1
|
Akbari F, Liu X, Hamedi F, Mohtasebi M, Chen L, Yu G. Programmable scanning diffuse speckle contrast imaging of cerebral blood flow. ARXIV 2024:arXiv:2408.12715v1. [PMID: 39253639 PMCID: PMC11383439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Significance Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside. Aim This study aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents. Approach The PS-DSCI employed a programmable digital micromirror device (DMD) for remote line-shape laser (785 nm) scanning on tissue surface and synchronized a 2D camera for capturing boundary diffuse laser speckle contrasts. New algorithms were developed to address deformations of line-shape scanning, thus minimizing CBF reconstruction artifacts. The PS-DSCI was examined in head-simulating phantoms and adult mice. Results The PS-DSCI enables resolving Intralipid particle flow contrasts at different tissue depths. In vivo experiments in adult mice demonstrated the capability of PS-DSCI to image global/regional CBF variations induced by 8% CO2 inhalation and transient carotid artery ligations. Conclusions Compared to conventional point scanning, the line scanning in PS-DSCI significantly increases spatiotemporal resolution. The high sampling rate of PS-DSCI is crucial for capturing rapid CBF changes while high spatial resolution is important for visualizing brain vasculature.
Collapse
Affiliation(s)
- Faezeh Akbari
- University of Kentucky, Department of Biomedical Engineering, Lexington, KY, USA
| | - Xuhui Liu
- University of Kentucky, Department of Biomedical Engineering, Lexington, KY, USA
| | - Fatemeh Hamedi
- University of Kentucky, Department of Biomedical Engineering, Lexington, KY, USA
| | - Mehrana Mohtasebi
- University of Kentucky, Department of Biomedical Engineering, Lexington, KY, USA
| | - Lei Chen
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Department of Physiology, Lexington, KY, USA
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, Lexington, KY, USA
| |
Collapse
|
2
|
Maity AK, Sharma MK, Veeraraghavan A, Sabharwal A. SpeckleCam: high-resolution computational speckle contrast tomography for deep blood flow imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:5316-5337. [PMID: 37854569 PMCID: PMC10581815 DOI: 10.1364/boe.498900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023]
Abstract
Laser speckle contrast imaging is widely used in clinical studies to monitor blood flow distribution. Speckle contrast tomography, similar to diffuse optical tomography, extends speckle contrast imaging to provide deep tissue blood flow information. However, the current speckle contrast tomography techniques suffer from poor spatial resolution and involve both computation and memory intensive reconstruction algorithms. In this work, we present SpeckleCam, a camera-based system to reconstruct high resolution 3D blood flow distribution deep inside the skin. Our approach replaces the traditional forward model using diffuse approximations with Monte-Carlo simulations-based convolutional forward model, which enables us to develop an improved deep tissue blood flow reconstruction algorithm. We show that our proposed approach can recover complex structures up to 6 mm deep inside a tissue-like scattering medium in the reflection geometry. We also conduct human experiments to demonstrate that our approach can detect reduced flow in major blood vessels during vascular occlusion.
Collapse
Affiliation(s)
- Akash Kumar Maity
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Manoj Kumar Sharma
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Ashok Veeraraghavan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Ashutosh Sabharwal
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
3
|
Mohtasebi M, Singh D, Liu X, Fathi F, Haratbar SR, Saatman KE, Chen L, Yu G. Depth-sensitive diffuse speckle contrast topography for high-density mapping of cerebral blood flow in rodents. NEUROPHOTONICS 2023; 10:045007. [PMID: 38076725 PMCID: PMC10704187 DOI: 10.1117/1.nph.10.4.045007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024]
Abstract
Significance Frequent assessment of cerebral blood flow (CBF) is crucial for the diagnosis and management of cerebral vascular diseases. In contrast to large and expensive imaging modalities, such as nuclear medicine and magnetic resonance imaging, optical imaging techniques are portable and inexpensive tools for continuous measurements of cerebral hemodynamics. The recent development of an innovative noncontact speckle contrast diffuse correlation tomography (scDCT) enables three-dimensional (3D) imaging of CBF distributions. However, scDCT requires complex and time-consuming 3D reconstruction, which limits its ability to achieve high spatial resolution without sacrificing temporal resolution and computational efficiency. Aim We investigate a new diffuse speckle contrast topography (DSCT) method with parallel computation for analyzing scDCT data to achieve fast and high-density two-dimensional (2D) mapping of CBF distributions at different depths without the need for 3D reconstruction. Approach A new moving window method was adapted to improve the sampling rate of DSCT. A fast computation method utilizing MATLAB functions in the Image Processing Toolbox™ and Parallel Computing Toolbox™ was developed to rapidly generate high-density CBF maps. The new DSCT method was tested for spatial resolution and depth sensitivity in head-simulating layered phantoms and in-vivo rodent models. Results DSCT enables 2D mapping of the particle flow in the phantom at different depths through the top layer with varied thicknesses. Both DSCT and scDCT enable the detection of global and regional CBF changes in deep brains of adult rats. However, DSCT achieves fast and high-density 2D mapping of CBF distributions at different depths without the need for complex and time-consuming 3D reconstruction. Conclusions The depth-sensitive DSCT method has the potential to be used as a noninvasive, noncontact, fast, high resolution, portable, and inexpensive brain imager for basic neuroscience research in small animal models and for translational studies in human neonates.
Collapse
Affiliation(s)
- Mehrana Mohtasebi
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Dara Singh
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Xuhui Liu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Faraneh Fathi
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | | | - Kathryn E. Saatman
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Department of Physiology, Lexington, Kentucky, United States
| | - Lei Chen
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Department of Physiology, Lexington, Kentucky, United States
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Cai Z, Pellegrino G, Lina J, Benali H, Grova C. Hierarchical Bayesian modeling of the relationship between task-related hemodynamic responses and cortical excitability. Hum Brain Mapp 2022; 44:876-900. [PMID: 36250709 PMCID: PMC9875942 DOI: 10.1002/hbm.26107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/10/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023] Open
Abstract
Investigating the relationship between task-related hemodynamic responses and cortical excitability is challenging because it requires simultaneous measurement of hemodynamic responses while applying noninvasive brain stimulation. Moreover, cortical excitability and task-related hemodynamic responses are both associated with inter-/intra-subject variability. To reliably assess such a relationship, we applied hierarchical Bayesian modeling. This study involved 16 healthy subjects who underwent simultaneous Paired Associative Stimulation (PAS10, PAS25, Sham) while monitoring brain activity using functional Near-Infrared Spectroscopy (fNIRS), targeting the primary motor cortex (M1). Cortical excitability was measured by Motor Evoked Potentials (MEPs), and the motor task-related hemodynamic responses were measured using fNIRS 3D reconstructions. We constructed three models to investigate: (1) PAS effects on the M1 excitability, (2) PAS effects on fNIRS hemodynamic responses to a finger tapping task, and (3) the correlation between PAS effects on M1 excitability and PAS effects on task-related hemodynamic responses. Significant increase in cortical excitability was found following PAS25, whereas a small reduction of the cortical excitability was shown after PAS10 and a subtle increase occurred after sham. Both HbO and HbR absolute amplitudes increased after PAS25 and decreased after PAS10. The probability of the positive correlation between modulation of cortical excitability and hemodynamic activity was 0.77 for HbO and 0.79 for HbR. We demonstrated that PAS stimulation modulates task-related cortical hemodynamic responses in addition to M1 excitability. Moreover, the positive correlation between PAS modulations of excitability and hemodynamics brought insight into understanding the fundamental properties of cortical function and cortical excitability.
Collapse
Affiliation(s)
- Zhengchen Cai
- Multimodal Functional Imaging Lab, Department of PhysicsConcordia UniversityMontréalQuébecCanada,PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada,Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
| | - Jean‐Marc Lina
- Département de Génie ElectriqueÉcole de Technologie SupérieureMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada
| | - Habib Benali
- PERFORM CentreConcordia UniversityMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada,Electrical and Computer Engineering Department, Concordia UniversityMontréalCanada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of PhysicsConcordia UniversityMontréalQuébecCanada,PERFORM CentreConcordia UniversityMontréalQuébecCanada,Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada
| |
Collapse
|
5
|
Majeski JB, Dar IA, Choe R. Co-registered speckle contrast optical tomography and frequency domain-diffuse optical tomography for imaging of the fifth metatarsal. BIOMEDICAL OPTICS EXPRESS 2022; 13:5358-5376. [PMID: 36425631 PMCID: PMC9664877 DOI: 10.1364/boe.467863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/11/2023]
Abstract
A co-registered speckle contrast optical tomography and frequency domain-diffuse optical tomography system has been designed for imaging total hemoglobin concentration, blood oxygenation, and blood flow with the future aim of monitoring Jones fractures of the fifth metatarsal. Experimental validation was performed using both in vitro tissue-mimicking phantoms and in vivo cuff occlusion experiments. Results of these tissue phantom experiments ensure accurate recovery of three-dimensional distributions of optical properties and flow. Finally, cuff occlusion experiments performed on one healthy human subject demonstrate the system's ability to recover both decreasing tissue oxygenation and blood flow as caused by an arterial occlusion.
Collapse
Affiliation(s)
- Joseph B. Majeski
- Department of Biomedical Engineering,
University of Rochester, Rochester, New York 14620, USA
| | - Irfaan A. Dar
- Department of Biomedical Engineering,
University of Rochester, Rochester, New York 14620, USA
| | - Regine Choe
- Department of Biomedical Engineering,
University of Rochester, Rochester, New York 14620, USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14620, USA
| |
Collapse
|
6
|
Intraoperative Optical and Fluorescence Imaging of Blood Flow Distributions in Mastectomy Skin Flaps for Identifying Ischemic Tissues. Plast Reconstr Surg 2022; 150:282-287. [PMID: 35653513 PMCID: PMC9334221 DOI: 10.1097/prs.0000000000009333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SUMMARY Insufficient blood flow causes mastectomy skin flap necrosis in 5 to 30 percent of cases. Fluorescence angiography with the injection of indocyanine green dye has shown high sensitivities (90 to 100 percent) but moderate specificities (72 to 50 percent) in predicting mastectomy skin flap necrosis. However, a number of challenging issues limit its wide acceptance in clinical settings, including allergic reaction, short time-window for observation, and high cost for equipment and supplies. An emerging inexpensive speckle contrast diffuse correlation tomography technology enables noninvasive, noncontact, and continuous three-dimensional imaging of blood flow distributions in deep tissues. This preliminary study tested the hypothesis that speckle contrast diffuse correlation tomography and indocyanine green-fluorescence angiography measurements of blood flow distributions in mastectomy skin flaps are consistent. Eleven female patients undergoing skin-sparing or nipple-sparing mastectomies were imaged sequentially by the dye-free speckle contrast diffuse correlation tomography and dye-based commercial fluorescence angiography (SPY-PHI). Resulting images from these two imaging modalities were co-registered based on the ischemic areas with the lowest blood flow values. Because the ischemic areas have irregular shapes, a novel contour-based algorithm was used to compare three-dimensional images of blood flow distribution and two-dimensional maps of indocyanine green perfusion. Significant correlations were observed between the two measurements in all contours from a selected area of 10 × 10 mm 2 with the lowest blood flow ( r ≥ 0.78; p < 0.004), suggesting that speckle contrast diffuse correlation tomography provides the information for identifying ischemic tissues in mastectomy skin flaps. With further optimization and validation in large populations, speckle contrast diffuse correlation tomography may ultimately be used as a noninvasive and inexpensive imaging tool for intraoperative assessment of skin flap viability to predict mastectomy skin flap necrosis. CLINICAL QUESTION/LEVEL OF EVIDENCE Diagnostic, II.
Collapse
|
7
|
Xu S, Liu W, Yang X, Jönsson J, Qian R, McKee P, Kim K, Konda PC, Zhou KC, Kreiß L, Wang H, Berrocal E, Huettel SA, Horstmeyer R. Transient Motion Classification Through Turbid Volumes via Parallelized Single-Photon Detection and Deep Contrastive Embedding. Front Neurosci 2022; 16:908770. [PMID: 35873809 PMCID: PMC9304989 DOI: 10.3389/fnins.2022.908770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Fast noninvasive probing of spatially varying decorrelating events, such as cerebral blood flow beneath the human skull, is an essential task in various scientific and clinical settings. One of the primary optical techniques used is diffuse correlation spectroscopy (DCS), whose classical implementation uses a single or few single-photon detectors, resulting in poor spatial localization accuracy and relatively low temporal resolution. Here, we propose a technique termed ClassifyingRapid decorrelationEvents viaParallelized single photon dEtection (CREPE), a new form of DCS that can probe and classify different decorrelating movements hidden underneath turbid volume with high sensitivity using parallelized speckle detection from a 32 × 32 pixel SPAD array. We evaluate our setup by classifying different spatiotemporal-decorrelating patterns hidden beneath a 5 mm tissue-like phantom made with rapidly decorrelating dynamic scattering media. Twelve multi-mode fibers are used to collect scattered light from different positions on the surface of the tissue phantom. To validate our setup, we generate perturbed decorrelation patterns by both a digital micromirror device (DMD) modulated at multi-kilo-hertz rates, as well as a vessel phantom containing flowing fluid. Along with a deep contrastive learning algorithm that outperforms classic unsupervised learning methods, we demonstrate our approach can accurately detect and classify different transient decorrelation events (happening in 0.1–0.4 s) underneath turbid scattering media, without any data labeling. This has the potential to be applied to non-invasively monitor deep tissue motion patterns, for example identifying normal or abnormal cerebral blood flow events, at multi-Hertz rates within a compact and static detection probe.
Collapse
Affiliation(s)
- Shiqi Xu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Wenhui Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Automation, Tsinghua University, Beijing, China
| | - Xi Yang
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Joakim Jönsson
- Division of Combustion Physics, Department of Physics, Lund University, Lund, Sweden
| | - Ruobing Qian
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Paul McKee
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Kanghyun Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Pavan Chandra Konda
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kevin C. Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Lucas Kreiß
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Haoqian Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Edouard Berrocal
- Division of Combustion Physics, Department of Physics, Lund University, Lund, Sweden
| | - Scott A. Huettel
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Electrical Engineering, Duke University, Durham, NC, United States
- *Correspondence: Roarke Horstmeyer
| |
Collapse
|
8
|
Cai Z, Uji M, Aydin Ü, Pellegrino G, Spilkin A, Delaire É, Abdallah C, Lina J, Grova C. Evaluation of a personalized functional near infra-red optical tomography workflow using maximum entropy on the mean. Hum Brain Mapp 2021; 42:4823-4843. [PMID: 34342073 PMCID: PMC8449120 DOI: 10.1002/hbm.25566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
Abstract
In the present study, we proposed and evaluated a workflow of personalized near infra-red optical tomography (NIROT) using functional near-infrared spectroscopy (fNIRS) for spatiotemporal imaging of cortical hemodynamic fluctuations. The proposed workflow from fNIRS data acquisition to local 3D reconstruction consists of: (a) the personalized optimal montage maximizing fNIRS channel sensitivity to a predefined targeted brain region; (b) the optimized fNIRS data acquisition involving installation of optodes and digitalization of their positions using a neuronavigation system; and (c) the 3D local reconstruction using maximum entropy on the mean (MEM) to accurately estimate the location and spatial extent of fNIRS hemodynamic fluctuations along the cortical surface. The workflow was evaluated on finger-tapping fNIRS data acquired from 10 healthy subjects for whom we estimated the reconstructed NIROT spatiotemporal images and compared with functional magnetic resonance imaging (fMRI) results from the same individuals. Using the fMRI activation maps as our reference, we quantitatively compared the performance of two NIROT approaches, the MEM framework and the conventional minimum norm estimation (MNE) method. Quantitative comparisons were performed at both single subject and group-level. Overall, our results suggested that MEM provided better spatial accuracy than MNE, while both methods offered similar temporal accuracy when reconstructing oxygenated (HbO) and deoxygenated hemoglobin (HbR) concentration changes evoked by finger-tapping. Our proposed complete workflow was made available in the brainstorm fNIRS processing plugin-NIRSTORM, thus providing the opportunity for other researchers to further apply it to other tasks and on larger populations.
Collapse
Affiliation(s)
- Zhengchen Cai
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Makoto Uji
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological InstituteMcGill UniversityMontréalQuébecCanada
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
| | - Amanda Spilkin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Édouard Delaire
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Chifaou Abdallah
- Neurology and Neurosurgery Department, Montreal Neurological InstituteMcGill UniversityMontréalQuébecCanada
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
| | - Jean‐Marc Lina
- Département de Génie ElectriqueÉcole de Technologie SupérieureMontréalQuébecCanada
- Centre De Recherches En MathématiquesMontréalQuébecCanada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
- Neurology and Neurosurgery Department, Montreal Neurological InstituteMcGill UniversityMontréalQuébecCanada
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
- Centre De Recherches En MathématiquesMontréalQuébecCanada
| |
Collapse
|
9
|
Zhao M, Huang C, Mazdeyasna S, Yu G. Extraction of tissue optical property and blood flow from speckle contrast diffuse correlation tomography (scDCT) measurements. BIOMEDICAL OPTICS EXPRESS 2021; 12:5894-5908. [PMID: 34692223 PMCID: PMC8515985 DOI: 10.1364/boe.429890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Measurement of blood flow in tissue provides vital information for the diagnosis and therapeutic monitoring of various vascular diseases. A noncontact, camera-based, near-infrared speckle contrast diffuse correlation tomography (scDCT) technique has been recently developed for 3D imaging of blood flow index (αDB) distributions in deep tissues up to a centimeter. A limitation with the continuous-wave scDCT measurement of blood flow is the assumption of constant and homogenous tissue absorption coefficient (μ a ). The present study took the advantage of rapid, high-density, noncontact scDCT measurements of both light intensities and diffuse speckle contrast at multiple source-detector distances and developed two-step fitting algorithms for extracting both μ a and αDB. The new algorithms were tested in tissue-simulating phantoms with known optical properties and human forearms. Measurement results were compared against established near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) techniques. The accuracies of our new fitting algorithms with scDCT measurements in phantoms (up to 16% errors) and forearms (up to 23% errors) are comparable to relevant study results (up to 25% errors). Knowledge of μ a not only improved the accuracy in calculating αDB but also provided the potential for quantifying tissue blood oxygenation via spectral measurements. A multiple-wavelength scDCT system with new algorithms is currently developing to fit multi-wavelength and multi-distance data for 3D imaging of both blood flow and oxygenation distributions in deep tissues.
Collapse
|
10
|
Huang C, Mazdeyasna S, Mohtasebi M, Saatman KE, Cheng Q, Yu G, Chen L. Speckle contrast diffuse correlation tomography of cerebral blood flow in perinatal disease model of neonatal piglets. JOURNAL OF BIOPHOTONICS 2021; 14:e202000366. [PMID: 33295142 PMCID: PMC8833087 DOI: 10.1002/jbio.202000366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 05/11/2023]
Abstract
We adapted and tested an innovative noncontact speckle contrast diffuse correlation tomography (scDCT) system for 3D imaging of cerebral blood flow (CBF) variations in perinatal disease models utilizing neonatal piglets, which closely resemble human neonates. CBF variations were concurrently measured by the scDCT and an established diffuse correlation spectroscopy (DCS) during global ischemia, intraventricular hemorrhage, and asphyxia; significant correlations were observed. Moreover, CBF variations associated reasonably with vital pathophysiological changes. In contrast to DCS measurements of mixed signals from local scalp, skull and brain, scDCT generates 3D images of CBF distributions at prescribed depths within the head, thus enabling specific determination of regional cerebral ischemia. With further optimization and validation in animals and human neonates, scDCT has the potential to be a noninvasive imaging tool for both basic neuroscience research in laboratories and clinical applications in neonatal intensive care units.
Collapse
Affiliation(s)
- Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Siavash Mazdeyasna
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Mehrana Mohtasebi
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Kathryn E. Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Qiang Cheng
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
11
|
Abu Jawdeh EG, Huang C, Mazdeyasna S, Chen L, Chen L, Bada HS, Yu G. Noncontact optical imaging of brain hemodynamics in preterm infants: a preliminary study. Phys Med Biol 2020; 65:245009. [PMID: 33113516 DOI: 10.1088/1361-6560/abc5a7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extremely preterm infants' hemodynamic instability places them at high risk of brain injury. Currently there is no reliable bedside method to continuously monitor cerebral hemodynamics in the neonatal intensive care unit (NICU). This paper reports a feasibility study to adapt and test an innovative speckle contrast diffuse correlation tomography (scDCT) device for noncontact, high-density, 3D imaging of cerebral blood flow (CBF) in preterm infants. The scDCT scans a focused point near-infrared illumination to multiple source positions for deep tissue penetration, and controls an electron multiplying charge-coupled-device camera with thousands of pixels to achieve a high-density sampling. The optimized scDCT for use in preterm infants was first evaluated against an established diffuse correlation spectroscopy in an infant-head-simulating phantom with known properties. The observed significant correlation between the two measurements verified the capability of scDCT for transcranial brain imaging. The insignificant influence of transparent incubator wall on scDCT measurements was then confirmed by comparing adult forearm blood flow responses to artery cuff occlusions measured inside and outside the incubator. Finally, the scDCT device was moved to the NICU to image CBF variations in two preterm infants. Infant #1 with no major organ deficits showed little CBF fluctuation over the first 3 weeks of life. Infant #2 showed a significant CBF increase after the 2 h pharmacotherapy for patent ductus arteriosus closure. While these CBF variations meet physiological expectations, the fact that no significant changes are noted with peripheral monitoring of blood oxygen saturation suggests necessity of direct cerebral monitoring. This feasibility study with timely technology development is an important and necessary step towards larger clinical studies with more subjects to further validate it for continuous monitoring and instant management of cerebral pathologies and interventions in the NICU.
Collapse
Affiliation(s)
- Elie G Abu Jawdeh
- Deparment of Pediatrics/Neonatology, College of Medicine, University of Kentucky, Lexington, KY, United States of America. Contributed equally as co-first authors
| | | | | | | | | | | | | |
Collapse
|
12
|
Gu J, Tomioka Y, Kida K, Xiao Y, Saito I, Okazaki M, Someya T, Sekino M. Measurement of optical reflection and temperature changes after blood occlusion using a wearable device. Sci Rep 2020; 10:11491. [PMID: 32661264 PMCID: PMC7359365 DOI: 10.1038/s41598-020-68152-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
Early detection of compromised circulation is essential for postoperative monitoring of free flap. Hourly clinical check-ups such as inspection and palpation still result in a delay in detection. Conversely, optical reflection and temperature measurement are useful alternatives for detecting blood circulation. However, conventional methods that verify ischemia and congestion within a short period have not been reported. In this study, we measured short-term changes in optical reflection and temperature in a rat flap using a wearable flexible sensor probe previously developed in our laboratory. Five ischemia and five congestion groin flap models were measured using a sensor probe and reference devices. Curve fitting was performed on transition signals to evaluate changes in signals and their time constants. The optical reflection signal decreased after venous ligation and increased after arterial ligation. The parameters of the fitted curves indicate a significant difference between congestion and ischemia at p < 0.01 (probability value), which was detected within a few minutes after ligation. However, insufficient significance was observed in the temperature signal. Our method gives supporting information to verify ischemia and congestion, and has the potential to rapidly detect compromised circulation.
Collapse
Affiliation(s)
- Jian Gu
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yoko Tomioka
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koichi Kida
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yingyi Xiao
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Sekino
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Shandro BM, Emrith K, Slabaugh G, Poullis A, Smith ML. Optical imaging technology in colonoscopy: Is there a role for photometric stereo? World J Gastrointest Endosc 2020; 12:138-148. [PMID: 32477448 PMCID: PMC7243575 DOI: 10.4253/wjge.v12.i5.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Colonoscopy screening for the detection and removal of colonic adenomas is central to efforts to reduce the morbidity and mortality of colorectal cancer. However, up to a third of adenomas may be missed at colonoscopy, and the majority of post-colonoscopy colorectal cancers are thought to arise from these. Adenomas have three-dimensional surface topographic features that differentiate them from adjacent normal mucosa. However, these topographic features are not enhanced by white light colonoscopy, and the endoscopist must infer these from two-dimensional cues. This may contribute to the number of missed lesions. A variety of optical imaging technologies have been developed commercially to enhance surface topography. However, existing techniques enhance surface topography indirectly, and in two dimensions, and the evidence does not wholly support their use in routine clinical practice. In this narrative review, co-authored by gastroenterologists and engineers, we summarise the evidence for the impact of established optical imaging technologies on adenoma detection rate, and review the development of photometric stereo (PS) for colonoscopy. PS is a machine vision technique able to capture a dense array of surface normals to render three-dimensional reconstructions of surface topography. This imaging technique has several potential clinical applications in colonoscopy, including adenoma detection, polyp classification, and facilitating polypectomy, an inherently three-dimensional task. However, the development of PS for colonoscopy is at an early stage. We consider the progress that has been made with PS to date and identify the obstacles that need to be overcome prior to clinical application.
Collapse
Affiliation(s)
- Benjamin M Shandro
- Department of Gastroenterology, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, United Kingdom
| | - Khemraj Emrith
- Centre for Machine Vision, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - Gregory Slabaugh
- Department of Computer Science, City, University of London, London EC1V 0HB, United Kingdom
| | - Andrew Poullis
- Department of Gastroenterology, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, United Kingdom
| | - Melvyn L Smith
- Centre for Machine Vision, University of the West of England, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
14
|
The Role of Intraoperative Laser Speckle Imaging in Reducing Postoperative Complications in Breast Reconstruction. Plast Reconstr Surg 2020; 144:933e-934e. [PMID: 31425417 DOI: 10.1097/prs.0000000000006124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Zhao M, Mazdeyasna S, Huang C, Agochukwu-Nwubah N, Bonaroti A, Wong L, Yu G. Noncontact Speckle Contrast Diffuse Correlation Tomography of Blood Flow Distributions in Burn Wounds: A Preliminary Study. Mil Med 2020; 185:82-87. [PMID: 31498406 PMCID: PMC7353839 DOI: 10.1093/milmed/usz233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Tissue injuries are often associated with abnormal blood flow (BF). The ability to assess BF distributions in injured tissues enables objective evaluation of interventions and holds the potential to improve the acute management of these injuries on battlefield. MATERIALS AND METHODS We have developed a novel speckle contrast diffuse correlation tomography (scDCT) system for noncontact 3D imaging of tissue BF distributions. In scDCT, a galvo mirror was used to remotely project near-infrared point light to different source positions and an electron multiplying charge-coupled-device was used to detect boundary diffuse speckle contrasts. The normalized boundary data were then inserted into a modified Near-Infrared Fluorescence and Spectral Tomography program for 3D reconstructions of BF distributions. This article reports the first application of scDCT for noncontact 3D imaging of BF distributions in burn wounds. RESULTS Significant lower BF values were observed in the burned areas/volumes compared to surrounding normal tissues. CONCLUSIONS The unique noncontact 3D imaging capability makes the scDCT applicable for intraoperative assessment of burns/wounds, without risk of infection and without interfering with sterility of the surgical field. The portable scDCT device holds the potential to be used by surgeons in combat surgical hospitals to improve the acute management of battlefield burn injuries.
Collapse
Affiliation(s)
- Mingjun Zhao
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave, Lexington, KY 40508
| | - Siavash Mazdeyasna
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave, Lexington, KY 40508
| | - Chong Huang
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave, Lexington, KY 40508
| | - Nneamaka Agochukwu-Nwubah
- Division of Plastic Surgery, University of Kentucky, 1000 S. Limestone, Lexington, KY 40536 Guarantor: Guoqaing Yu Presented as a poster at the 2018 Military Health System Research Symposium, August 2018, Kissimmee, FL; abstract # MHSRS-18-1688. The views expressed in this article are those of the authors and do not necessarily represent National Institutes of Health, American Heart Association, National Endowment for Plastic Surgery, National Science Foundation or University of the Kentucky
| | - Alisha Bonaroti
- Division of Plastic Surgery, University of Kentucky, 1000 S. Limestone, Lexington, KY 40536 Guarantor: Guoqaing Yu Presented as a poster at the 2018 Military Health System Research Symposium, August 2018, Kissimmee, FL; abstract # MHSRS-18-1688. The views expressed in this article are those of the authors and do not necessarily represent National Institutes of Health, American Heart Association, National Endowment for Plastic Surgery, National Science Foundation or University of the Kentucky
| | - Lesley Wong
- Division of Plastic Surgery, University of Kentucky, 1000 S. Limestone, Lexington, KY 40536 Guarantor: Guoqaing Yu Presented as a poster at the 2018 Military Health System Research Symposium, August 2018, Kissimmee, FL; abstract # MHSRS-18-1688. The views expressed in this article are those of the authors and do not necessarily represent National Institutes of Health, American Heart Association, National Endowment for Plastic Surgery, National Science Foundation or University of the Kentucky
| | - Guoqiang Yu
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave, Lexington, KY 40508
| |
Collapse
|
16
|
Huang C, Mazdeyasna S, Chen L, Abu Jawdeh EG, Bada HS, Saatman KE, Chen L, Yu G. Noninvasive noncontact speckle contrast diffuse correlation tomography of cerebral blood flow in rats. Neuroimage 2019; 198:160-169. [DOI: 10.1016/j.neuroimage.2019.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
|