures A handheld DRS probe and tracking system was used on freshly resected ex vivo tissue to obtain spectral data. Binary classification, following histopathological validation, was performed using 4 supervised machine learning classifiers. Main Outcomes and Measures Data were divided into training and testing sets using a stratified 5-fold cross-validation method. Machine learning classifiers were evaluated in terms of sensitivity, specificity, overall accuracy, and the area under the curve. Results Of 34 included patients, 22 (65%) were male, and the median (range) age was 68 (35-89) years. A total of 14 097 mean spectra for normal and cancerous tissue were collected. For normal vs cancer tissue, the machine learning classifier achieved a mean (SD) overall diagnostic accuracy of 93.86% (0.66) for stomach tissue and 96.22% (0.50) for esophageal tissue and achieved a mean (SD) sensitivity and specificity of 91.31% (1.5) and 95.13% (0.8), respectively, for stomach tissue and of 94.60% (0.9) and 97.28% (0.6) for esophagus tissue. Real-time tissue tracking and classification was achieved and presented live on screen. Conclusions and Relevance This study provides ex vivo validation of the DRS technology for real-time differentiation of gastric and esophageal cancer from healthy tissue using machine learning with high accuracy. As such, it is a step toward the development of a real-time in vivo tumor mapping tool for esophageal and gastric cancers that can aid decision-making of resection margins intraoperatively.
Collapse
Affiliation(s)
- Scarlet Nazarian
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ioannis Gkouzionis
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom,Hamlyn Centre, Imperial College London, London, United Kingdom
| | - Michal Kawka
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Marta Jamroziak
- Histopathology Department, Imperial College NHS Trust, London, United Kingdom
| | - Josephine Lloyd
- Histopathology Department, Imperial College NHS Trust, London, United Kingdom
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom,Hamlyn Centre, Imperial College London, London, United Kingdom
| | - Nisha Patel
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Daniel S. Elson
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom,Hamlyn Centre, Imperial College London, London, United Kingdom
| | | |
Collapse
|
3
|
Geoghegan R, Zhang L, Priester A, Wu HH, Marks L, Natarajan S. Interstitial Optical Monitoring of Focal Laser Ablation. IEEE Trans Biomed Eng 2022; 69:2545-2556. [PMID: 35148260 PMCID: PMC9371599 DOI: 10.1109/tbme.2022.3150279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Focal laser ablation is a minimally invasive method of treating cancerous lesions in organs such as prostate, liver and brain. Oncologic control is achieved by inducing hyperthermia throughout the target while minimizing damage to surrounding tissue. Consequently, successful clinical outcomes are contingent upon achieving desired ablation volumes. Magnetic resonance thermometry is frequently used to monitor the formation of the induced thermal damage zone and inform the decision to terminate energy delivery. However, due to the associated cost and complexity there is growing interest in the development of alternative approaches. Here we investigate the utility of real-time interstitial interrogation of laser-tissue interaction as an inexpensive alternative monitoring modality that provides direct assessment of tissue coagulation without the need for organ specific calibration. The optical contrast mechanism was determined using a Monte Carlo model. Subsequently, four interstitial probe designs were manufactured and assessed in a tissue mimicking phantom under simultaneous magnetic resonance imaging. Finally, the optimal probe design was evaluated in ex vivo bovine muscle. It was found to be capable of providing sufficient feedback to achieve pre-defined ablation radii in the range 4-7mm with a mean absolute error of 0.3mm. This approach provides an inexpensive monitoring modality that may facilitate widespread adoption of focal laser ablation.
Collapse
|
4
|
Geoghegan R, Ter Haar G, Nightingale K, Marks L, Natarajan S. Methods of monitoring thermal ablation of soft tissue tumors - A comprehensive review. Med Phys 2022; 49:769-791. [PMID: 34965307 DOI: 10.1002/mp.15439] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 11/30/2020] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
Thermal ablation is a form of hyperthermia in which oncologic control can be achieved by briefly inducing elevated temperatures, typically in the range 50-80°C, within a target tissue. Ablation modalities include high intensity focused ultrasound, radiofrequency ablation, microwave ablation, and laser interstitial thermal therapy which are all capable of generating confined zones of tissue destruction, resulting in fewer complications than conventional cancer therapies. Oncologic control is contingent upon achieving predefined coagulation zones; therefore, intraoperative assessment of treatment progress is highly desirable. Consequently, there is a growing interest in the development of ablation monitoring modalities. The first section of this review presents the mechanism of action and common applications of the primary ablation modalities. The following section outlines the state-of-the-art in thermal dosimetry which includes interstitial thermal probes and radiologic imaging. Both the physical mechanism of measurement and clinical or pre-clinical performance are discussed for each ablation modality. Thermal dosimetry must be coupled with a thermal damage model as outlined in Section 4. These models estimate cell death based on temperature-time history and are inherently tissue specific. In the absence of a reliable thermal model, the utility of thermal monitoring is greatly reduced. The final section of this review paper covers technologies that have been developed to directly assess tissue conditions. These approaches include visualization of non-perfused tissue with contrast-enhanced imaging, assessment of tissue mechanical properties using ultrasound and magnetic resonance elastography, and finally interrogation of tissue optical properties with interstitial probes. In summary, monitoring thermal ablation is critical for consistent clinical success and many promising technologies are under development but an optimal solution has yet to achieve widespread adoption.
Collapse
Affiliation(s)
- Rory Geoghegan
- Department of Urology, University of California Los Angeles, Los Angeles, California, USA
| | - Gail Ter Haar
- Department of Physics, Institute of Cancer Research, University of London, Sutton, UK
| | - Kathryn Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Leonard Marks
- Department of Urology, University of California Los Angeles, Los Angeles, California, USA
| | - Shyam Natarajan
- Departments of Urology & Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Lanka P, Francis KJ, Kruit H, Farina A, Cubeddu R, Sekar SKV, Manohar S, Pifferi A. Optical signatures of radiofrequency ablation in biological tissues. Sci Rep 2021; 11:6579. [PMID: 33753778 PMCID: PMC7985316 DOI: 10.1038/s41598-021-85653-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Accurate monitoring of treatment is crucial in minimally-invasive radiofrequency ablation in oncology and cardiovascular disease. We investigated alterations in optical properties of ex-vivo bovine tissues of the liver, heart, muscle, and brain, undergoing the treatment. Time-domain diffuse optical spectroscopy was used, which enabled us to disentangle and quantify absorption and reduced scattering spectra. In addition to the well-known global (1) decrease in absorption, and (2) increase in reduced scattering, we uncovered new features based on sensitive detection of spectral changes. These absorption spectrum features are: (3) emergence of a peak around 840 nm, (4) redshift of the 760 nm deoxyhemoglobin peak, and (5) blueshift of the 970 nm water peak. Treatment temperatures above 100 °C led to (6) increased absorption at shorter wavelengths, and (7) further decrease in reduced scattering. This optical behavior provides new insights into tissue response to thermal treatment and sets the stage for optical monitoring of radiofrequency ablation.
Collapse
Affiliation(s)
- Pranav Lanka
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Kalloor Joseph Francis
- Multi-Modality Medical Imaging Group, University of Twente, Enschede, The Netherlands.,Biomedical Photonic Imaging Group Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Hindrik Kruit
- Multi-Modality Medical Imaging Group, University of Twente, Enschede, The Netherlands
| | - Andrea Farina
- Institute of Photonics and Nanotechnologies, National Research Council, Milan, Italy.
| | | | | | - Srirang Manohar
- Multi-Modality Medical Imaging Group, University of Twente, Enschede, The Netherlands
| | - Antonio Pifferi
- Department of Physics, Politecnico di Milano, Milan, Italy.,Institute of Photonics and Nanotechnologies, National Research Council, Milan, Italy
| |
Collapse
|
6
|
De Landro M, Espíritu García-Molina I, Barberio M, Felli E, Agnus V, Pizzicannella M, Diana M, Zappa E, Saccomandi P. Hyperspectral Imagery for Assessing Laser-Induced Thermal State Change in Liver. SENSORS 2021; 21:s21020643. [PMID: 33477656 PMCID: PMC7831494 DOI: 10.3390/s21020643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
This work presents the potential of hyperspectral imaging (HSI) to monitor the thermal outcome of laser ablation therapy used for minimally invasive tumor removal. Our main goal is the establishment of indicators of the thermal damage of living tissues, which can be used to assess the effect of the procedure. These indicators rely on the spectral variation of temperature-dependent tissue chromophores, i.e., oxyhemoglobin, deoxyhemoglobin, methemoglobin, and water. Laser treatment was performed at specific temperature thresholds (from 60 to 110 °C) on in-vivo animal liver and was assessed with a hyperspectral camera (500-995 nm) during and after the treatment. The indicators were extracted from the hyperspectral images after the following processing steps: the breathing motion compensation and the spectral and spatial filtering, the selection of spectral bands corresponding to specific tissue chromophores, and the analysis of the areas under the curves for each spectral band. Results show that properly combining spectral information related to deoxyhemoglobin, methemoglobin, lipids, and water allows for the segmenting of different zones of the laser-induced thermal damage. This preliminary investigation provides indicators for describing the thermal state of the liver, which can be employed in the future as clinical endpoints of the procedure outcome.
Collapse
Affiliation(s)
- Martina De Landro
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (M.D.L.); (I.E.G.-M.); (E.Z.)
| | | | - Manuel Barberio
- IHU-Strasbourg, 67000 Strasbourg, France; (M.B.); (E.F.); (V.A.); (M.P.); (M.D.)
- Department of General Surgery, Ospedale Card. G. Panico, 73039 Tricase, Italy
| | - Eric Felli
- IHU-Strasbourg, 67000 Strasbourg, France; (M.B.); (E.F.); (V.A.); (M.P.); (M.D.)
| | - Vincent Agnus
- IHU-Strasbourg, 67000 Strasbourg, France; (M.B.); (E.F.); (V.A.); (M.P.); (M.D.)
| | | | - Michele Diana
- IHU-Strasbourg, 67000 Strasbourg, France; (M.B.); (E.F.); (V.A.); (M.P.); (M.D.)
- Research Institute against Cancer of the Digestive System IRCAD, 67091 Strasbourg, France
- ICube Laboratory, Photonics Instrumentation for Health, 67400 Strasbourg, France
| | - Emanuele Zappa
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (M.D.L.); (I.E.G.-M.); (E.Z.)
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (M.D.L.); (I.E.G.-M.); (E.Z.)
- Correspondence:
| |
Collapse
|
7
|
Amiri SA, Van Gent CM, Dankelman J, Hendriks BHW. Intraoperative tumor margin assessment using diffuse reflectance spectroscopy: the effect of electrosurgery on tissue discrimination using ex vivo animal tissue models. BIOMEDICAL OPTICS EXPRESS 2020; 11:2402-2415. [PMID: 32499933 PMCID: PMC7249845 DOI: 10.1364/boe.385621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Using an intraoperative margin assessment technique during breast-conserving surgery (BCS) helps surgeons to decrease the risk of positive margin occurrence. Diffuse reflectance spectroscopy (DRS) has the potential to discriminate healthy breast tissue from cancerous tissue. We investigated the performance of an electrosurgical knife integrated with a DRS on porcine muscle and adipose tissue. Characterization of the formed debris on the optical fibers after electrosurgery revealed that the contamination is mostly burned tissue. Even with contaminated optical fibers, both tissues could still be discriminated with DRS based on fat/water ratio. Therefore, an electrosurgical knife integrated with DRS may be a promising technology to provide the surgeon with real-time guidance during BCS.
Collapse
Affiliation(s)
- Sara Azizian Amiri
- Delft University of Technology, Biomechanical Engineering Department, Delft, The Netherlands
| | - Carlijn M. Van Gent
- Delft University of Technology, Biomechanical Engineering Department, Delft, The Netherlands
| | - Jenny Dankelman
- Delft University of Technology, Biomechanical Engineering Department, Delft, The Netherlands
| | - Benno H. W. Hendriks
- Delft University of Technology, Biomechanical Engineering Department, Delft, The Netherlands
- Philips Research, In-Body Systems Department, Eindhoven, The Netherlands
| |
Collapse
|
8
|
Swamy A, Burström G, Spliethoff JW, Babic D, Reich C, Groen J, Edström E, Elmi Terander A, Racadio JM, Dankelman J, Hendriks BHW. Diffuse reflectance spectroscopy, a potential optical sensing technology for the detection of cortical breaches during spinal screw placement. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 30701722 PMCID: PMC6985697 DOI: 10.1117/1.jbo.24.1.017002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/07/2019] [Indexed: 05/08/2023]
Abstract
Safe and accurate placement of screws remains a critical issue in open and minimally invasive spine surgery. We propose to use diffuse reflectance (DR) spectroscopy as a sensing technology at the tip of a surgical instrument to ensure a safe path of the instrument through the cancellous bone of the vertebrae. This approach could potentially reduce the rate of cortical bone breaches, thereby resulting in fewer neural and vascular injuries during spinal fusion surgery. In our study, DR spectra in the wavelength ranges of 400 to 1600 nm were acquired from cancellous and cortical bone from three human cadavers. First, it was investigated whether these spectra can be used to distinguish between the two bone types based on fat, water, and blood content along with photon scattering. Subsequently, the penetration of the bone by an optical probe was simulated using the Monte-Carlo (MC) method, to study if the changes in fat content along the probe path would still enable distinction between the bone types. Finally, the simulation findings were validated via an experimental insertion of an optical screw probe into the vertebra aided by x-ray image guidance. The DR spectra indicate that the amount of fat, blood, and photon scattering is significantly higher in cancellous bone than in cortical bone (p < 0.01), which allows distinction between the bone types. The MC simulations showed a change in fat content more than 1 mm before the optical probe came in contact with the cortical bone. The experimental insertion of the optical screw probe gave similar results. This study shows that spectral tissue sensing, based on DR spectroscopy at the instrument tip, is a promising technology to identify the transition zone from cancellous to cortical vertebral bone. The technology therefore has the potential to improve the safety and accuracy of spinal screw placement procedures.
Collapse
Affiliation(s)
- Akash Swamy
- Delft University of Technology, Department of Biomechanical Engineering, Delft, Netherlands
- Department of In-Body Systems, Philips Research, Royal Philips NV, Eindhoven, Netherlands
- Address all correspondence to Akash Swamy, E-mail:
| | - Gustav Burström
- Karolinska Institutet, Department of Clinical Neuroscience, Section for Neurosurgery, Stockholm, Sweden
- Karolinska University Hospital, Department of Neurosurgery, Stockholm, Sweden
| | - Jarich W. Spliethoff
- Department of In-Body Systems, Philips Research, Royal Philips NV, Eindhoven, Netherlands
| | - Drazenko Babic
- Department of In-Body Systems, Philips Research, Royal Philips NV, Eindhoven, Netherlands
| | - Christian Reich
- Department of In-Body Systems, Philips Research, Royal Philips NV, Eindhoven, Netherlands
| | - Joanneke Groen
- Department of In-Body Systems, Philips Research, Royal Philips NV, Eindhoven, Netherlands
| | - Erik Edström
- Karolinska Institutet, Department of Clinical Neuroscience, Section for Neurosurgery, Stockholm, Sweden
- Karolinska University Hospital, Department of Neurosurgery, Stockholm, Sweden
| | - Adrian Elmi Terander
- Karolinska Institutet, Department of Clinical Neuroscience, Section for Neurosurgery, Stockholm, Sweden
- Karolinska University Hospital, Department of Neurosurgery, Stockholm, Sweden
| | - John M. Racadio
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States
| | - Jenny Dankelman
- Delft University of Technology, Department of Biomechanical Engineering, Delft, Netherlands
| | - Benno H. W. Hendriks
- Delft University of Technology, Department of Biomechanical Engineering, Delft, Netherlands
- Department of In-Body Systems, Philips Research, Royal Philips NV, Eindhoven, Netherlands
| |
Collapse
|
9
|
Adank MW, Fleischer JC, Dankelman J, Hendriks BHW. Real-time oncological guidance using diffuse reflectance spectroscopy in electrosurgery: the effect of coagulation on tissue discrimination. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 30447060 DOI: 10.1117/1.jbo.23.11.115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/15/2018] [Indexed: 05/15/2023]
Abstract
In breast surgery, a lack of knowledge about what is below the tissue surface may lead to positive tumor margins and iatrogenic damage. Diffuse reflectance spectroscopy (DRS) is a spectroscopic technique that can distinguish between healthy and tumor tissue making it a suitable technology for intraoperative guidance. However, because tumor surgeries are often performed with an electrosurgical knife, the effect of a coagulated tissue layer on DRS measurements must be taken into account. It is evaluated whether real-time DRS measurements obtained with a photonic electrosurgical knife could provide useful information of tissue properties also when tissue is coagulated and cut. The size of the coagulated area is determined and the effect of its presence on DR spectra is studied using ex vivo porcine adipose and muscle tissue. A coagulated tissue layer with a depth of 0.1 to 0.4 mm is observed after coagulating muscle with an electrosurgical knife. The results show that the effect of coagulating adipose tissue is negligible. Using the fat/water ratio's calculated from the measured spectra of the photonic electrosurgical knife, it was possible to determine the distance from the instrument tip to a tissue transition during cutting. In conclusion, the photonic electrosurgical knife can determine tissue properties of coagulated and cut tissue and has, therefore, the potential to provide real-time feedback about the presence of breast tumor margins during cutting, helping surgeons to establish negative margins and improve patient outcome.
Collapse
Affiliation(s)
- Maartje W Adank
- Delft University of Technology, Biomechanical Engineering Department, Delft, The Netherlands
| | - Julie C Fleischer
- Delft University of Technology, Biomechanical Engineering Department, Delft, The Netherlands
| | - Jenny Dankelman
- Delft University of Technology, Biomechanical Engineering Department, Delft, The Netherlands
| | - Benno H W Hendriks
- Delft University of Technology, Biomechanical Engineering Department, Delft, The Netherlands
- Philips Research, In-Body Systems Department, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Brouwer de Koning SG, Baltussen EJM, Karakullukcu MB, Dashtbozorg B, Smit LA, Dirven R, Hendriks BHW, Sterenborg HJCM, Ruers TJM. Toward complete oral cavity cancer resection using a handheld diffuse reflectance spectroscopy probe. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 30341837 DOI: 10.1117/1.jbo.23.12.121611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 05/15/2023]
Abstract
This ex-vivo study evaluates the feasibility of diffuse reflectance spectroscopy (DRS) for discriminating tumor from healthy tissue, with the aim to develop a technology that can assess resection margins for the presence of tumor cells during oral cavity cancer surgery. Diffuse reflectance spectra were acquired on fresh surgical specimens from 28 patients with oral cavity squamous cell carcinoma. The spectra (400 to 1600 nm) were detected after illuminating tissue with a source fiber at 0.3-, 0.7-, 1.0-, and 2.0-mm distances from a detection fiber, obtaining spectral information from different sampling depths. The spectra were correlated with histopathology. A total of 76 spectra were obtained from tumor tissue and 110 spectra from healthy muscle tissue. The first- and second-order derivatives of the spectra were calculated and a classification algorithm was developed using fivefold cross validation with a linear support vector machine. The best results were obtained by the reflectance measured with a 1-mm source-detector distance (sensitivity, specificity, and accuracy are 89%, 82%, and 86%, respectively). DRS can accurately discriminate tumor from healthy tissue in an ex-vivo setting using a 1-mm source-detector distance. Accurate validation methods are warranted for larger sampling depths to allow for guidance during oral cavity cancer excision.
Collapse
Affiliation(s)
- Susan G Brouwer de Koning
- Netherlands Cancer Institute, Antoni van Leeuwenhoek, Department of Surgery, Amsterdam, The Netherlands
| | - Elisabeth J M Baltussen
- Netherlands Cancer Institute, Antoni van Leeuwenhoek, Department of Surgery, Amsterdam, The Netherlands
| | - M Baris Karakullukcu
- Netherlands Cancer Institute, Antoni van Leeuwenhoek, Department of Surgery, Amsterdam, The Netherlands
| | - Behdad Dashtbozorg
- Netherlands Cancer Institute, Antoni van Leeuwenhoek, Department of Surgery, Amsterdam, The Netherlands
| | - Laura A Smit
- Netherlands Cancer Institute, Antoni van Leeuwenhoek, Department of Pathology, Amsterdam, The Netherlands
| | - Richard Dirven
- Netherlands Cancer Institute, Antoni van Leeuwenhoek, Department of Surgery, Amsterdam, The Netherlands
| | - Benno H W Hendriks
- Philips Research, Department of In-body Systems, Eindhoven, The Netherlands
- Delft University of Technology, Department of Biomechanical Engineering, Delft, The Netherlands
| | - Henricus J C M Sterenborg
- Netherlands Cancer Institute, Antoni van Leeuwenhoek, Department of Surgery, Amsterdam, The Netherlands
- Academic Medical Centre, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Theo J M Ruers
- Netherlands Cancer Institute, Antoni van Leeuwenhoek, Department of Surgery, Amsterdam, The Netherlands
- University of Twente, MIRA Institute, Enschede, The Netherlands
| |
Collapse
|
11
|
Zhao J, Zhao Q, Jiang Y, Li W, Yang Y, Qian Z, Liu J. Feasibility study of modeling liver thermal damage using minimally invasive optical method adequate for in situ measurement. JOURNAL OF BIOPHOTONICS 2018; 11:e201700302. [PMID: 29316303 DOI: 10.1002/jbio.201700302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Liver thermal ablation techniques have been widely used for the treatment of liver cancer. Kinetic model of damage propagation play an important role for ablation prediction and real-time efficacy assessment. However, practical methods for modeling liver thermal damage are rare. A minimally invasive optical method especially adequate for in situ liver thermal damage modeling is introduced in this paper. Porcine liver tissue was heated by water bath under different temperatures. During thermal treatment, diffuse reflectance spectrum of liver was measured by optical fiber and used to deduce reduced scattering coefficient (μ's ). Arrhenius parameters were obtained through non-isothermal heating approach with damage marker of μ's . Activation energy (Ea ) and frequency factor (A) was deduced from these experiments. A pair of averaged value is 1.200 × 105 J mol-1 and 4.016 × 1017 s-1 . The results were verified for their reasonableness and practicality. Therefore, it is feasible to modeling liver thermal damage based on minimally invasive measurement of optical property and in situ kinetic analysis of damage progress with Arrhenius model. These parameters and this method are beneficial for preoperative planning and real-time efficacy assessment of liver ablation therapy.
Collapse
Affiliation(s)
- Jinzhe Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qi Zhao
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yingxu Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jia Liu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
12
|
Baltussen EJM, Snaebjornsson P, de Koning SGB, Sterenborg HJCM, Aalbers AGJ, Kok N, Beets GL, Hendriks BHW, Kuhlmann KFD, Ruers TJM. Diffuse reflectance spectroscopy as a tool for real-time tissue assessment during colorectal cancer surgery. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-6. [PMID: 29076310 DOI: 10.1117/1.jbo.22.10.106014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/02/2017] [Indexed: 05/11/2023]
Abstract
Colorectal surgery is the standard treatment for patients with colorectal cancer. To overcome two of the main challenges, the circumferential resection margin and postoperative complications, real-time tissue assessment could be of great benefit during surgery. In this ex vivo study, diffuse reflectance spectroscopy (DRS) was used to differentiate tumor tissue from healthy surrounding tissues in patients with colorectal neoplasia. DRS spectra were obtained from tumor tissue, healthy colon, or rectal wall and fat tissue, for every patient. Data were randomly divided into training (80%) and test (20%) sets. After spectral band selection, the spectra were classified using a quadratic classifier and a linear support vector machine. Of the 38 included patients, 36 had colorectal cancer and 2 had an adenoma. When the classifiers were applied to the test set, colorectal cancer could be discriminated from healthy tissue with an overall accuracy of 0.95 (±0.03). This study demonstrates the possibility to separate colorectal cancer from healthy surrounding tissue by applying DRS. High classification accuracies were obtained both in homogeneous and inhomogeneous tissues. This is a fundamental step toward the development of a tool for real-time in vivo tissue assessment during colorectal surgery.
Collapse
Affiliation(s)
- Elisabeth J M Baltussen
- Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Petur Snaebjornsson
- Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Department of Pathology, Amsterdam, The Netherlands
| | - Susan G Brouwer de Koning
- Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Henricus J C M Sterenborg
- Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
- Academic Medical Centre, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Arend G J Aalbers
- Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Niels Kok
- Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Geerard L Beets
- Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Benno H W Hendriks
- Philips Research, Department of In-body Systems, Eindhoven, The Netherlands
- Delft University of Technology, Department of Biomechanical Engineering, Delft, The Netherlands
| | - Koert F D Kuhlmann
- Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Theo J M Ruers
- Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
- Technical University Twente, MIRA Institute, Enschede, The Netherlands
| |
Collapse
|
13
|
Spliethoff JW, de Boer LL, Meier MAJ, Prevoo W, de Jong J, Kuhlmann K, Bydlon TM, Sterenborg HJCM, Hendriks BHW, Ruers TJM. In vivo characterization of colorectal metastases in human liver using diffuse reflectance spectroscopy: toward guidance in oncological procedures. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:97004. [PMID: 27637008 PMCID: PMC8357329 DOI: 10.1117/1.jbo.21.9.097004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/30/2016] [Indexed: 05/15/2023]
Abstract
There is a strong need to develop clinical instruments that can perform rapid tissue assessment at the tip of smart clinical instruments for a variety of oncological applications. This study presents the first in vivo real-time tissue characterization during 24 liver biopsy procedures using diffuse reflectance (DR) spectroscopy at the tip of a core biopsy needle with integrated optical fibers. DR measurements were performed along each needle path, followed by biopsy of the target lesion using the same needle. Interventional imaging was coregistered with the DR spectra. Pathology results were compared with the DR spectroscopy data at the final measurement position. Bile was the primary discriminator between normal liver tissue and tumor tissue. Relative differences in bile content matched with the tissue diagnosis based on histopathological analysis in all 24 clinical cases. Continuous DR measurements during needle insertion in three patients showed that the method can also be applied for biopsy guidance or tumor recognition during surgery. This study provides an important validation step for DR spectroscopy-based tissue characterization in the liver. Given the feasibility of the outlined approach, it is also conceivable to make integrated fiber-optic tools for other clinical procedures that rely on accurate instrument positioning.
Collapse
Affiliation(s)
- Jarich W. Spliethoff
- Netherlands Cancer Institute, Department of Surgery, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Address all correspondence to: Jarich W. Spliethoff, E-mail:
| | - Lisanne L. de Boer
- Netherlands Cancer Institute, Department of Surgery, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Mark A. J. Meier
- Netherlands Cancer Institute, Department of Radiology, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Warner Prevoo
- Netherlands Cancer Institute, Department of Radiology, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jeroen de Jong
- Netherlands Cancer Institute, Department of Pathology, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Koert Kuhlmann
- Netherlands Cancer Institute, Department of Surgery, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Torre M. Bydlon
- Philips Research, Department In-body Systems, High Tech Campus 34, 5656AE Eindhoven, The Netherlands
| | - Henricus J. C. M. Sterenborg
- Academic Medical Center, Department of Biomedical Engineering and Physics, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Benno H. W. Hendriks
- Philips Research, Department In-body Systems, High Tech Campus 34, 5656AE Eindhoven, The Netherlands
| | - Theo J. M. Ruers
- Netherlands Cancer Institute, Department of Surgery, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- University of Twente, MIRA Institute, Drienerlolaan 5, Zuidhorst ZH116, 7522 NB Enschede, The Netherlands
| |
Collapse
|
14
|
Tanis E, Spliethoff J, Evers D, Langhout G, Snaebjornsson P, Prevoo W, Hendriks B, Ruers T. Real-time in vivo assessment of radiofrequency ablation of human colorectal liver metastases using diffuse reflectance spectroscopy. Eur J Surg Oncol 2016; 42:251-9. [DOI: 10.1016/j.ejso.2015.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022] Open
|
15
|
Radio frequency responsive nano-biomaterials for cancer therapy. J Control Release 2015; 204:85-97. [DOI: 10.1016/j.jconrel.2015.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
|