1
|
Lukose J, Barik AK, George SD, Murukeshan VM, Chidangil S. Raman spectroscopy for viral diagnostics. Biophys Rev 2023; 15:199-221. [PMID: 37113565 PMCID: PMC10088700 DOI: 10.1007/s12551-023-01059-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Raman spectroscopy offers the potential for fingerprinting biological molecules at ultra-low concentration and therefore has potential for the detection of viruses. Here we review various Raman techniques employed for the investigation of viruses. Different Raman techniques are discussed including conventional Raman spectroscopy, surface-enhanced Raman spectroscopy, Raman tweezer, tip-enhanced Raman Spectroscopy, and coherent anti-Stokes Raman scattering. Surface-enhanced Raman scattering can play an essential role in viral detection by multiplexing nanotechnology, microfluidics, and machine learning for ensuring spectral reproducibility and efficient workflow in sample processing and detection. The application of these techniques to diagnose the SARS-CoV-2 virus is also reviewed. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01059-4.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Sajan D. George
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| | - V. M. Murukeshan
- Centre for Optical and Laser Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, 576104 Manipal, India
| |
Collapse
|
2
|
Jacob SS, Lukose J, Bankapur A, Mithun N, Vani Lakshmi R, Acharya M, Rao P, Kamath A, Baby PM, Rao RK, Chidangil S. Micro-Raman spectroscopy study of optically trapped erythrocytes in malaria, dengue and leptospirosis infections. Front Med (Lausanne) 2022; 9:858776. [PMID: 36275819 PMCID: PMC9582609 DOI: 10.3389/fmed.2022.858776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria, dengue and leptospirosis are three tropical infectious diseases that present with severe hematological derangement causing significant morbidity and mortality, especially during the seasonal monsoons. During the course of these infectious diseases, circulating red blood cells are imperiled to the direct ill-effects of the infectious pathogen in the body as well as to the pro-inflammatory cytokines generated as a consequence of the infection. RBCs when exposed to such inflammatory and/or pathogenic milieu are susceptible to injuries such as RBC programmed eryptosis or RBC programmed necrosis. This research aimed to explore the Raman spectra of live red cells that were extracted from patients infected with malaria, dengue, and leptospirosis. Red cells were optically trapped and micro-Raman probed using a 785 nm Diode laser. RBCs from samples of all three diseases displayed Raman signatures that were significantly altered from the normal/healthy. Distinct spectral markers that were common across all the four groups were obtained from various standardized multivariate analytical methods. Following comprehensive examination of multiple studies, we propose these spectral wavenumbers as "Raman markers of RBC injury." Findings in our study display that anemia-triggering infections can inflict variations in the healthy status of red cells, easily identifiable by selectively analyzing specific Raman markers. Additionally, this study also highlights relevant statistical tools that can be utilized to study Raman spectral data from biological samples which could help identify the very significant Raman peaks from the spectral band. This approach of RBC analysis can foster a better understanding of red cell behavior and their alterations exhibited in health and disease.
Collapse
Affiliation(s)
- Sanu Susan Jacob
- Department of Physiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India,*Correspondence: Sanu Susan Jacob,
| | - Jijo Lukose
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - N. Mithun
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - R. Vani Lakshmi
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Mahendra Acharya
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Asha Kamath
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Prathap M. Baby
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Raghavendra K. Rao
- Department of Physiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Barik AK, M SP, N M, Pai MV, Upadhya R, Pai AK, Lukose J, Chidangil S. A micro-Raman spectroscopy study of inflammatory condition of human cervix: Probing of Tissues and blood plasma samples. Photodiagnosis Photodyn Ther 2022; 39:102948. [PMID: 35661825 DOI: 10.1016/j.pdpdt.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
The present study explores the application of the micro-Raman spectroscopy technique to discriminate normal and cervicitis condition from cervical malignancy by analyzing the Raman signatures of tissues and plasma samples of the same subjects. The Raman peaks from tissue samples at 1026 cm-1,1298 cm-1 and 1243 cm-1 are attributed to glycogen, fatty acids and collagen and are found to be reliable signatures capable of identifying cervicitis and normal condition from cervical cancer. The Raman signatures from plasma samples belonging to carbohydrates (578 cm-1), lipids (1059 cm-1) and nucleic acids (1077 cm-1,1341 cm-1 and 1357 cm-1) are quite useful to classify various stages of cervix at par with tissue based diagnosis. The PCA-SVM based classification of the spectral data indicates the potential of Raman spectroscopy based liquid biopsy to rule out false diagnosis of cervicitis as cervical malignancy.
Collapse
Affiliation(s)
- Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Sanoop Pavithran M
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Muralidhar V Pai
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rekha Upadhya
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Abhilash K Pai
- Department of Data Science & Computer Applications, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
4
|
Xie Y, Liu X. Multifunctional manipulation of red blood cells using optical tweezers. JOURNAL OF BIOPHOTONICS 2022; 15:e202100315. [PMID: 34773382 DOI: 10.1002/jbio.202100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Serving as natural vehicles to deliver oxygen throughout the whole body, red blood cells (RBCs) have been regarded as important indicators for biomedical analysis and clinical diagnosis. Various diseases can be induced due to the dysfunction of RBCs. Hence, a flexible tool is required to perform precise manipulation and quantitative characterization of their physiological mechanisms and viscoelastic properties. Optical tweezers have emerged as potential candidates due to their noncontact manipulation and femtonewton-precision measurements. This review aimed to highlight the recent advances in the multifunctional manipulation of RBCs using optical tweezers, including controllable deformation, dynamic stretching, RBC aggregation, blood separation and Raman characterization. Further, great attentions have been focused on the precise assembly of functional biophotonics devices with trapped RBCs, and a brief overview was offered for the growing interests to manipulate RBCs in vivo.
Collapse
Affiliation(s)
- Yanzheng Xie
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Adigal SS, Rayaroth NV, John RV, Pai KM, Bhandari S, Mohapatra AK, Lukose J, Patil A, Bankapur A, Chidangil S. A review on human body fluids for the diagnosis of viral infections: scope for rapid detection of COVID-19. Expert Rev Mol Diagn 2021; 21:31-42. [PMID: 33523770 DOI: 10.1080/14737159.2021.1874355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The unprecedented outbreaks of corona virus disease of 2019 (COVID-19) have highlighted the necessity of readily available, reliable, precise, and faster techniques for its detection. Nasopharyngeal swab has been the gold standard for the diagnosis of COVID-19. However, it is not an ideal screening procedure for massive screening as it implicates the patient's stay in the hospital or at home until diagnosis, thus causing crowding of the specimen at the diagnostic centers. Present study deal with the exploration of potential application of different body fluids using certain highly objective techniques (Optical and e-Nose) for faster detection of molecular markers thereby diagnosing viral infections.Areas covered: This report presents an evaluation of different body fluids, and their advantages for the rapid detection of COVID-19, coupled with highly sensitive optical techniques for the detection of molecular biomarkers.Expert opinion: Tears, saliva, and breath samples can provide valuable information about viral infections. Our brief review strongly recommends the application of saliva/tears and exhaled breath as clinical samples using technics such as high-performance liquid chromatography-laser-induced fluorescence, photoacoustic spectroscopy, and e-Nose, respectively, for the fast diagnosis of viral infections.
Collapse
Affiliation(s)
- Sphurti S Adigal
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academic of Higher Education, Manipal, India
| | - Nidheesh V Rayaroth
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academic of Higher Education, Manipal, India
| | - Reena V John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academic of Higher Education, Manipal, India
| | - Keerthilatha M Pai
- Department Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academic of Higher Education, Manipal, Karnataka, India
| | - Sulatha Bhandari
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academic of Higher Education, Manipal, Karnataka, India
| | - Aswini Kumar Mohapatra
- Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academic of Higher Education, Manipal, Karnataka, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academic of Higher Education, Manipal, India
| | - Ajeetkumar Patil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academic of Higher Education, Manipal, India
| | - Aseefhali Bankapur
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academic of Higher Education, Manipal, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academic of Higher Education, Manipal, India
| |
Collapse
|
6
|
Jacob SS, Bankapur A, Barkur S, Acharya M, Chidangil S, Rao P, Kamath A, Lakshmi RV, Baby PM, Rao RK. Micro-Raman Spectroscopy Analysis of Optically Trapped Erythrocytes in Jaundice. Front Physiol 2020; 11:821. [PMID: 32754052 PMCID: PMC7366392 DOI: 10.3389/fphys.2020.00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Derangements in bilirubin metabolism and/or dysfunctions in the hepato-biliary system lead to the unhealthy buildup of bilirubin in blood, resulting in jaundice. During the course of this disorder, circulating red cells are invariably subjected to toxic effects of serum bilirubin and an array of inflammatory compounds. This study aimed to investigate the vibrational spectroscopy of live red cells in jaundice using micro-Raman spectroscopy combined with optical-trap. Red cells from blood samples of healthy volunteers and patients with jaundice were optically immobilized and micro-Raman probed using a 785 nm diode laser. Raman signatures from red cells in jaundice exhibited significant variations from the normal and the spectral-markers were obtained from multivariate analytical methods. This research gives insightful views on how different pathologies can act as "stress-milieus" for red cells in circulation, possibly impeding their normal functions and also exasperating anemia. Raman spectroscopy, an emerging bio-analytical technique, is sensitive in detecting molecular-conformations in situ, at cellular-levels and in real-time. This study could pave way in understanding fundamental red cell behavior in different diseases by analyzing Raman markers.
Collapse
Affiliation(s)
- Sanu Susan Jacob
- Department of Physiology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - Surekha Barkur
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - Mahendra Acharya
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Asha Kamath
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - R. Vani Lakshmi
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Prathap M. Baby
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Raghavendra K. Rao
- Department of Physiology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Lukose J, Shastry S, Mithun N, Mohan G, Ahmed A, Chidangil S. Red blood cells under varying extracellular tonicity conditions: an optical tweezers combined with micro-Raman study. Biomed Phys Eng Express 2020; 6:015036. [PMID: 33438624 DOI: 10.1088/2057-1976/ab6e1a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Extracellular tonicity has a significant influence on human red blood cell deformation capability. Advancements in the area of laser physics and optical trapping have opened up a plethora of applications for understanding cell structure and dynamics. Here, Raman Tweezers technique was employed to investigate the impact of extracellular tonicity by exposing human red blood cells to both hypertonic and hypotonic intravenous fluids. Heme aggregation was observed in hypertonic saline solution, accompanied with damage in membrane protein. Loss of intracellular hemoglobin in hypotonic solution was evident from the decrease in porphyrin breathing mode present at 752 cm-1. Oxygen binding to the central iron in the red blood cell heme was also affected under both hyper/hypo tonicity conditions. Morphological deviation of discocytes to echinocytes/spherocytes were also evident from quantitative phase imaging. Principal component analysis have showed clear differentiation of samples in order to classify the control erythrocytes and the tonicity stressed erythrocytes. Present study has also demonstrated the application of Raman Tweezers spectroscopy as a potential tool for probing red blood cell under different stress conditions.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka-576104., India
| | | | | | | | | | | |
Collapse
|
8
|
Barkur S, Lukose J, Chidangil S. Probing Nanoparticle-Cell Interaction Using Micro-Raman Spectroscopy: Silver and Gold Nanoparticle-Induced Stress Effects on Optically Trapped Live Red Blood Cells. ACS OMEGA 2020; 5:1439-1447. [PMID: 32010816 PMCID: PMC6990426 DOI: 10.1021/acsomega.9b02988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/24/2019] [Indexed: 05/13/2023]
Abstract
Advancements in the field of nanotechnology have resulted in the emergence of a large variety of engineered nanomaterials for innumerable applications. Despite the ubiquitous use of nanomaterials in daily life, concerns regarding the potential toxicity and safety of these materials have also been raised. There is a high demand for assessing the unwanted effects of both gold and silver nanoparticles, which is increasingly being used in biomedical applications. This paper deals with the study of stress due to silver and gold nanoparticles of varying size on red blood cells (RBCs) using Raman tweezers spectroscopy. RBCs were incubated with nanoparticles of size in the 10-100 nm range with the same concentrations, and micro-Raman spectra were recorded by optically trapping the nanoparticle-treated live RBCs. Spectral modifications implicating hemoglobin deoxygenation were observed in all nanoparticle-treated RBCs. One of the probable reason for the deoxygenation trend can be the adhesion of nanoparticles onto the cell surface causing imbalance in cell functioning. Moreover, the higher spectral variations observed for silver nanoparticles indicate that oxidative stress is involved in cell damage. These mechanisms lead to the modification in the hemoglobin structure because of changes in the pH of cytoplasm, which can be detected using Raman spectroscopy.
Collapse
|
9
|
N M, Lukose J, Shastry S, Mohan G, Chidangil S. Human red blood cell behaviour in hydroxyethyl starch: probed by single cell spectroscopy. RSC Adv 2020; 10:31453-31462. [PMID: 35520664 PMCID: PMC9056550 DOI: 10.1039/d0ra05842d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Hydroxyethyl starch (HES) is a commonly used intravenous fluid in hospital settings. The merits and demerits of its application is still a debatable topic. Investigating the interaction of external agents like intravenous fluids with blood cells is of great significance in clinical environments. Micro-Raman spectroscopy combined with an optical tweezers technique has been utilized for conducting systematic investigations of single live red blood cells (RBCs) under the influence of external stress agents. The present work deals with a detailed biophysical study on the response of human live red blood cells in hydroxyethyl starch using optical techniques. Morphological changes in red blood cells were monitored using quantitate phase imaging techniques. Micro-Raman studies suggest that there is a significant reduction in the oxy-haemoglobin level in red blood cells suspended in HES. The spectra recorded by using different probe laser powers has shown that the cells are more vulnerable in HES under the influence of externally induced stress than in blood plasma. In addition, the spectral results support the possibility of heme aggregation and membrane damage for red blood cells in HES under externally induced stress. Principle component analysis performed on the Raman spectra were able to effectively discriminate between red blood cells in HES and in blood plasma. The use of Raman tweezers can be highly beneficial in elucidating biochemical alterations happening in live, human red blood cell. Hydroxyethyl starch (HES) is a commonly used intravenous fluid in hospital settings.![]()
Collapse
Affiliation(s)
- Mithun N
- Centre of Excellence for Biophotonics
- Department of Atomic and Molecular Physics
- Manipal Academy of Higher Education
- India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics
- Department of Atomic and Molecular Physics
- Manipal Academy of Higher Education
- India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion
- Kasturba Medical College, Manipal
- Manipal Academy of Higher Education
- Manipal
- India
| | - Ganesh Mohan
- Department of Immunohematology and Blood Transfusion
- Kasturba Medical College, Manipal
- Manipal Academy of Higher Education
- Manipal
- India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics
- Department of Atomic and Molecular Physics
- Manipal Academy of Higher Education
- India
| |
Collapse
|
10
|
Zúñiga WC, Jones V, Anderson SM, Echevarria A, Miller NL, Stashko C, Schmolze D, Cha PD, Kothari R, Fong Y, Storrie-Lombardi MC. Raman Spectroscopy for Rapid Evaluation of Surgical Margins during Breast Cancer Lumpectomy. Sci Rep 2019; 9:14639. [PMID: 31601985 PMCID: PMC6787043 DOI: 10.1038/s41598-019-51112-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022] Open
Abstract
Failure to precisely distinguish malignant from healthy tissue has severe implications for breast cancer surgical outcomes. Clinical prognoses depend on precisely distinguishing healthy from malignant tissue during surgery. Laser Raman spectroscopy (LRS) has been previously shown to differentiate benign from malignant tissue in real time. However, the cost, assembly effort, and technical expertise needed for construction and implementation of the technique have prohibited widespread adoption. Recently, Raman spectrometers have been developed for non-medical uses and have become commercially available and affordable. Here we demonstrate that this current generation of Raman spectrometers can readily identify cancer in breast surgical specimens. We evaluated two commercially available, portable, near-infrared Raman systems operating at excitation wavelengths of either 785 nm or 1064 nm, collecting a total of 164 Raman spectra from cancerous, benign, and transitional regions of resected breast tissue from six patients undergoing mastectomy. The spectra were classified using standard multivariate statistical techniques. We identified a minimal set of spectral bands sufficient to reliably distinguish between healthy and malignant tissue using either the 1064 nm or 785 nm system. Our results indicate that current generation Raman spectrometers can be used as a rapid diagnostic technique distinguishing benign from malignant tissue during surgery.
Collapse
Affiliation(s)
- Willie C Zúñiga
- Harvey Mudd College, Department of Physics, 301 Platt Blvd., Claremont, CA, 91711, USA
| | - Veronica Jones
- Harvey Mudd College, Department of Engineering, 301 Platt Blvd., Claremont, CA, 91711, USA.
| | - Sarah M Anderson
- Harvey Mudd College, Department of Engineering, 301 Platt Blvd., Claremont, CA, 91711, USA
| | - Alex Echevarria
- Harvey Mudd College, Department of Physics, 301 Platt Blvd., Claremont, CA, 91711, USA
| | - Nathaniel L Miller
- Harvey Mudd College, Department of Engineering, 301 Platt Blvd., Claremont, CA, 91711, USA
| | - Connor Stashko
- Harvey Mudd College, Department of Engineering, 301 Platt Blvd., Claremont, CA, 91711, USA
| | - Daniel Schmolze
- City of Hope National Medical Center, Department of Surgery, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Philip D Cha
- Harvey Mudd College, Department of Engineering, 301 Platt Blvd., Claremont, CA, 91711, USA
| | - Ragini Kothari
- City of Hope National Medical Center, Department of Surgery, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
- Harvey Mudd College, Department of Engineering, 301 Platt Blvd., Claremont, CA, 91711, USA
| | - Yuman Fong
- City of Hope National Medical Center, Department of Surgery, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Michael C Storrie-Lombardi
- Harvey Mudd College, Department of Physics, 301 Platt Blvd., Claremont, CA, 91711, USA
- Kinohi Institute, Inc., 530S. Lake Avenue, Pasadena, CA, 91101, USA
| |
Collapse
|
11
|
M Y, Chawla K, Bankapur A, Acharya M, D’Souza JS, Chidangil S. A micro-Raman and chemometric study of urinary tract infection-causing bacterial pathogens in mixed cultures. Anal Bioanal Chem 2019; 411:3165-3177. [DOI: 10.1007/s00216-019-01784-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 01/30/2023]
|
12
|
Lukose J, N M, Mohan G, Shastry S, Chidangil S. Normal saline-induced deoxygenation of red blood cells probed by optical tweezers combined with the micro-Raman technique. RSC Adv 2019; 9:7878-7884. [PMID: 35521160 PMCID: PMC9061285 DOI: 10.1039/c8ra10061f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
The use of normal saline for washing red blood cells and treating critically ill patients is a regular medical practice in hospital settings. An optical tweezer in combination with Raman spectroscopy is an analytical tool employed for the investigation of single cell dynamics, thus providing molecular fingerprint of the cell by optically trapping the cell at a laser focus. In this study, the impact of normal saline on individual human red blood cell was compared with that of blood plasma using Raman tweezers spectroscopy. Major spectral variations in the marker frequencies at 1209 cm-1, 1222 cm-1, 1544 cm-1, and 1561 cm-1 of the Raman spectrum of the treated cells imply that the transition of hemoglobin to the deoxygenated state occurs when 0.9% normal saline is used. This may result in serious implications in blood transfusion. The results obtained from the principal component analysis also displayed clear differentiation among the red blood cells diluted in normal saline and those diluted in plasma. In future studies, efforts will be made to correlate the deoxygenation status of red blood cells with various human disorders.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Ganesh Mohan
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India-576104
| |
Collapse
|
13
|
Label-free classification of neurons and glia in neural stem cell cultures using a hyperspectral imaging microscopy combined with machine learning. Sci Rep 2019; 9:633. [PMID: 30679652 PMCID: PMC6345994 DOI: 10.1038/s41598-018-37241-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Due to a growing demand for a viable label-free observation method in the biomedical field, many techniques, such as quantitative phase imaging and Raman spectroscopy, have been studied, and a complementary approach, hyperspectral imaging, has also been introduced. We developed a high-speed hyperspectral imaging microscopy imaging method with commercially available apparatus, employing a liquid crystal tunable bandpass filter combined with a pixel-wise machine learning classification. Next, we evaluated the feasibility of the application of this method for stem cell research utilizing neural stem cells. Employing this microscopy method, with a 562 × 562 μm2 field of view, 2048 × 2048 pixel resolution images containing 63 wavelength pixel-wise spectra could be obtained in 30 seconds. The neural stem cells were differentiated into neurons and astroglia (glia), and a four-class cell classification evaluation (including neuronal cell body, glial cell body, process and extracellular region) was conducted under co-cultured conditions. As a result, an average of 88% of the objects of interest were correctly classified, with an average precision of 94%, and more than 99% of the extracellular pixels were correctly segregated. These results indicated that the proposed hyperspectral imaging microscopy is feasible as a label-free observation method for stem cell research.
Collapse
|
14
|
Surmacki JM, Woodhams BJ, Haslehurst A, Ponder BAJ, Bohndiek SE. Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells. Sci Rep 2018; 8:12604. [PMID: 30135442 PMCID: PMC6105656 DOI: 10.1038/s41598-018-30407-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/20/2018] [Indexed: 12/25/2022] Open
Abstract
Live cell Raman micro-spectroscopy is emerging as a promising bioanalytical technique for label-free discrimination of a range of different cell types (e.g. cancer cells and fibroblasts) and behaviors (e.g. apoptosis). The aim of this study was to determine whether confocal Raman micro-spectroscopy shows sufficient sensitivity and specificity for identification of primary human bronchial epithelial cells (HBECs) to be used for live cell biological studies in vitro. We first compared cell preparation substrates and media, considering their influence on lung cell proliferation and Raman spectra, as well as methods for data acquisition, using different wavelengths (488 nm, 785 nm) and scan protocols (line, area). Evaluating these parameters using human lung cancer (A549) and fibroblast (MRC5) cell lines confirmed that line-scan data acquisition at 785 nm using complete cell media on a quartz substrate gave optimal performance. We then applied our protocol to acquisition of data from primary human bronchial epithelial cells (HBEC) derived from three independent sources, revealing an average sensitivity for different cell types of 96.3% and specificity of 95.2%. These results suggest that Raman micro-spectroscopy is suitable for delineating primary HBEC cell cultures, which in future could be used for identifying different lung cell types within co-cultures and studying the process of early carcinogenesis in lung cell culture.
Collapse
Affiliation(s)
- Jakub M Surmacki
- Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Benjamin J Woodhams
- Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Alexandria Haslehurst
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Bruce A J Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom.
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom.
| |
Collapse
|
15
|
Upchurch E, Isabelle M, Lloyd GR, Kendall C, Barr H. An update on the use of Raman spectroscopy in molecular cancer diagnostics: current challenges and further prospects. Expert Rev Mol Diagn 2018; 18:245-258. [DOI: 10.1080/14737159.2018.1439739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Emma Upchurch
- Department of Upper GI Surgery, Gloucestershire Royal Hospital, Gloucester
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester
| | | | - Gavin Rhys Lloyd
- Phenome Centre Birmingham, School of Biosciences, University of Birmingham
| | - Catherine Kendall
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester
| | - Hugh Barr
- Department of Upper GI Surgery, Gloucestershire Royal Hospital, Gloucester
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester
| |
Collapse
|
16
|
Moradi H, Ahmad A, Shepherdson D, Vuong NH, Niedbala G, Eapen L, Vanderhyden B, Nyiri B, Murugkar S. Raman micro-spectroscopy applied to treatment resistant and sensitive human ovarian cancer cells. JOURNAL OF BIOPHOTONICS 2017; 10:1327-1334. [PMID: 28009133 DOI: 10.1002/jbio.201600211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/20/2016] [Accepted: 11/30/2016] [Indexed: 05/25/2023]
Abstract
Despite the many advances intended to enhance the response to treatment, the survival rate of patients with ovarian cancer has only marginally improved in the past few decades. One major cause for this, is the lack of diagnostics for platinum-resistant disease. The goal of this study was to determine whether Raman micro-spectroscopy in conjunction with multivariate statistical analysis could discriminate between chemically fixed cisplatin-resistant (A2780cp) and cisplatin-sensitive (A2780s) human ovarian carcinoma cells. Raman spectra collected from individual cells were pre-processed and subsequently analyzed with Principal Component Analysis - Linear Discriminant Analysis (PCA-LDA). Statistically significant differences (P < 0.0001) were observed between the Raman spectra of A2780s and A2780cp cells. A diagnostic accuracy of 82% was obtained using the PCA-LDA classifier model for the discrimination between the A2780s and A2780cp cells. The loading plot analysis suggests that relative increases in proteins and glutathione in the cisplatin-resistant cells compared to the cisplatin-sensitive cells are most likely the major source of discrimination between the two types of cells. These results support the potential application of Raman spectroscopy in the identification of chemo-resistant tumors prior to treatment.
Collapse
Affiliation(s)
- Hamid Moradi
- Department of Physics, Carleton University, K1S 5B6, Ottawa, Canada
| | - Abrar Ahmad
- Department of Physics, Carleton University, K1S 5B6, Ottawa, Canada
| | - Dean Shepherdson
- Department of Physics, Carleton University, K1S 5B6, Ottawa, Canada
| | - Nhung H Vuong
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Gosia Niedbala
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Canada
| | - Libni Eapen
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Balazs Nyiri
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Canada
| | | |
Collapse
|
17
|
Effect of infrared light on live blood cells: Role of β-carotene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:104-116. [DOI: 10.1016/j.jphotobiol.2017.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/27/2017] [Indexed: 01/14/2023]
|
18
|
Mandair GS, Han AL, Keller ET, Morris MD. Raman microscopy of bladder cancer cells expressing green fluorescent protein. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:115001. [PMID: 27805248 PMCID: PMC8357324 DOI: 10.1117/1.jbo.21.11.115001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/14/2016] [Indexed: 05/06/2023]
Abstract
Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.
Collapse
Affiliation(s)
- Gurjit S. Mandair
- University of Michigan, School of Dentistry, Department of Biologic and Materials Sciences, 1011 North University Avenue, Ann Arbor, Michigan 48109-1078, United States
- Address all correspondence to: Gurjit S. Mandair, E-mail:
| | - Amy L. Han
- University of Michigan, Department of Urology and Biointerfaces Institute, NCRC Building 20, 2800 Plymouth Road, Ann Arbor, Michigan 48109-2800, United States
| | - Evan T. Keller
- University of Michigan, Department of Urology and Biointerfaces Institute, NCRC Building 20, 2800 Plymouth Road, Ann Arbor, Michigan 48109-2800, United States
| | - Michael D. Morris
- University of Michigan, Department of Chemistry, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|