1
|
Gaire SK, Daneshkhah A, Flowerday E, Gong R, Frederick J, Backman V. Deep learning-based spectroscopic single-molecule localization microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:066501. [PMID: 38799979 PMCID: PMC11122423 DOI: 10.1117/1.jbo.29.6.066501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Significance Spectroscopic single-molecule localization microscopy (sSMLM) takes advantage of nanoscopy and spectroscopy, enabling sub-10 nm resolution as well as simultaneous multicolor imaging of multi-labeled samples. Reconstruction of raw sSMLM data using deep learning is a promising approach for visualizing the subcellular structures at the nanoscale. Aim Develop a novel computational approach leveraging deep learning to reconstruct both label-free and fluorescence-labeled sSMLM imaging data. Approach We developed a two-network-model based deep learning algorithm, termed DsSMLM, to reconstruct sSMLM data. The effectiveness of DsSMLM was assessed by conducting imaging experiments on diverse samples, including label-free single-stranded DNA (ssDNA) fiber, fluorescence-labeled histone markers on COS-7 and U2OS cells, and simultaneous multicolor imaging of synthetic DNA origami nanoruler. Results For label-free imaging, a spatial resolution of 6.22 nm was achieved on ssDNA fiber; for fluorescence-labeled imaging, DsSMLM revealed the distribution of chromatin-rich and chromatin-poor regions defined by histone markers on the cell nucleus and also offered simultaneous multicolor imaging of nanoruler samples, distinguishing two dyes labeled in three emitting points with a separation distance of 40 nm. With DsSMLM, we observed enhanced spectral profiles with 8.8% higher localization detection for single-color imaging and up to 5.05% higher localization detection for simultaneous two-color imaging. Conclusions We demonstrate the feasibility of deep learning-based reconstruction for sSMLM imaging applicable to label-free and fluorescence-labeled sSMLM imaging data. We anticipate our technique will be a valuable tool for high-quality super-resolution imaging for a deeper understanding of DNA molecules' photophysics and will facilitate the investigation of multiple nanoscopic cellular structures and their interactions.
Collapse
Affiliation(s)
- Sunil Kumar Gaire
- North Carolina Agricultural and Technical State University, Department of Electrical and Computer Engineering, Greensboro, North Carolina, United States
| | - Ali Daneshkhah
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Ethan Flowerday
- University of Tulsa, Department of Computer Science and Cyber Security, Tulsa, Oklahoma, United States
| | - Ruyi Gong
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Jane Frederick
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Vadim Backman
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| |
Collapse
|
2
|
Zhang C, Manley S. Super-Resolution Microscopy of the Bacterial Cell Wall Labeled by Fluorescent D-Amino Acids. Methods Mol Biol 2024; 2727:83-94. [PMID: 37815710 DOI: 10.1007/978-1-0716-3491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Fluorescent D-amino acids (FDAAs) enable in situ visualization of bacterial cell wall synthesis via their incorporation into peptidoglycan (PG) crosslinks. When combined with super-resolution microscopy, FDAAs allow the details of cell wall synthesis to be resolved beyond the diffraction limit of visible light. Here, we describe using the super-resolution method of single-molecule localization microscopy (SMLM) in conjunction with two newly synthesized FDAAs (sCy5DA and sCy5DL_amide) to resolve bacterial PG at the nanoscale in a variety of species, including Gram-negative, Gram-positive, and mycobacteria.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Suliana Manley
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Brenner B, Sun C, Raymo FM, Zhang HF. Spectroscopic single-molecule localization microscopy: applications and prospective. NANO CONVERGENCE 2023; 10:14. [PMID: 36943541 PMCID: PMC10030755 DOI: 10.1186/s40580-023-00363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/05/2023] [Indexed: 05/25/2023]
Abstract
Single-molecule localization microscopy (SMLM) breaks the optical diffraction limit by numerically localizing sparse fluorescence emitters to achieve super-resolution imaging. Spectroscopic SMLM or sSMLM further allows simultaneous spectroscopy and super-resolution imaging of fluorescence molecules. Hence, sSMLM can extract spectral features with single-molecule sensitivity, higher precision, and higher multiplexity than traditional multicolor microscopy modalities. These new capabilities enabled advanced multiplexed and functional cellular imaging applications. While sSMLM suffers from reduced spatial precision compared to conventional SMLM due to splitting photons to form spatial and spectral images, several methods have been reported to mitigate these weaknesses through innovative optical design and image processing techniques. This review summarizes the recent progress in sSMLM, its applications, and our perspective on future work.
Collapse
Affiliation(s)
- Benjamin Brenner
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Françisco M Raymo
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Riera R, Archontakis E, Cremers G, de Greef T, Zijlstra P, Albertazzi L. Precision and Accuracy of Receptor Quantification on Synthetic and Biological Surfaces Using DNA-PAINT. ACS Sens 2023; 8:80-93. [PMID: 36655822 PMCID: PMC9887648 DOI: 10.1021/acssensors.2c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Characterization of the number and distribution of biological molecules on 2D surfaces is of foremost importance in biology and biomedicine. Synthetic surfaces bearing recognition motifs are a cornerstone of biosensors, while receptors on the cell surface are critical/vital targets for the treatment of diseases. However, the techniques used to quantify their abundance are qualitative or semi-quantitative and usually lack sensitivity, accuracy, or precision. Detailed herein a simple and versatile workflow based on super-resolution microscopy (DNA-PAINT) was standardized to improve the quantification of the density and distribution of molecules on synthetic substrates and cell membranes. A detailed analysis of accuracy and precision of receptor quantification is presented, based on simulated and experimental data. We demonstrate enhanced accuracy and sensitivity by filtering out non-specific interactions and artifacts. While optimizing the workflow to provide faithful counting over a broad range of receptor densities. We validated the workflow by specifically quantifying the density of docking strands on a synthetic sensor surface and the densities of PD1 and EGF receptors (EGFR) on two cellular models.
Collapse
Affiliation(s)
- Roger Riera
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, Netherlands
| | - Emmanouil Archontakis
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, Netherlands
| | - Glenn Cremers
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, The Netherlands,Computational
Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology,
P.O. Box 513, Eindhoven5600 MB, The Netherlands
| | - Tom de Greef
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, The Netherlands,Computational
Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology,
P.O. Box 513, Eindhoven5600 MB, The Netherlands,Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, AJ Nijmegen6525, The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, The Netherlands,
| | - Lorenzo Albertazzi
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, Netherlands,Nanoscopy
for Nanomedicine, Institute for Bioengineering
of Catalonia, Barcelona08028, Spain,
| |
Collapse
|
5
|
Archontakis E, Deng L, Zijlstra P, Palmans ARA, Albertazzi L. Spectrally PAINTing a Single Chain Polymeric Nanoparticle at Super-Resolution. J Am Chem Soc 2022; 144:23698-23707. [PMID: 36516974 PMCID: PMC9801428 DOI: 10.1021/jacs.2c11940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folding a polymer chain into a well-defined single-chain polymeric nanoparticle (SCPN) is a fascinating approach to obtaining structured and functional nanoparticles. Like all polymeric materials, SCPNs are heterogeneous in their nature due to the polydispersity of their synthesis: the stochastic synthesis of polymer backbone length and stochastic functionalization with hydrophobic and hydrophilic pendant groups make structural diversity inevitable. Therefore, in a single batch of SCPNs, nanoparticles with different physicochemical properties are present, posing a great challenge to their characterization at a single-particle level. The development of techniques that can elucidate differences between SCPNs at a single-particle level is imperative to capture their potential applications in different fields such as catalysis and drug delivery. Here, a Nile Red based spectral point accumulation for imaging in nanoscale topography (NR-sPAINT) super-resolution fluorescence technique was implemented for the study of SCPNs at a single-particle level. This innovative method allowed us to (i) map the small-molecule binding rates on individual SCPNs and (ii) map the polarity of individual SCPNs for the first time. The SCPN designs used here have the same polymeric backbone but differ in the number of hydrophobic groups. The experimental results show notable interparticle differences in the binding rates within the same polymer design. Moreover, a marked polarity shift between the different designs is observed. Interestingly, interparticle polarity heterogeneity was unveiled, as well as an intraparticle diversity, information which has thus far remained hidden by ensemble techniques. The results indicate that the addition of hydrophobic pendant groups is vital to determine binding properties and induces single-particle polarity diversity. Overall, NR-sPAINT represents a powerful approach to quantifying the single-particle polarity of SCPNs and paves the way to relate the structural heterogeneity to functionality at the single-particle level. This provides an important step toward the aim of rationally designing SCPNs for the desired application.
Collapse
Affiliation(s)
- Emmanouil Archontakis
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Linlin Deng
- Institute
for Complex Molecular Systems (ICMS), Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems (ICMS), Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
| | - Lorenzo Albertazzi
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,Nanoscopy
for Nanomedicine, Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain,
| |
Collapse
|
6
|
Mukherjee S, Thomas C, Wilson R, Simmerman E, Hung ST, Jimenez R. Characterizing Dark State Kinetics and Single Molecule Fluorescence of FusionRed and FusionRed-MQ at Low Irradiances. Phys Chem Chem Phys 2022; 24:14310-14323. [DOI: 10.1039/d2cp00889k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of dark states causes fluorescence intermittency of single molecules due to transitions between “on” and “off” states. Genetically encodable markers such as fluorescent proteins (FPs) exhibit dark states...
Collapse
|
7
|
Cai Z, Zhang Y, Zhang Z, Song KH, Beckmann L, Djalilian A, Sun C, Zhang HF. Super-resolution imaging of flat-mounted whole mouse cornea. Exp Eye Res 2021; 205:108499. [PMID: 33610603 PMCID: PMC8043998 DOI: 10.1016/j.exer.2021.108499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Super-resolution microscopy revolutionized biomedical research with significantly improved imaging resolution down to the molecular scale. To date, only limited studies reported multi-color super-resolution imaging of thin tissue slices mainly because of unavailable staining protocols and incompatible imaging techniques. Here, we show the first super-resolution imaging of flat-mounted whole mouse cornea using single-molecule localization microscopy (SMLM). We optimized immunofluorescence staining protocols for β-Tubulin, Vimentin, Peroxisome marker (PMP70), and Histone-H4 in whole mouse corneas. Using the optimized staining protocols, we imaged these four intracellular protein structures in the epithelium and endothelium layers of flat-mounted mouse corneas. We also achieved simultaneous two-color spectroscopic SMLM (sSMLM) imaging of β-Tubulin and Histone-H4 in corneal endothelial cells. The spatial localization precision of sSMLM in these studies was around 20-nm. This work sets the stage for investigating multiple intracellular alterations in corneal diseases at a nanoscopic resolution using whole corneal flat-mount beyond cell cultures.
Collapse
Affiliation(s)
- Zhen Cai
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Zheyuan Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ki-Hee Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lisa Beckmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ali Djalilian
- Department of Ophthalmology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
8
|
Davis JL, Soetikno B, Song KH, Zhang Y, Sun C, Zhang HF. RainbowSTORM: an open-source ImageJ plug-in for spectroscopic single-molecule localization microscopy (sSMLM) data analysis and image reconstruction. Bioinformatics 2021; 36:4972-4974. [PMID: 32663240 DOI: 10.1093/bioinformatics/btaa635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
SUMMARY Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously captures the spatial locations and full spectra of stochastically emitting fluorescent single molecules. It provides an optical platform to develop new multimolecular and functional imaging capabilities. While several open-source software suites provide subdiffraction localization of fluorescent molecules, software suites for spectroscopic analysis of sSMLM data remain unavailable. RainbowSTORM is an open-source ImageJ/FIJI plug-in for end-to-end spectroscopic analysis and visualization for sSMLM images. RainbowSTORM allows users to calibrate, preview and quantitatively analyze emission spectra acquired using different reported sSMLM system designs and fluorescent labels. AVAILABILITY AND IMPLEMENTATION RainbowSTORM is a java plug-in for ImageJ (https://imagej.net)/FIJI (http://fiji.sc) freely available through: https://github.com/FOIL-NU/RainbowSTORM. RainbowSTORM has been tested with Windows and Mac operating systems and ImageJ/FIJI version 1.52. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | | | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
9
|
Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, Manley S, Jungmann R, Sauer M, Lakadamyali M, Zimmer C. Single-molecule localization microscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:39. [PMID: 35663461 PMCID: PMC9160414 DOI: 10.1038/s43586-021-00038-x] [Citation(s) in RCA: 314] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Single-molecule localization microscopy (SMLM) describes a family of powerful imaging techniques that dramatically improve spatial resolution over standard, diffraction-limited microscopy techniques and can image biological structures at the molecular scale. In SMLM, individual fluorescent molecules are computationally localized from diffraction-limited image sequences and the localizations are used to generate a super-resolution image or a time course of super-resolution images, or to define molecular trajectories. In this Primer, we introduce the basic principles of SMLM techniques before describing the main experimental considerations when performing SMLM, including fluorescent labelling, sample preparation, hardware requirements and image acquisition in fixed and live cells. We then explain how low-resolution image sequences are computationally processed to reconstruct super-resolution images and/or extract quantitative information, and highlight a selection of biological discoveries enabled by SMLM and closely related methods. We discuss some of the main limitations and potential artefacts of SMLM, as well as ways to alleviate them. Finally, we present an outlook on advanced techniques and promising new developments in the fast-evolving field of SMLM. We hope that this Primer will be a useful reference for both newcomers and practitioners of SMLM.
Collapse
Affiliation(s)
- Mickaël Lelek
- Imaging and Modeling Unit, Department of Computational
Biology, Institut Pasteur, Paris, France
- CNRS, UMR 3691, Paris, France
| | - Melina T. Gyparaki
- Department of Biology, University of Pennsylvania,
Philadelphia, PA, USA
| | - Gerti Beliu
- Department of Biotechnology and Biophysics Biocenter,
University of Würzburg, Würzburg, Germany
| | - Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried,
Germany
| | - Juliette Griffié
- Laboratory of Experimental Biophysics, Institute of
Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
| | - Suliana Manley
- Laboratory of Experimental Biophysics, Institute of
Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
- ;
;
;
;
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried,
Germany
- ;
;
;
;
| | - Markus Sauer
- Department of Biotechnology and Biophysics Biocenter,
University of Würzburg, Würzburg, Germany
- ;
;
;
;
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- ;
;
;
;
| | - Christophe Zimmer
- Imaging and Modeling Unit, Department of Computational
Biology, Institut Pasteur, Paris, France
- CNRS, UMR 3691, Paris, France
- ;
;
;
;
| |
Collapse
|
10
|
Davis JL, Zhang Y, Yi S, Du F, Song KH, Scott EA, Sun C, Zhang HF. Super-Resolution Imaging of Self-Assembled Nanocarriers Using Quantitative Spectroscopic Analysis for Cluster Extraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2291-2299. [PMID: 32069413 PMCID: PMC7445082 DOI: 10.1021/acs.langmuir.9b03149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembled nanocarriers have inspired a range of applications for bioimaging, diagnostics, and drug delivery. The noninvasive visualization and characterization of these nanocarriers are important to understand their structure to function relationship. However, the quantitative visualization of nanocarriers in the sample's native environment remains challenging with the use of existing technologies. Single-molecule localization microscopy (SMLM) has the potential to provide both high-resolution visualization and quantitative analysis of nanocarriers in their native environment. However, nonspecific binding of fluorescent probes used in SMLM can introduce artifacts, which imposes challenges in the quantitative analysis of SMLM images. We showed the feasibility of using spectroscopic point accumulation for imaging in nanoscale topography (sPAINT) to visualize self-assembled polymersomes (PS) with molecular specificity. Furthermore, we analyzed the unique spectral signatures of Nile Red (NR) molecules bound to the PS to reject artifacts from nonspecific NR bindings. We further developed quantitative spectroscopic analysis for cluster extraction (qSPACE) to increase the localization density by 4-fold compared to sPAINT; thus, reducing variations in PS size measurements to less than 5%. Finally, using qSPACE, we quantitatively imaged PS at various concentrations in aqueous solutions with ∼20 nm localization precision and 97% reduction in sample misidentification relative to conventional SMLM.
Collapse
Affiliation(s)
- Janel L. Davis
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Yang Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Sijia Yi
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Fanfan Du
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Ki-Hee Song
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
11
|
SONG KIHEE, ZHANG YANG, WANG GAOXIANG, SUN CHENG, ZHANG HAOF. Three-dimensional biplane spectroscopic single-molecule localization microscopy. OPTICA 2019; 6:709-715. [PMID: 36688951 PMCID: PMC9854264 DOI: 10.1364/optica.6.000709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/06/2019] [Indexed: 05/19/2023]
Abstract
Spectroscopic single-molecule localization microscopy (sSMLM) captures the full emission spectra of individual molecules while simultaneously localizing their spatial locations at a precision greatly exceeding the optical diffraction limit. To achieve this, sSMLM uses a dispersive optical component to separate the emitted photons into dedicated spatial and spectral imaging channels for simultaneous acquisition. While adding a cylindrical lens in the spatial imaging channel enabled three-dimensional (3D) imaging in sSMLM, the inherent astigmatism leads to technical hurdles in spectral calibration and nonuniform lateral resolution at different depths. We found that implementing the biplane method based on the already established spatial and spectral imaging channels offers a much more attractive solution for 3D sSMLM. It allows for more efficient use of the limited photon budget and provides homogeneous lateral resolution compared with the astigmatism-based method using a cylindrical lens. Here we report 3D biplane sSMLM and demonstrate its multi-color 3D imaging capability by imaging microtubules and mitochondria in fixed COS-7 cells immunostained with Alexa Fluor 647 and CF 660C dyes, respectively. We showed a lateral localization precision of 20 nm at an average photon count of 550, a spectral precision of 4 nm at an average photon count of 1250, and an axial localization resolution of 50 nm.
Collapse
Affiliation(s)
- KI-HEE SONG
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60201, USA
| | - YANG ZHANG
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60201, USA
| | - GAOXIANG WANG
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60201, USA
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - CHENG SUN
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60201, USA
| | - HAO F. ZHANG
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60201, USA
- Corresponding author:
| |
Collapse
|
12
|
Zhang Y, Song KH, Dong B, Davis JL, Shao G, Sun C, Zhang HF. Multicolor super-resolution imaging using spectroscopic single-molecule localization microscopy with optimal spectral dispersion. APPLIED OPTICS 2019; 58:2248-2255. [PMID: 31044927 PMCID: PMC6620783 DOI: 10.1364/ao.58.002248] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We developed transmission diffraction grating-based spectroscopic single-molecule localization microscopy (sSMLM) to collect the spatial and spectral information of single-molecule blinking events concurrently. We characterized the spectral heterogeneities of multiple far-red emitting dyes in a high-throughput manner using sSMLM. We also investigated the influence of spectral dispersion on the single-molecule identification performance of fluorophores with large spectral overlapping. The careful tuning of spectral dispersion in grating-based sSMLM permitted simultaneous three-color super-resolution imaging in fixed cells with a single objective lens at a relatively low photon budget. Our sSMLM has a compact optical design and can be integrated with conventional localization microscopy to provide add-on spectroscopic analysis capability.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208 USA
- These authors contributed equally to this work
| | - Ki-Hee Song
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208 USA
- These authors contributed equally to this work
| | - Biqin Dong
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208 USA
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208 USA
| | - Janel l. Davis
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208 USA
| | - Guangbin Shao
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208 USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208 USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208 USA
- corresponding author:
| |
Collapse
|