1
|
Liu Y, Abd El-Sadek I, Morishita R, Makita S, Mori T, Furukawa A, Matsusaka S, Yasuno Y. Neural-network based high-speed volumetric dynamic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3216-3239. [PMID: 38855683 PMCID: PMC11161370 DOI: 10.1364/boe.519964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
We demonstrate deep-learning neural network (NN)-based dynamic optical coherence tomography (DOCT), which generates high-quality logarithmic-intensity-variance (LIV) DOCT images from only four OCT frames. The NN model is trained for tumor spheroid samples using a customized loss function: the weighted mean absolute error. This loss function enables highly accurate LIV image generation. The fidelity of the generated LIV images to the ground truth LIV images generated using 32 OCT frames is examined via subjective image observation and statistical analysis of image-based metrics. Fast volumetric DOCT imaging with an acquisition time of 6.55 s/volume is demonstrated using this NN-based method.
Collapse
Affiliation(s)
- Yusong Liu
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City 34517, Damietta, Egypt
| | - Rion Morishita
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsuko Furukawa
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
2
|
Ren C, Hao S, Wang F, Matt A, Amaral MM, Yang D, Wang L, Zhou C. Dynamic contrast optical coherence tomography (DyC-OCT) for label-free live cell imaging. Commun Biol 2024; 7:278. [PMID: 38448627 PMCID: PMC10918170 DOI: 10.1038/s42003-024-05973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Dynamic contrast optical coherence tomography (DyC-OCT), an emerging imaging method, utilizes fluctuation patterns in OCT signals to enhance contrast, thereby enabling non-invasive label-free volumetric live cell imaging. In this mini review, we explain the core concepts behind DyC-OCT image formation and its system configurations, serving as practical guidance for future DyC-OCT users. Subsequently, we explore its applications in delivering high-quality, contrast-enhanced images of cellular morphology, as well as in monitoring changes in cellular activity/viability assay experiments.
Collapse
Affiliation(s)
- Chao Ren
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Imaging Science Ph.D. Program, Washington University in St Louis, St. Louis, MO, USA
| | - Senyue Hao
- Department of Electrical & Systems Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Abigail Matt
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Marcello Magri Amaral
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Biomedical Engineering, Universidade Brasil, Sao Paulo, Brazil
| | - Daniel Yang
- Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leyao Wang
- Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA.
- Imaging Science Ph.D. Program, Washington University in St Louis, St. Louis, MO, USA.
- Department of Electrical & Systems Engineering, Washington University in St Louis, St. Louis, MO, USA.
| |
Collapse
|
3
|
Monfort T, Azzollini S, Ben Yacoub T, Audo I, Reichman S, Grieve K, Thouvenin O. Interface self-referenced dynamic full-field optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:3491-3505. [PMID: 37497503 PMCID: PMC10368024 DOI: 10.1364/boe.488663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Dynamic full-field optical coherence tomography (D-FFOCT) has recently emerged as an invaluable live label-free and non-invasive imaging modality able to image subcellular biological structures and their metabolic activity within complex 3D samples. However, D-FFOCT suffers from fringe artefacts when imaging near reflective surfaces and is highly sensitive to vibrations. Here, we present interface Self-Referenced (iSR) D-FFOCT, an alternative configuration to D-FFOCT that takes advantage of the presence of the sample coverslip in between the sample and the objective by using it as a defocused reference arm, thus avoiding the aforementioned artefacts. We demonstrate the ability of iSR D-FFOCT to image 2D fibroblast cell cultures, which are among the flattest mammalian cells.
Collapse
Affiliation(s)
- Tual Monfort
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | - Salvatore Azzollini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Tasnim Ben Yacoub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Sacha Reichman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | - Olivier Thouvenin
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| |
Collapse
|
4
|
Azzollini S, Monfort T, Thouvenin O, Grieve K. Dynamic optical coherence tomography for cell analysis [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:3362-3379. [PMID: 37497511 PMCID: PMC10368035 DOI: 10.1364/boe.488929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023]
Abstract
Label-free live optical imaging of dynamic cellular and subcellular features has been made possible in recent years thanks to the advances made in optical imaging techniques, including dynamic optical coherence tomography (D-OCT) methods. These techniques analyze the temporal fluctuations of an optical signal associated with the active movements of intracellular organelles to obtain an ensemble metric recapitulating the motility and metabolic state of cells. They hence enable visualization of cells within compact, static environments and evaluate their physiology. These emerging microscopies show promise, in particular for the three-dimensional evaluation of live tissue samples such as freshly excised biopsies and 3D cell cultures. In this review, we compare the various techniques used for dynamic OCT. We give an overview of the range of applications currently being explored and discuss the future outlook and opportunities for the field.
Collapse
Affiliation(s)
- Salvatore Azzollini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Tual Monfort
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | | | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| |
Collapse
|
5
|
Morishita R, Suzuki T, Mukherjee P, Abd El-Sadek I, Lim Y, Lichtenegger A, Makita S, Tomita K, Yamamoto Y, Nagamoto T, Yasuno Y. Label-free intratissue activity imaging of alveolar organoids with dynamic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:2333-2351. [PMID: 37206117 PMCID: PMC10191660 DOI: 10.1364/boe.488097] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
An organoid is a three-dimensional (3D) in vitro cell culture emulating human organs. We applied 3D dynamic optical coherence tomography (DOCT) to visualize the intratissue and intracellular activities of human induced pluripotent stem cells (hiPSCs)-derived alveolar organoids in normal and fibrosis models. 3D DOCT data were acquired with an 840-nm spectral domain optical coherence tomography with axial and lateral resolutions of 3.8 µm (in tissue) and 4.9 µm, respectively. The DOCT images were obtained by the logarithmic-intensity-variance (LIV) algorithm, which is sensitive to the signal fluctuation magnitude. The LIV images revealed cystic structures surrounded by high-LIV borders and mesh-like structures with low LIV. The former may be alveoli with a highly dynamics epithelium, while the latter may be fibroblasts. The LIV images also demonstrated the abnormal repair of the alveolar epithelium.
Collapse
Affiliation(s)
- Rion Morishita
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Toshio Suzuki
- Department of Medical Oncology, Faculty of
Medicine,
University of
Tsukuba, Ibaraki 305-8575, Japan
- HiLung Inc.,
Kyoto, Japan
| | - Pradipta Mukherjee
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Department of Physics, Faculty of Science,
Damietta University, New Damietta City
34517, Damietta, Egypt
| | - Yiheng Lim
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Antonia Lichtenegger
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna,
Währinger Gürtel 18-20, 4L, 1090, Vienna, Austria
| | - Shuichi Makita
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Kiriko Tomita
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | | | | | - Yoshiaki Yasuno
- Computational Optics Group,
University of
Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
6
|
Ong J, Zarnegar A, Corradetti G, Singh SR, Chhablani J. Advances in Optical Coherence Tomography Imaging Technology and Techniques for Choroidal and Retinal Disorders. J Clin Med 2022; 11:jcm11175139. [PMID: 36079077 PMCID: PMC9457394 DOI: 10.3390/jcm11175139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Optical coherence tomography (OCT) imaging has played a pivotal role in the field of retina. This light-based, non-invasive imaging modality provides high-quality, cross-sectional analysis of the retina and has revolutionized the diagnosis and management of retinal and choroidal diseases. Since its introduction in the early 1990s, OCT technology has continued to advance to provide quicker acquisition times and higher resolution. In this manuscript, we discuss some of the most recent advances in OCT technology and techniques for choroidal and retinal diseases. The emerging innovations discussed include wide-field OCT, adaptive optics OCT, polarization sensitive OCT, full-field OCT, hand-held OCT, intraoperative OCT, at-home OCT, and more. The applications of these rising OCT systems and techniques will allow for a closer monitoring of chorioretinal diseases and treatment response, more robust analysis in basic science research, and further insights into surgical management. In addition, these innovations to optimize visualization of the choroid and retina offer a promising future for advancing our understanding of the pathophysiology of chorioretinal diseases.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Giulia Corradetti
- Department of Ophthalmology, Doheny Eye Institute, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90033, USA
| | | | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
7
|
Wang L, Fu R, Xu C, Xu M. Methods and applications of full-field optical coherence tomography: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220007VR. [PMID: 35596250 PMCID: PMC9122094 DOI: 10.1117/1.jbo.27.5.050901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 05/24/2023]
Abstract
SIGNIFICANCE Full-field optical coherence tomography (FF-OCT) enables en face views of scattering samples at a given depth with subcellular resolution, similar to biopsy without the need of sample slicing or other complex preparation. This noninvasive, high-resolution, three-dimensional (3D) imaging method has the potential to become a powerful tool in biomedical research, clinical applications, and other microscopic detection. AIM Our review provides an overview of the disruptive innovations and key technologies to further improve FF-OCT performance, promoting FF-OCT technology in biomedical and other application scenarios. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. Methods to improve performance of FF-OCT systems are reviewed, including advanced phase-shift approaches for imaging speed improvement, methods of denoising, artifact reduction, and aberration correction for imaging quality optimization, innovations for imaging flux expansion (field-of-view enlargement and imaging-depth-limit extension), new implementations for multimodality systems, and deep learning enhanced FF-OCT for information mining, etc. Finally, we summarize the application status and prospects of FF-OCT in the fields of biomedicine, materials science, security, and identification. RESULTS The most worth-expecting FF-OCT innovations include combining the technique of spatial modulation of optical field and computational optical imaging technology to obtain greater penetration depth, as well as exploiting endogenous contrast for functional imaging, e.g., dynamic FF-OCT, which enables noninvasive visualization of tissue dynamic properties or intracellular motility. Different dynamic imaging algorithms are compared using the same OCT data of the colorectal cancer organoid, which helps to understand the disadvantages and advantages of each. In addition, deep learning enhanced FF-OCT provides more valuable characteristic information, which is of great significance for auxiliary diagnosis and organoid detection. CONCLUSIONS FF-OCT has not been completely exploited and has substantial growth potential. By elaborating the key technologies, performance optimization methods, and application status of FF-OCT, we expect to accelerate the development of FF-OCT in both academic and industry fields. This renewed perspective on FF-OCT may also serve as a road map for future development of invasive 3D super-resolution imaging techniques to solve the problems of microscopic visualization detection.
Collapse
Affiliation(s)
- Ling Wang
- Hangzhou DianZi University, School of Automation, Hangzhou, China
- Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou, China
| | - Rongzhen Fu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
| | - Chen Xu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
| | - Mingen Xu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
- Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Lichtenegger A, Salas M, Sing A, Duelk M, Licandro R, Gesperger J, Baumann B, Drexler W, Leitgeb RA. Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network. BIOMEDICAL OPTICS EXPRESS 2021; 12:6780-6795. [PMID: 34858680 PMCID: PMC8606123 DOI: 10.1364/boe.435124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional generative adversarial network (cGAN) to reconstruct a high-resolution image equivalent to that generated using a continuous spectral band. The cGAN was trained using OCT image pairs acquired with the continuous and discontinuous visible range spectra to learn the relation between low- and high-resolution data. The reconstruction performance was tested using 6000 B-scans of a layered phantom, micro-beads and ex-vivo mouse ear tissue. The resultant cGAN-generated images demonstrate an image quality and axial resolution which approaches that of the high-resolution system.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and Its Translation to Medicine, Medical University of Vienna, Austria
- These authors contributed equally
| | - Matthias Salas
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and Its Translation to Medicine, Medical University of Vienna, Austria
- These authors contributed equally
| | - Alexander Sing
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | | | - Roxane Licandro
- Department of and Biomedical Imaging and Image-guided Therapy, Computational Imaging Research, Medical University of Vienna, Austria
- Institute of Visual Computing and Human-Centered Technology, Computer Vision Lab, TU Wien, Austria
| | - Johanna Gesperger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and Its Translation to Medicine, Medical University of Vienna, Austria
| |
Collapse
|
9
|
Gil DA, Deming DA, Skala MC. Volumetric growth tracking of patient-derived cancer organoids using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:3789-3805. [PMID: 34457380 PMCID: PMC8367263 DOI: 10.1364/boe.428197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 05/02/2023]
Abstract
Patient-derived cancer organoids (PCOs) are in vitro organotypic models that reflect in vivo drug response, thus PCOs are an accessible model for cancer drug screening in a clinically relevant timeframe. However, current methods to assess the response of PCOs are limited. Here, a custom swept-source optical coherence tomography (OCT) system was used to rapidly evaluate volumetric growth and drug response in PCOs. This system was optimized for an inverted imaging geometry to enable high-throughput imaging of PCOs. An automated image analysis framework was developed to perform 3D single-organoid tracking of PCOs across multiple time points over 48 hours. Metabolic inhibitors and cancer therapies decreased PCOs volumetric growth rate compared to control PCOs. Single-organoid tracking improved sensitivity to drug treatment compared to a pooled analysis of changes in organoid volume. OCT provided a more accurate assessment of organoid volume compared to a volume estimation method based on 2D projections. Single-organoid tracking with OCT also identified heterogeneity in drug response between solid and hollow PCOs. This work demonstrates that OCT and 3D single-organoid tracking are attractive tools to monitor volumetric growth and drug response in PCOs, providing rapid, non-destructive methods to quantify heterogeneity in PCOs.
Collapse
Affiliation(s)
- Daniel A. Gil
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53704, USA
- Morgridge Institute for Research, Madison, WI 53704, USA
| | - Dustin A. Deming
- University of Wisconsin Carbone Cancer Center, Madison, WI 53704, USA
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin, Madison, WI 53704, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53704, USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53704, USA
- Morgridge Institute for Research, Madison, WI 53704, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI 53704, USA
| |
Collapse
|
10
|
Maldiney T, Greigert H, Martin L, Benoit E, Creuzot-Garcher C, Gabrielle PH, Chassot JM, Boccara C, Balvay D, Tavitian B, Clément O, Audia S, Bonnotte B, Samson M. Full-field optical coherence tomography for the diagnosis of giant cell arteritis. PLoS One 2020; 15:e0234165. [PMID: 32866179 PMCID: PMC7458309 DOI: 10.1371/journal.pone.0234165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Histopathological examination of temporal artery biopsy (TAB) remains the gold standard for the diagnosis of giant cell arteritis (GCA) but is associated with essential limitations that emphasize the need for an upgraded pathological process. This study pioneered the use of full-field optical coherence tomography (FF-OCT) for rapid and automated on-site pathological diagnosis of GCA. Sixteen TABs (12 negative and 4 positive for GCA) were selected according to major histopathological criteria of GCA following hematoxylin-eosin-saffron-staining for subsequent acquisition with FF-OCT to compare structural modifications of the artery cell wall and thickness of each tunica. Gabor filtering of FF-OCT images was then used to compute TAB orientation maps and validate a potential automated analysis of TAB sections. FF-OCT allowed both qualitative and quantitative visualization of the main structures of the temporal artery wall, from the internal elastic lamina to the vasa vasorum and red blood cells, unveiling a significant correlation with conventional histology. FF-OCT imaging of GCA TABs revealed destruction of the media with distinct remodeling of the whole arterial wall into a denser reticular fibrous neo-intima, which is distinctive of GCA pathogenesis and accessible through automated Gabor filtering. Rapid on-site FF-OCT TAB acquisition makes it possible to identify some characteristic pathological lesions of GCA within a few minutes, paving the way for potential machine intelligence-based or even non-invasive diagnosis of GCA.
Collapse
Affiliation(s)
- Thomas Maldiney
- Department of Internal Medicine and Clinical Immunology, François Mitterrand Hospital, Dijon University Hospital, Dijon, Bourgogne-Franche-Comté, France
| | - Hélène Greigert
- Department of Internal Medicine and Clinical Immunology, François Mitterrand Hospital, Dijon University Hospital, Dijon, Bourgogne-Franche-Comté, France
- University of Bourgogne-Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, Bourgogne-Franche-Comté, France
| | - Laurent Martin
- University of Bourgogne-Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, Bourgogne-Franche-Comté, France
- Department of Pathology, François Mitterrand Hospital, Dijon University Hospital, Dijon, Bourgogne-Franche-Comté, France
| | | | - Catherine Creuzot-Garcher
- Department of Ophthalmology, François Mitterrand Hospital, Dijon University Hospital, Dijon, Bourgogne-Franche-Comté, France
| | - Pierre-Henry Gabrielle
- Department of Ophthalmology, François Mitterrand Hospital, Dijon University Hospital, Dijon, Bourgogne-Franche-Comté, France
| | | | - Claude Boccara
- LLTech SAS, Paris, France
- Institut Langevin, ESPCI Paris, CNRS, PSL University, Paris, France
| | | | - Bertrand Tavitian
- Université de Paris, PARCC, INSERM, Paris, France
- Radiology Department, Hôpital Européen Georges Pompidou, Université Paris Descartes Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Clément
- Université de Paris, PARCC, INSERM, Paris, France
- Radiology Department, Hôpital Européen Georges Pompidou, Université Paris Descartes Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvain Audia
- Department of Internal Medicine and Clinical Immunology, François Mitterrand Hospital, Dijon University Hospital, Dijon, Bourgogne-Franche-Comté, France
- University of Bourgogne-Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, Bourgogne-Franche-Comté, France
| | - Bernard Bonnotte
- Department of Internal Medicine and Clinical Immunology, François Mitterrand Hospital, Dijon University Hospital, Dijon, Bourgogne-Franche-Comté, France
- University of Bourgogne-Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, Bourgogne-Franche-Comté, France
| | - Maxime Samson
- Department of Internal Medicine and Clinical Immunology, François Mitterrand Hospital, Dijon University Hospital, Dijon, Bourgogne-Franche-Comté, France
- University of Bourgogne-Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, Bourgogne-Franche-Comté, France
| |
Collapse
|
11
|
Zhu Y, Gao W, Guo Z, Zhou Y, Zhou Y. Liver tissue classification of en face images by fractal dimension-based support vector machine. JOURNAL OF BIOPHOTONICS 2020; 13:e201960154. [PMID: 31909553 DOI: 10.1002/jbio.201960154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Full-field optical coherence tomography (FF-OCT) has been reported with its label-free subcellular imaging performance. To realize quantitive cancer detection, the support vector machine model of classifying normal and cancerous human liver tissue is proposed with en face tomographic images. Twenty samples (10 normal and 10 cancerous) were operated from humans and composed of 285 en face tomographic images. Six histogram features and one proposed fractal dimension parameter that reveal the refractive index inhomogeneities of tissue were extracted and made up the training set. The other different 16 samples (8 normal and 8 cancerous) were imaged (190 images) and employed as the test set with the same features. First, a subcellular-resolution tomographic image library for four histopathological areas in liver tissue was established. Second, the area under the receiver operating characteristics of 0.9378, 0.9858, 0.9391, 0.9517 for prediction of the cancerous hepatic cell, central vein, fibrosis, and portal vein were measured with the test set. The results indicate that the proposed classifier from FF-OCT images shows promise as a label-free assessment of quantified tumor detection, suggesting the fractal dimension-based classifier could aid clinicians in detecting tumor boundaries for resection in surgery in the future.
Collapse
Affiliation(s)
- Yue Zhu
- Nanjing University of Science and Technology, Department of Optical Engineering, Nanjing, China
| | - Wanrong Gao
- Nanjing University of Science and Technology, Department of Optical Engineering, Nanjing, China
| | - Zhenyan Guo
- Nanjing University of Science and Technology, Department of Optical Engineering, Nanjing, China
| | - Yawen Zhou
- Nanjing University of Science and Technology, Department of Optical Engineering, Nanjing, China
| | - Yuan Zhou
- Nanjing University, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Thouvenin O, Keiser L, Cantaut-Belarif Y, Carbo-Tano M, Verweij F, Jurisch-Yaksi N, Bardet PL, van Niel G, Gallaire F, Wyart C. Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. eLife 2020; 9:e47699. [PMID: 31916933 PMCID: PMC6989091 DOI: 10.7554/elife.47699] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth.
Collapse
Affiliation(s)
- Olivier Thouvenin
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- ESPCI Paris, PSL University, CNRS, Institut LangevinParisFrance
| | - Ludovic Keiser
- Laboratory of Fluid Mechanics and InstabilitiesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Martin Carbo-Tano
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Frederik Verweij
- Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266ParisFrance
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Clinical and Molecular Medicine, The Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Pierre-Luc Bardet
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Guillaume van Niel
- Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266ParisFrance
| | - Francois Gallaire
- Laboratory of Fluid Mechanics and InstabilitiesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| |
Collapse
|
13
|
Yoon C, Qi Y, Mestre H, Canavesi C, Marola OJ, Cogliati A, Nedergaard M, Libby RT, Rolland JP. Gabor domain optical coherence microscopy combined with laser scanning confocal fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:6242-6257. [PMID: 31853397 PMCID: PMC6913392 DOI: 10.1364/boe.10.006242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
We report on the development of fluorescence Gabor domain optical coherence microscopy (Fluo GD-OCM), a combination of GD-OCM with laser scanning confocal fluorescence microscopy (LSCFM) for synchronous micro-structural and fluorescence imaging. The dynamic focusing capability of GD-OCM provided the adaptive illumination environment for both modalities without any mechanical movement. Using Fluo GD-OCM, we imaged ex vivo DsRed-expressing cells in the brain of a transgenic mouse, as well as Cy3-labeled ganglion cells and Cy3-labeled astrocytes from a mouse retina. The self-registration of images taken by the two different imaging modalities showed the potential for a correlative study of subjects and double identification of the target.
Collapse
Affiliation(s)
- Changsik Yoon
- The Institute of Optics, University of Rochester, Wilmot Building, Rochester, New York 14627, USA
| | - Yue Qi
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, New York 14627, USA
| | - Humberto Mestre
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Cristina Canavesi
- LighTopTech Corp., 150 Lucius Gordon Dr., Ste 201, West Henrietta, New York 14586, USA
| | - Olivia J. Marola
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Andrea Cogliati
- LighTopTech Corp., 150 Lucius Gordon Dr., Ste 201, West Henrietta, New York 14586, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Richard T. Libby
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Jannick P. Rolland
- The Institute of Optics, University of Rochester, Wilmot Building, Rochester, New York 14627, USA
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, New York 14627, USA
- LighTopTech Corp., 150 Lucius Gordon Dr., Ste 201, West Henrietta, New York 14586, USA
| |
Collapse
|
14
|
Anract J, Duquesne I, Montagne P, Sibony M, Beuvon F, Peyromaure M, Barry Delongchamps N. [Optical coherence tomography of bladder resection specimen]. Prog Urol 2019; 29:449-455. [PMID: 31230855 DOI: 10.1016/j.purol.2019.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The diagnosis of bladder urothelial tumors is based on bladder resection and histological analysis of the specimen. The time to obtain the results of the histological analysis increases the treatment delay. Furthermore, the lack of muscle on the specimen forces the surgeon to practice on other procedure. Full field optical coherence tomography (FFOCT) is a recent imaging technique to analyze tissue. The aim of our study was to evaluate the feasibility and diagnostic accuracy of FFOCT to detect muscle and tumor in bladder resection specimen. PATIENTS AND METHODS We analyzed with the FFOCT technique bladder resection specimen of 24 consecutives patients. Three readers did the blind analyze of the images, looking for the presence of muscle and tumor on each specimen. Their results were compared with histological analysis to calculate diagnostic accuracy for each reader. RESULTS Mean sensibilities for the detection of muscle and tumor were respectively 75% and 81%. Mean specificities for the detection of muscle and tumor were respectively 78.3% and 55.3%. CONCLUSIONS Our results suggest that the FFOCT is feasible to analyze bladder resection specimen. Sensibilities and specificities calculated are encouraging for the detection of muscle and tumor. The accuracy of this detection and early-staging tool should be validated by larger studies. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- J Anract
- Service d'urologie, hôpital Cochin, 163, boulevard de Port-Royal, 75014 Paris, France.
| | - I Duquesne
- Service d'urologie, hôpital Cochin, 163, boulevard de Port-Royal, 75014 Paris, France
| | - P Montagne
- Laboratoire LL-Tech, Pépinière Paris Santé Cochin, 29, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - M Sibony
- Service d'anatomopathologie, hôpital Cochin, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - F Beuvon
- Service d'anatomopathologie, hôpital Cochin, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - M Peyromaure
- Service d'urologie, hôpital Cochin, 163, boulevard de Port-Royal, 75014 Paris, France
| | - N Barry Delongchamps
- Service d'urologie, hôpital Cochin, 163, boulevard de Port-Royal, 75014 Paris, France
| |
Collapse
|
15
|
Abstract
Gabor-domain optical coherence microscopy (GDOCM) is a high-definition imaging technique leveraging principles of low-coherence interferometry, liquid lens technology, high-speed imaging, and precision scanning. GDOCM achieves isotropic 2 μm resolution in 3D, effectively breaking the cellular resolution limit of optical coherence tomography (OCT). In the ten years since its introduction, GDOCM has been used for cellular imaging in 3D in a number of clinical applications, including dermatology, oncology and ophthalmology, as well as to characterize materials in industrial applications. Future developments will enhance the structural imaging capability of GDOCM by adding functional modalities, such as fluorescence and elastography, by estimating thicknesses on the nano-scale, and by incorporating machine learning techniques.
Collapse
|
16
|
Lichtenegger A, Gesperger J, Kiesel B, Muck M, Eugui P, Harper DJ, Salas M, Augustin M, Merkle CW, Hitzenberger CK, Widhalm G, Woehrer A, Baumann B. Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31240898 PMCID: PMC6977170 DOI: 10.1117/1.jbo.24.6.066010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/07/2019] [Indexed: 05/28/2023]
Abstract
We present a multimodal visible light optical coherence microscopy (OCM) and fluorescence imaging (FI) setup. Specification and phantom measurements were performed to characterize the system. Two applications in neuroimaging were investigated. First, curcumin-stained brain slices of a mouse model of Alzheimer's disease were examined. Amyloid-beta plaques were identified based on the fluorescence of curcumin, and coregistered morphological images of the brain tissue were provided by the OCM channel. Second, human brain tumor biopsies retrieved intraoperatively were imaged prior to conventional neuropathologic work-up. OCM revealed the three-dimensional structure of the brain parenchyma, and FI added the tumor tissue-specific contrast. Attenuation coefficients computed from the OCM data and the florescence intensity values were analyzed and showed a statistically significant difference for 5-aminolevulinic acid (5-ALA)-positive and -negative brain tissues. OCM findings correlated well with malignant hot spots within brain tumor biopsies upon histopathology. The combination of OCM and FI seems to be a promising optical imaging modality providing complementary contrast for applications in the field of neuroimaging.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Johanna Gesperger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Barbara Kiesel
- General Hospital and Medical University of Vienna, Univ. Klinik Neurochirurgie, Vienna, Austria
| | - Martina Muck
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Pablo Eugui
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Danielle J. Harper
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Matthias Salas
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Augustin
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Conrad W. Merkle
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Christoph K. Hitzenberger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Georg Widhalm
- General Hospital and Medical University of Vienna, Univ. Klinik Neurochirurgie, Vienna, Austria
| | - Adelheid Woehrer
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Bernhard Baumann
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| |
Collapse
|
17
|
Yang F, Ma D, Li Z. Predict, Resect, Identify and Discard Strategy with Full-field Optical Coherence Tomography: Two Steps Forward, One Step Back. Gastroenterology 2019; 156:1934-1935. [PMID: 30771354 DOI: 10.1053/j.gastro.2019.01.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/07/2019] [Indexed: 12/02/2022]
Affiliation(s)
- Fan Yang
- Department of Gastroenterology, People's Hospital of Leshan, Leshan, Sichuan, China; Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Dan Ma
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Scholler J, Mazlin V, Thouvenin O, Groux K, Xiao P, Sahel JA, Fink M, Boccara C, Grieve K. Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field OCT. BIOMEDICAL OPTICS EXPRESS 2019; 10:731-746. [PMID: 30800511 PMCID: PMC6377896 DOI: 10.1364/boe.10.000731] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 05/08/2023]
Abstract
We describe recent technological progress in multimodal en face full-field optical coherence tomography that has allowed detection of slow and fast dynamic processes in the eye. We show that by combining static, dynamic and fluorescence contrasts we can achieve label-free high-resolution imaging of the retina and anterior eye with temporal resolution from milliseconds to several hours, allowing us to probe biological activity at subcellular scales inside 3D bulk tissue. Our setups combine high lateral resolution over a large field of view with acquisition at several hundreds of frames per second which make it a promising tool for clinical applications and biomedical studies. Its contactless and non-destructive nature is shown to be effective for both following in vitro sample evolution over long periods of time and for imaging of the human eye in vivo.
Collapse
Affiliation(s)
- Jules Scholler
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris,
France
| | - Viacheslav Mazlin
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris,
France
| | - Olivier Thouvenin
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris,
France
| | - Kassandra Groux
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris,
France
- LLTech SAS, 29 Rue du Faubourg Saint Jacques, Paris, 75014,
France
| | - Peng Xiao
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou,
China
| | - José-Alain Sahel
- Vision Institute/CIC 1423, UPMC-Sorbonne Universities, UMR_S 968/INSERM, U968/CNRS, UMR_7210, 17 Rue Moreau, Paris, 75012,
France
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012,
France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,
USA
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris,
France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris,
France
- LLTech SAS, 29 Rue du Faubourg Saint Jacques, Paris, 75014,
France
| | - Kate Grieve
- Vision Institute/CIC 1423, UPMC-Sorbonne Universities, UMR_S 968/INSERM, U968/CNRS, UMR_7210, 17 Rue Moreau, Paris, 75012,
France
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012,
France
| |
Collapse
|
19
|
Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat Commun 2018; 9:3804. [PMID: 30228263 PMCID: PMC6143598 DOI: 10.1038/s41467-018-06225-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Defects in cerebrospinal fluid (CSF) flow may contribute to idiopathic scoliosis. However, the mechanisms underlying detection of CSF flow in the central canal of the spinal cord are unknown. Here we demonstrate that CSF flows bidirectionally along the antero-posterior axis in the central canal of zebrafish embryos. In the cfap298tm304 mutant, reduction of cilia motility slows transport posteriorly down the central canal and abolishes spontaneous activity of CSF-contacting neurons (CSF-cNs). Loss of the sensory Pkd2l1 channel nearly abolishes CSF-cN calcium activity and single channel opening. Recording from isolated CSF-cNs in vitro, we show that CSF-cNs are mechanosensory and require Pkd2l1 to respond to pressure. Additionally, adult pkd2l1 mutant zebrafish develop an exaggerated spine curvature, reminiscent of kyphosis in humans. These results indicate that CSF-cNs are mechanosensory cells whose Pkd2l1-driven spontaneous activity reflects CSF flow in vivo. Furthermore, Pkd2l1 in CSF-cNs contributes to maintenance of natural curvature of the spine. Alteration of cerebrospinal fluid (CSF) flow and cilia defects are clinically associated with idiopathic scoliosis. This study shows that transient receptor potential channel Pkd2l1 is required for mechanosensory function of neurons detecting CSF flow and normal spine curvature development in zebrafish.
Collapse
|
20
|
Oblique scanning laser microscopy for simultaneously volumetric structural and molecular imaging using only one raster scan. Sci Rep 2017; 7:8591. [PMID: 28819250 PMCID: PMC5561209 DOI: 10.1038/s41598-017-08822-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 01/09/2023] Open
Abstract
Multi-modal three dimensional (3D) optical imaging combining both structural sensitivity and molecular specificity is highly desirable in biomedical research. In this paper, we present a method termed oblique scanning laser microscopy (OSLM) to combine optical coherence tomography (OCT), for simultaneously volumetric structural and molecular imaging with cellular resolution in all three dimensions. Conventional 3D laser scanning fluorescence microscopy requires repeated optical sectioning to create z-stacks in depth. Here, the use of an obliquely scanning laser eliminates the z-stacking process, then allows highly efficient 3D OCT and fluorescence imaging by using only one raster scan. The current setup provides ~3.6 × 4.2 × 6.5 μm resolution in fluorescence imaging, ~7 × 7 × 3.5 μm in OCT in three dimensions, and the current speed of imaging is up to 100 frames per second (fps) over a volume about 0.8 × 1 × 0.5 mm3. We demonstrate several mechanisms for molecular imaging, including intrinsically expressed GFP fluorescence, autofluorescence from Flavin proteins, and exogenous antibody-conjugated dyes. We also demonstrate potential applications in imaging human intestinal organoids (HIOs), colon mucosa, and retina.
Collapse
|
21
|
Marchand PJ, Bouwens A, Szlag D, Nguyen D, Descloux A, Sison M, Coquoz S, Extermann J, Lasser T. Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:3343-3359. [PMID: 28717571 PMCID: PMC5508832 DOI: 10.1364/boe.8.003343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 05/09/2023]
Abstract
We present a novel extended-focus optical coherence microscope (OCM) attaining 0.7 μm axial and 0.4 μm lateral resolution maintained over a depth of 40 μm, while preserving the advantages of Fourier domain OCM. Our system uses an ultra-broad spectrum from a supercontinuum laser source. As the spectrum spans from near-infrared to visible wavelengths (240 nm in bandwidth), we call the system visOCM. The combination of such a broad spectrum with a high-NA objective creates an almost isotropic 3D submicron resolution. We analyze the imaging performance of visOCM on microbead samples and demonstrate its image quality on cell cultures and ex-vivo brain tissue of both healthy and alzheimeric mice. In addition to neuronal cell bodies, fibers and plaques, visOCM imaging of brain tissue reveals fine vascular structures and sub-cellular features through its high spatial resolution. Sub-cellular structures were also observed in live cells and were further revealed through a protocol traditionally used for OCT angiography.
Collapse
|
22
|
Full-Field Optical Coherence Tomography as a Diagnosis Tool: Recent Progress with Multimodal Imaging. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|