1
|
Malinet C, Montcel B, Dutour A, Fajnorova I, Liebgott H, Muleki-Seya P. Cancer characterization using light backscattering spectroscopy and quantitative ultrasound: an ex vivo study on sarcoma subtypes. Sci Rep 2023; 13:16650. [PMID: 37789008 PMCID: PMC10547769 DOI: 10.1038/s41598-023-43322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
Histological analysis is the gold standard method for cancer diagnosis. However, it is prone to subjectivity and sampling bias. In response to these limitations, we introduce a quantitative bimodal approach that aims to provide non-invasive guidance towards suspicious regions. Light backscattering spectroscopy and quantitative ultrasound techniques were combined to characterize two different bone tumor types from animal models: chondrosarcomas and osteosarcomas. Two different cell lines were used to induce osteosarcoma growth. Histological analyses were conducted to serve as references. Three ultrasound parameters and intensities of the light reflectance profiles showed significant differences between chondrosarcomas and osteosarcomas at the 5% level. Likewise, variations in the same biomarkers were reported for the two types of osteosarcoma, despite their similar morphology observed in the histological examinations. These observations show the sensitivity of our techniques in probing fine tissue properties. Secondly, the ultrasound spectral-based technique identified the mean size of chondrosarcoma cells and nuclei with relative errors of about 22% and 9% respectively. The optical equivalent technique correctly extracted scatterer size distributions that encompass nuclei and cells for chondrosarcomas and osteosarcomas ([Formula: see text] and [Formula: see text] respectively). The optical scattering contributions of nuclei were estimated at 52% for the chondrosarcomas and 69% for the osteosarcomas, probably indicating the abundant and the absent extracellular matrix respectively. Thus, the ultrasound and the optical methods brought complementary parameters. They successfully estimated morphological parameters at the cellular and the nuclear scales, making our bimodal technique promising for tumor characterization.
Collapse
Affiliation(s)
- Cyril Malinet
- Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon, France.
| | - Bruno Montcel
- Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Aurélie Dutour
- Centre de Recherche en Cancérologie de Lyon/Centre Léon Bérard, Equipe mort cellulaire et cancers pédiatriques, UMR INSERM 1052, CNRS 5286, Lyon , France
| | - Iveta Fajnorova
- Centre de Recherche en Cancérologie de Lyon/Centre Léon Bérard, Equipe mort cellulaire et cancers pédiatriques, UMR INSERM 1052, CNRS 5286, Lyon , France
| | - Hervé Liebgott
- Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Pauline Muleki-Seya
- Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
2
|
Mohanty A, Eshein A, Kamineni P, Avissar U, Bliss CM, Long MT, Lowe RC, Moore TC, Nunes DP, Backman V, Roy HK. Quantification of gastric mucosal microcirculation as a surrogate marker of portal hypertension by spatially resolved subdiffuse reflectance spectroscopy in diagnosis of cirrhosis: a proof-of-concept study. Gastrointest Endosc 2021; 94:60-67.e1. [PMID: 33385462 PMCID: PMC8546777 DOI: 10.1016/j.gie.2020.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Portal pressure can be used to identify patients with chronic liver disease who have progressed to cirrhosis. Portal pressure can also provide accurate prognostication for patients with cirrhosis. However, there are no practical means for assessment of portal pressure. Although it is well established that the gastric mucosal blood supply increases in patients with cirrhosis, this has been difficult to quantify reproducibly. Our group has developed a novel spectroscopic technology called spatially resolved subdiffuse reflectance spectroscopy (SRSRS), which enables quantification of mucosal microcirculation. We aim to ascertain if quantification of the gastric mucosal microcirculation with SRSRS correlates with clinical evidence of portal hypertension. METHODS Patients undergoing EGD for clinical indications had 10 measurements taken in the endoscopically normal gastric fundus via SRSRS probe to assess the microcirculation. Cases were defined as patients with cirrhosis (n = 18), and controls were those without evidence of liver disease (n = 18); this was corroborated with transient elastography. RESULTS The blood volume fraction (P = .06) and subdiffuse reflectance (P = .02) from a shallow depth in the gastric fundus were higher in patients with cirrhosis than those without. These markers were combined to yield an overall optical marker that can differentiate patients with cirrhosis from controls with a sensitivity of 72% and specificity of 94% (area under receiver operating curve, 0.82). CONCLUSIONS Spectroscopic quantification of gastric fundal mucosal microcirculation is a promising surrogate of clinical correlates of portal hypertension. This approach may represent a less-intrusive surrogate biomarker for liver disease prognostication and potentially response to therapy.
Collapse
Affiliation(s)
- Arpan Mohanty
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Phanisyam Kamineni
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Uri Avissar
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Charles M Bliss
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michelle T Long
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Robert C Lowe
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - T Carlton Moore
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David P Nunes
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Hemant K Roy
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Arifler D, Guillaud M. Assessment of internal refractive index profile of stochastically inhomogeneous nuclear models via analysis of two-dimensional optical scattering patterns. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200345RR. [PMID: 33973424 PMCID: PMC8107832 DOI: 10.1117/1.jbo.26.5.055001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Optical scattering signals obtained from tissue constituents contain a wealth of structural information. Conventional intensity features, however, are mostly dictated by the overall morphology and mean refractive index of these constituents, making it very difficult to exclusively sense internal refractive index fluctuations. AIM We perform a systematic analysis to elucidate how changes in internal refractive index profile of cell nuclei can best be detected via optical scattering. APPROACH We construct stochastically inhomogeneous nuclear models and numerically simulate their azimuth-resolved scattering patterns. We then process these two-dimensional patterns with the goal of identifying features that directly point to subnuclear structure. RESULTS Azimuth-dependent intensity variations over the side scattering range provide significant insights into subnuclear refractive index profile. A particular feature we refer to as contrast ratio is observed to be highly sensitive to the length scale and extent of refractive index fluctuations; further, this feature is not susceptible to changes in the overall size and mean refractive index of nuclei, thereby allowing for selective tracking of subnuclear structure that can be linked to chromatin distribution. CONCLUSIONS Our analysis will potentially pave the way for scattering-based assessment of chromatin reorganization that is considered to be a key hallmark of precancer progression.
Collapse
Affiliation(s)
- Dizem Arifler
- Middle East Technical University, Northern Cyprus Campus, Physics Group, Kalkanli, Turkey
| | - Martial Guillaud
- British Columbia Cancer Research Center, Department of Integrative Oncology, Imaging Unit, Vancouver BC, Canada
| |
Collapse
|
4
|
Pinkert MA, Simmons ZJ, Niemeier RC, Dai B, Woods LB, Hall TJ, Campagnola PJ, Rogers JD, Eliceiri KW. Platform for quantitative multiscale imaging of tissue composition. BIOMEDICAL OPTICS EXPRESS 2020; 11:1927-1946. [PMID: 32341858 PMCID: PMC7173879 DOI: 10.1364/boe.383248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 05/14/2023]
Abstract
Changes in the multi-level physical structure of biological features going from cellular to tissue level composition is a key factor in many major diseases. However, we are only beginning to understand the role of these structural changes because there are few dedicated multiscale imaging platforms with sensitivity at both the cellular and macrostructural spatial scale. A single platform reduces bias and complications from multiple sample preparation methods and can ease image registration. In order to address these needs, we have developed a multiscale imaging system using a range of imaging modalities sensitive to tissue composition: Ultrasound, Second Harmonic Generation Microscopy, Multiphoton Microscopy, Optical Coherence Tomography, and Enhanced Backscattering. This paper details the system design, the calibration for each modality, and a demonstration experiment imaging a rabbit eye.
Collapse
Affiliation(s)
- Michael A Pinkert
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, USA
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, USA
| | - Zachary J Simmons
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Ryan C Niemeier
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Bing Dai
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Lauren B Woods
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Timothy J Hall
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Paul J Campagnola
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Jeremy D Rogers
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, USA
- University of Wisconsin Madison, Laboratory for Optical and Computational Instrumentation, 1675 Observatory Drive, Madison, WI 53706, USA
- University of Wisconsin Madison, Department of Medical Physics, 1111 Highland Ave, Madison, WI 53705, USA
- University of Wisconsin Madison, Department of Biomedical Engineering, 1550 Engineering Dr, Madison, WI 53706, USA
| |
Collapse
|
5
|
Ruderman S, Eshein A, Valuckaite V, Dougherty U, Almoghrabi A, Gomes A, Singh A, Pabla B, Roy HK, Hart J, Bissonnette M, Konda V, Backman V. Early increase in blood supply (EIBS) is associated with tumor risk in the Azoxymethane model of colon cancer. BMC Cancer 2018; 18:814. [PMID: 30103733 PMCID: PMC6090821 DOI: 10.1186/s12885-018-4709-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/31/2018] [Indexed: 01/20/2023] Open
Abstract
Background The present study aimed to investigate the role of blood supply in early tumorigenesis in colorectal cancer. We leveraged the renin angiotensin system (RAS) to alter colonic blood supply and determine the effect on tumor initiation and progression. Methods To test the effect of blood supply on tumorigenesis, 53 male A/J mice were randomly assigned to one of three RAS modulation groups and one of two AOM treatments. The RAS modulation groups were I) water (RAS-unmodulated) as a control group, II) angiotensin-II and III) the angiotensin receptor blocker, Losartan. The mice in each group were then randomly split into either the saline control condition or the AOM-treated condition in which tumors were induced with a standard protocol of serial azoxymethane (AOM) injections. To monitor microvascular changes in the rectal mucosa during the study, we used confocal laser endomicroscopy (CLE) with FITC-Dextran for in-vivo imaging of vessels and polarization-gated spectroscopy (PGS) to quantify rectal hemoglobin concentration ([Hb]) and blood vessel radius (BVR). Results At 12 weeks post-AOM injections and before tumor formation, CLE images revealed many traditional hallmarks of angiogenesis including vessel dilation, loss of co-planarity, irregularity, and vessel sprouting in the pericryptal capillaries of the rectal mucosa in AOM-Water tumor bearing mice. PGS measurements at the same time-point showed increased rectal [Hb] and decreased BVR. At later time points, CLE images showed pronounced angiogenic features including irregular networks throughout the colon. Notably, the AOM-Losartan mice had significantly lower tumor multiplicity and did not exhibit the same angiogenic features observed with CLE, or the increase in [Hb] or decrease in BVR measured with PGS. The AOM-AngII mice did not have any significant trends. Conclusion In-vivo PGS measurements of rectal colonic blood supply as well as CLE imaging revealed angiogenic disruptions to the capillary network prior to tumor formation. Losartan demonstrated an effective way to mitigate the changes to blood supply during tumorigenesis and reduce tumor multiplicity. These effects can be used in future studies to understand the early vessel changes observed.
Collapse
Affiliation(s)
- Sarah Ruderman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Vesta Valuckaite
- Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Urszula Dougherty
- Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Anas Almoghrabi
- Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Andrew Gomes
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ajaypal Singh
- Department of Gastroenterology, Rush University, Chicago, IL, 60612, USA
| | - Baldeep Pabla
- Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Hemant K Roy
- Department of Gastroenterology, Boston Medical Center, Boston, MA, 02118, USA
| | - John Hart
- Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Marc Bissonnette
- Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Vani Konda
- Center for Endoscopic Research and Therapeutics, University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
6
|
Eshein A, Radosevich AJ, Gould B, Wu W, Konda V, Yang LW, Koons A, Feder S, Valuckaite V, Roy HK, Backman V, Nguyen TQ. Fully automated fiber-based optical spectroscopy system for use in a clinical setting. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 29981224 PMCID: PMC8357326 DOI: 10.1117/1.jbo.23.7.075003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/05/2018] [Indexed: 05/04/2023]
Abstract
While there are a plethora of in vivo fiber-optic spectroscopic techniques that have demonstrated the ability to detect a number of diseases in research trials with highly trained personnel familiar with the operation of experimental optical technologies, very few techniques show the same level of success in large multicenter trials. To meet the stringent requirements for a viable optical spectroscopy system to be used in a clinical setting, we developed components including an automated calibration tool, optical contact sensor for signal acquisition, and a methodology for real-time in vivo probe calibration correction. The end result is a state-of-the-art medical device that can be realistically used by a physician with spectroscopic fiber-optic probes. We show how the features of this system allow it to have excellent stability measuring two scattering phantoms in a clinical setting by clinical staff with ∼0.5 % standard deviation over 25 unique measurements on different days. In addition, we show the systems' ability to overcome many technical obstacles that spectroscopy applications often face such as speckle noise and user variability. While this system has been designed and optimized for our specific application, the system and design concepts are applicable to most in vivo fiber-optic-based spectroscopic techniques.
Collapse
Affiliation(s)
- Adam Eshein
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Andrew J. Radosevich
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Bradley Gould
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Wenli Wu
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Vani Konda
- University of Chicago Medicine, Center for Endoscopic Research and Therapeutics, Chicago, Illinois, United States
| | - Leslie W. Yang
- University of Chicago Medicine, Center for Endoscopic Research and Therapeutics, Chicago, Illinois, United States
| | - Ann Koons
- University of Chicago Medicine, Center for Endoscopic Research and Therapeutics, Chicago, Illinois, United States
| | - Seth Feder
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Vesta Valuckaite
- University of Chicago Medicine, Center for Endoscopic Research and Therapeutics, Chicago, Illinois, United States
| | - Hemant K. Roy
- Boston Medical Center, Department of Gastroenterology, Boston, Massachusetts, United States
| | - Vadim Backman
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - The-Quyen Nguyen
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
- Address all correspondence to: The-Quyen Nguyen, E-mail:
| |
Collapse
|
7
|
McClatchy DM, Rizzo EJ, Meganck J, Kempner J, Vicory J, Wells WA, Paulsen KD, Pogue BW. Calibration and analysis of a multimodal micro-CT and structured light imaging system for the evaluation of excised breast tissue. Phys Med Biol 2017; 62:8983-9000. [PMID: 29048330 PMCID: PMC5729028 DOI: 10.1088/1361-6560/aa94b6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A multimodal micro-computed tomography (CT) and multi-spectral structured light imaging (SLI) system is introduced and systematically analyzed to test its feasibility to aid in margin delineation during breast conserving surgery (BCS). Phantom analysis of the micro-CT yielded a signal-to-noise ratio of 34, a contrast of 1.64, and a minimum detectable resolution of 240 μm for a 1.2 min scan. The SLI system, spanning wavelengths 490 nm to 800 nm and spatial frequencies up to 1.37 [Formula: see text], was evaluated with aqueous tissue simulating phantoms having variations in particle size distribution, scatter density, and blood volume fraction. The reduced scattering coefficient, [Formula: see text] and phase function parameter, γ, were accurately recovered over all wavelengths independent of blood volume fractions from 0% to 4%, assuming a flat sample geometry perpendicular to the imaging plane. The resolution of the optical system was tested with a step phantom, from which the modulation transfer function was calculated yielding a maximum resolution of 3.78 cycles per mm. The three dimensional spatial co-registration between the CT and optical imaging space was tested and shown to be accurate within 0.7 mm. A freshly resected breast specimen, with lobular carcinoma, fibrocystic disease, and adipose, was imaged with the system. The micro-CT provided visualization of the tumor mass and its spiculations, and SLI yielded superficial quantification of light scattering parameters for the malignant and benign tissue types. These results appear to be the first demonstration of SLI combined with standard medical tomography for imaging excised tumor specimens. While further investigations are needed to determine and test the spectral, spatial, and CT features required to classify tissue, this study demonstrates the ability of multimodal CT/SLI to quantify, visualize, and spatially navigate breast tumor specimens, which could potentially aid in the assessment of tumor margin status during BCS.
Collapse
Affiliation(s)
- David M McClatchy
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Naglič P, Pernuš F, Likar B, Bürmen M. Adopting higher-order similarity relations for improved estimation of optical properties from subdiffusive reflectance. OPTICS LETTERS 2017; 42:1357-1360. [PMID: 28362768 DOI: 10.1364/ol.42.001357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Estimation of optical properties from subdiffusive reflectance acquired at short source-detector separations is challenging due to the sensitivity to the underlying scattering phase function. In recent studies, a second-order similarity parameter γ has been increasingly used alongside the absorption and reduced scattering coefficients to account for some of the phase function variability. By using Monte Carlo simulations, we show that the influence of the scattering phase function on the subdiffusive reflectance for the biologically relevant variations can be captured sufficiently well by considering γ and a third-order similarity parameter δ. Utilizing this knowledge, we construct an inverse model that estimates the absorption and reduced scattering coefficients, γ and δ, from spatially resolved reflectance. Nearly an order of magnitude smaller errors of the estimated optical properties are obtained in comparison to the inverse model that only composes γ.
Collapse
|
9
|
Naglič P, Pernuš F, Likar B, Bürmen M. Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media. BIOMEDICAL OPTICS EXPRESS 2017; 8:1895-1910. [PMID: 28663872 PMCID: PMC5480587 DOI: 10.1364/boe.8.001895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 05/28/2023]
Abstract
Analytical expressions for sampling the scattering angle from a phase function in Monte Carlo simulations of light propagation are available only for a limited number of phase functions. Consequently, numerical sampling methods based on tabulated values are often required instead. By using Monte Carlo simulated reflectance, we compare two existing and propose an improved numerical sampling method and show that both the number of the tabulated values and the numerical sampling method significantly influence the accuracy of the simulated reflectance. The provided results and guidelines should serve as a good starting point for conducting computationally efficient Monte Carlo simulations with numerical phase function sampling.
Collapse
|
10
|
Cherkezyan L, Zhang D, Subramanian H, Capoglu I, Taflove A, Backman V. Review of interferometric spectroscopy of scattered light for the quantification of subdiffractional structure of biomaterials. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:30901. [PMID: 28290596 PMCID: PMC5348632 DOI: 10.1117/1.jbo.22.3.030901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/20/2017] [Indexed: 05/19/2023]
Abstract
Optical microscopy is the staple technique in the examination of microscale material structure in basic science and applied research. Of particular importance to biology and medical research is the visualization and analysis of the weakly scattering biological cells and tissues. However, the resolution of optical microscopy is limited to ? 200 ?? nm due to the fundamental diffraction limit of light. We review one distinct form of the spectroscopic microscopy (SM) method, which is founded in the analysis of the second-order spectral statistic of a wavelength-dependent bright-field far-zone reflected-light microscope image. This technique offers clear advantages for biomedical research by alleviating two notorious challenges of the optical evaluation of biomaterials: the diffraction limit of light and the lack of sensitivity to biological, optically transparent structures. Addressing the first issue, it has been shown that the spectroscopic content of a bright-field microscope image quantifies structural composition of samples at arbitrarily small length scales, limited by the signal-to-noise ratio of the detector, without necessarily resolving them. Addressing the second issue, SM utilizes a reference arm, sample arm interference scheme, which allows us to elevate the weak scattering signal from biomaterials above the instrument noise floor.
Collapse
Affiliation(s)
- Lusik Cherkezyan
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Di Zhang
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Hariharan Subramanian
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Ilker Capoglu
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Allen Taflove
- Northwestern University, Department of Electrical Engineering, Evanston, Illinois, United States
| | - Vadim Backman
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
- Address all correspondence to: Vadim Backman, E-mail:
| |
Collapse
|
11
|
Wu W, Radosevich AJ, Eshein A, Nguyen TQ, Yi J, Cherkezyan L, Roy HK, Szleifer I, Backman V. Using electron microscopy to calculate optical properties of biological samples. BIOMEDICAL OPTICS EXPRESS 2016; 7:4749-4762. [PMID: 27896013 PMCID: PMC5119613 DOI: 10.1364/boe.7.004749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 05/26/2023]
Abstract
The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy factor g, the phase function and the shape factor D of the nuclei are calculated. The results show strong agreement with an independent study. This method provides a new way to extract the true phase function of biological samples and provides an independent validation for optical property measurement techniques.
Collapse
Affiliation(s)
- Wenli Wu
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Andrew J. Radosevich
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - The-Quyen Nguyen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Ji Yi
- Department of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hemant K. Roy
- Section of Gastroenterology, Boston Medical Center/Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
12
|
Naglic P, Pernuš F, Likar B, Bürmen M. Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:95003. [PMID: 27653934 DOI: 10.1117/1.jbo.21.9.095003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/23/2016] [Indexed: 05/20/2023]
Abstract
We propose and objectively evaluate an inverse Monte Carlo model for estimation of absorption and reduced scattering coefficients and similarity parameter ? from spatially resolved reflectance (SRR) profiles in the subdiffusive regime. The similarity parameter ? carries additional information on the phase function that governs the angular properties of scattering in turbid media. The SRR profiles at five source-detector separations were acquired with an optical fiber probe. The inverse Monte Carlo model was based on a cost function that enabled robust estimation of optical properties from a few SRR measurements without a priori knowledge about spectral dependencies of the optical properties. Validation of the inverse Monte Carlo model was performed on synthetic datasets and measured SRR profiles of turbid phantoms comprising molecular dye and polystyrene microspheres. We observed that the additional similarity parameter ? substantially reduced the reflectance variability arising from the phase function properties and significantly improved the accuracy of the inverse Monte Carlo model. However, the observed improvement of the extended inverse Monte Carlo model was limited to reduced scattering coefficients exceeding ?15??cm?1, where the relative root-mean-square errors of the estimated optical properties were well within 10%.
Collapse
Affiliation(s)
- Peter Naglic
- University of Ljubljana, Laboratory of Imaging Technologies, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000, Ljubljana, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Laboratory of Imaging Technologies, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000, Ljubljana, Slovenia
| | - Boštjan Likar
- University of Ljubljana, Laboratory of Imaging Technologies, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000, Ljubljana, Slovenia
| | - Miran Bürmen
- University of Ljubljana, Laboratory of Imaging Technologies, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
13
|
MCCLATCHY DAVIDM, RIZZO ELIZABETHJ, WELLS WENDYA, CHENEY PHILIPP, HWANG JEESEONGC, PAULSEN KEITHD, POGUE BRIANW, KANICK STEPHENC. Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging. OPTICA 2016; 3:613-621. [PMID: 27547790 PMCID: PMC4989924 DOI: 10.1364/optica.3.000613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Localized measurements of scattering in biological tissue provide sensitivity to microstructural morphology but have limited utility to wide-field applications, such as surgical guidance. This study introduces sub-diffusive spatial frequency domain imaging (sd-SFDI), which uses high spatial frequency illumination to achieve wide-field sampling of localized reflectances. Model-based inversion recovers macroscopic variations in the reduced scattering coefficient [Formula: see text] and the phase function backscatter parameter (γ). Measurements in optical phantoms show quantitative imaging of user-tuned phase-function-based contrast with accurate decoupling of parameters that define both the density and the size-scale distribution of scatterers. Measurements of fresh ex vivo breast tissue samples revealed, for the first time, unique clustering of sub-diffusive scattering properties for different tissue types. The results support that sd-SFDI provides maps of microscopic structural biomarkers that cannot be obtained with diffuse wide-field imaging and characterizes spatial variations not resolved by point-based optical sampling.
Collapse
Affiliation(s)
- DAVID M. MCCLATCHY
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
| | - ELIZABETH J. RIZZO
- Department of Pathology, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - WENDY A. WELLS
- Department of Pathology, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - PHILIP P. CHENEY
- Quantum Elecromagnetics Division, National Institute of Standards and Technology, 325 Broadway Street, Boulder, Colorado 80305, USA
| | - JEESEONG C. HWANG
- Quantum Elecromagnetics Division, National Institute of Standards and Technology, 325 Broadway Street, Boulder, Colorado 80305, USA
| | - KEITH D. PAULSEN
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - BRIAN W. POGUE
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - STEPHEN C. KANICK
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
- Corresponding author:
| |
Collapse
|
14
|
Swain TD, DuBois E, Gomes A, Stoyneva VP, Radosevich AJ, Henss J, Wagner ME, Derbas J, Grooms HW, Velazquez EM, Traub J, Kennedy BJ, Grigorescu AA, Westneat MW, Sanborn K, Levine S, Schick M, Parsons G, Biggs BC, Rogers JD, Backman V, Marcelino LA. Skeletal light-scattering accelerates bleaching response in reef-building corals. BMC Ecol 2016; 16:10. [PMID: 26996922 PMCID: PMC4800776 DOI: 10.1186/s12898-016-0061-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/12/2016] [Indexed: 02/03/2023] Open
Abstract
Background At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as ‘microscopic’ reduced-scattering coefficient, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. Results Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ corals bleach at higher rate and severity than high-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ corals and the Symbiodinium associated with low-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ corals. Conclusions While symbionts associated with low-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ as one of the key determinants of differential bleaching response. Electronic supplementary material The online version of this article (doi:10.1186/s12898-016-0061-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy D Swain
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Emily DuBois
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Andrew Gomes
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Valentina P Stoyneva
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Andrew J Radosevich
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Jillian Henss
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Michelle E Wagner
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Justin Derbas
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Hannah W Grooms
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Elizabeth M Velazquez
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joshua Traub
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Brian J Kennedy
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Arabela A Grigorescu
- Keck Biophysics Facility, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
| | - Mark W Westneat
- Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Kevin Sanborn
- Fishes Department, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Shoshana Levine
- Fishes Department, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Mark Schick
- Fishes Department, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - George Parsons
- Fishes Department, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Brendan C Biggs
- Division of Water Resource Management, Florida Department of Environmental Protection, 2600 Blair Stone Road, Tallahassee, 32399, USA
| | - Jeremy D Rogers
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Luisa A Marcelino
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA. .,Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA.
| |
Collapse
|
15
|
Glaser AK, Chen Y, Liu JT. Fractal propagation method enables realistic optical microscopy simulations in biological tissues. OPTICA 2016; 3:861-869. [PMID: 28983499 PMCID: PMC5626453 DOI: 10.1364/optica.3.000861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Current simulation methods for light transport in biological media have limited efficiency and realism when applied to three-dimensional microscopic light transport in biological tissues with refractive heterogeneities. We describe here a technique which combines a beam propagation method valid for modeling light transport in media with weak variations in refractive index, with a fractal model of refractive index turbulence. In contrast to standard simulation methods, this fractal propagation method (FPM) is able to accurately and efficiently simulate the diffraction effects of focused beams, as well as the microscopic heterogeneities present in tissue that result in scattering, refractive beam steering, and the aberration of beam foci. We validate the technique and the relationship between the FPM model parameters and conventional optical parameters used to describe tissues, and also demonstrate the method's flexibility and robustness by examining the steering and distortion of Gaussian and Bessel beams in tissue with comparison to experimental data. We show that the FPM has utility for the accurate investigation and optimization of optical microscopy methods such as light-sheet, confocal, and nonlinear microscopy.
Collapse
Affiliation(s)
- Adam K. Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Corresponding author:
| | - Ye Chen
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Jonathan T.C. Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|