1
|
Pu Z, Wu Y, Zhu Z, Zhao H, Cui D. A new horizon for neuroscience: terahertz biotechnology in brain research. Neural Regen Res 2025; 20:309-325. [PMID: 38819036 PMCID: PMC11317941 DOI: 10.4103/nrr.nrr-d-23-00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 06/01/2024] Open
Abstract
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences. In this article, we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry. Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease, cerebrovascular disease, glioma, psychiatric disease, traumatic brain injury, and myelin deficit. In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases. Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood, the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications. However, the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications. This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang Province, China
| | - Yu Wu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Zhongjie Zhu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Hongwei Zhao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Wu X, Tao R, Sun Z, Zhang T, Li X, Yuan Y, Zheng S, Cao C, Zhang Z, Zhao X, Yang P. Ensemble learning prediction framework for EGFR amplification status of glioma based on terahertz spectral features. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124351. [PMID: 38692109 DOI: 10.1016/j.saa.2024.124351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Epidermal growth factor receptor (EGFR) plays a pivotal role in the initiation and progression of gliomas. In particular, in glioblastoma, EGFR amplification emerges as a catalyst for invasion, proliferation, and resistance to radiotherapy and chemotherapy. Current approaches are not capable of providing rapid diagnostic results of molecular pathology. In this study, we propose a terahertz spectroscopic approach for predicting the EGFR amplification status of gliomas for the first time. A machine learning model was constructed using the terahertz response of the measured glioma tissues, including the absorption coefficient, refractive index, and dielectric loss tangent. The novelty of our model is the integration of three classical base classifiers, i.e., support vector machine, random forest, and extreme gradient boosting. The ensemble learning method combines the advantages of various base classifiers, this model has more generalization ability. The effectiveness of the proposed method was validated by applying an individual test set. The optimal performance of the integrated algorithm was verified with an area under the curve (AUC) maximum of 85.8 %. This signifies a significant stride toward more effective and rapid diagnostic tools for guiding postoperative therapy in gliomas.
Collapse
Affiliation(s)
- Xianhao Wu
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070 China
| | - Zhiyan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070 China
| | - Tianyao Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xingyue Li
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuan Yuan
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shaowen Zheng
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Can Cao
- Laser Engineering Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhaohui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyan Zhao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070 China.
| |
Collapse
|
3
|
Li H, Wang Y, Wang Z, Mu N, Chen T, Xu D, Feng H, Yao J. High-sensitivity THz-ATR imaging of cerebral ischemia in a rat model. BIOMEDICAL OPTICS EXPRESS 2024; 15:3743-3754. [PMID: 38867801 PMCID: PMC11166429 DOI: 10.1364/boe.524466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
The fast label-free detection of the extent and degree of cerebral ischemia has been the difficulty and hotspot for precise and accurate neurosurgery. We experimentally demonstrated that the fresh cerebral tissues at different ischemic stages within 24 hours can be well distinguished from the normal tissues using terahertz (THz) attenuated total reflection (ATR) imaging system. It was indicated that the total reflectivity of THz wave for ischemic cerebral tissues was lower than that for normal tissues. Especially, compared to the images stained with 2,3,5-triphenyl tetrazolium chloride (TTC), the ischemic tissues can be detected using THz wave with high sensitivity as early as the ischemic time of 2.5 hours, where THz images showed the ischemic areas became larger and diffused as the ischemic time increasing. Furthermore, the THz spectroscopy of cerebral ischemic tissues at different ischemic times was obtained in the range of 0.5-2.0 THz. The absorption coefficient of ischemic tissue increased with the increase of ischemic time, whereas the refractive index decreased with prolonging the ischemic time. Additionally, it was found from hematoxylin and eosin (H&E) staining microscopic images that, with the ischemic time increasing, the cell size and cell density of the ischemic tissues decreased, whereas the intercellular substance of the ischemic tissues increased. The result showed that THz recognition mechanism of the ischemia is mainly based on the increase of intercellular substance, especially water content, which has a stronger impact on absorption of THz wave than that of cell density. Thus, THz imaging has great potential for recognition of cerebral ischemia and it may become a new method for intraoperative real-time guidance, recognition in situ, and precise excision.
Collapse
Affiliation(s)
- Haibin Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yuye Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zelong Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ning Mu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Degang Xu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianquan Yao
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Cong M, Li W, Liu Y, Bi J, Wang X, Yang X, Zhang Z, Zhang X, Zhao YN, Zhao R, Qiu J. Biomedical application of terahertz imaging technology: a narrative review. Quant Imaging Med Surg 2023; 13:8768-8786. [PMID: 38106329 PMCID: PMC10722018 DOI: 10.21037/qims-23-526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
Background and Objective Terahertz (THz) imaging has wide applications in biomedical research due to its properties, such as non-ionizing, non-invasive and distinctive spectral fingerprints. Over the past 6 years, the application of THz imaging in tumor tissue has made encouraging progress. However, due to the strong absorption of THz by water, the large size, high cost, and low sensitivity of THz devices, it is still difficult to be widely used in clinical practice. This paper provides ideas for researchers and promotes the development of THz imaging in clinical research. Methods The literature search was conducted in the Web of Science and PubMed databases using the keywords "Terahertz imaging", "Breast", "Brain", "Skin" and "Cancer". A total of 94 English language articles from 1 January, 2017 to 30 December, 2022 were reviewed. Key Content and Findings In this review, we briefly introduced the recent advances in THz near-field imaging, single-pixel imaging and real-time imaging, the applications of THz imaging for detecting breast, brain and skin tissues in the last 6 years were reviewed, and the advantages and existing challenges were identified. It is necessary to combine machine learning and metamaterials to develop real-time THz devices with small size, low cost and high sensitivity that can be widely used in clinical practice. More powerful THz detectors can be developed by combining graphene, designing structures and other methods to improve the sensitivity of the devices and obtain more accurate information. Establishing a THz database is one of the important methods to improve the repeatability and accuracy of imaging results. Conclusions THz technology is an effective method for tumor imaging. We believe that with the joint efforts of researchers and clinicians, accurate, real-time, and safe THz imaging will be widely applied in clinical practice in the future.
Collapse
Affiliation(s)
- Mengyang Cong
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai’an, China
| | - Wen Li
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Yang Liu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Jing Bi
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiaokun Wang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xueqiao Yang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Zihan Zhang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiaoxin Zhang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Ya-Nan Zhao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Rui Zhao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- Center for Medical Engineer Technology Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| |
Collapse
|
5
|
Virk AS, Harris ZB, Arbab MH. Design and characterization of a hyperbolic-elliptical lens pair in a rapid beam steering system for single-pixel terahertz spectral imaging of the cornea. OPTICS EXPRESS 2023; 31:39568-39582. [PMID: 38041275 DOI: 10.1364/oe.496894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/10/2023] [Indexed: 12/03/2023]
Abstract
Terahertz (THz) time-domain spectroscopy has been investigated for assessment of the hydration levels in the cornea, intraocular pressure, and changes in corneal topography. Previous efforts at THz imaging of the cornea have employed off-axis parabolic mirrors to achieve normal incidence along the spherical surface. However, this comes at the cost of an asymmetric field-of-view (FOV) and a long scan time because it requires raster-scanning of the collimated beam across the large mirror diameter. This paper proposes a solution by designing a pair of aspheric lenses that can provide a larger symmetric spherical FOV (9.6 mm) and reduce the scan time by two orders of magnitude using a novel beam-steering approach. A hyperbolic-elliptical lens was designed and optimized to achieve normal incidence and phase-front matching between the focused THz beam and the target curvature. The lenses were machined from a slab of high-density polyethylene and characterized in comparison to ray-tracing simulations by imaging several targets of similar sizes to the cornea. Our experimental results showed excellent agreement in the increased symmetric FOV and confirmed the reduction in scan time to about 3-4 seconds. In the future, this lens design process can be extended for imaging the sclera of the eye and other curved biological surfaces, such as the nose and fingers.
Collapse
|
6
|
Shi S, Yuan S, Zhou J, Jiang P. Terahertz technology and its applications in head and neck diseases. iScience 2023; 26:107060. [PMID: 37534152 PMCID: PMC10391736 DOI: 10.1016/j.isci.2023.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The terahertz (THz) radiation refers to electromagnetic waves between infrared and millimeter waves. THz technology has shown a significant potential for medical diagnosis and biomedical applications over the past three decades. Therefore, exploring the biological effects of THz waves has become an important new field in life sciences. Specifically, THz radiation has been proved to be able to diagnose and treat several head and neck diseases. In this review, we primarily discuss the biological characteristics of THz waves and clinical applications of THz technology, focusing on the research progress of THz technology in head and neck diseases (brain cancer, hypopharyngeal cancer, oral diseases, thyroid nodules, Alzheimer's disease, eyes diseases, and otitis). The future application perspectives of THz technologies in head and neck diseases are also highlighted and proposed.
Collapse
Affiliation(s)
- Shenggan Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuqin Yuan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhou
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Peidu Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Sun Z, Wu X, Tao R, Zhang T, Liu X, Wang J, Wan H, Zheng S, Zhao X, Zhang Z, Yang P. Prediction of IDH mutation status of glioma based on terahertz spectral data. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122629. [PMID: 36958244 DOI: 10.1016/j.saa.2023.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Gliomas are the most common type of primary tumor in the central nervous system in adults. Isocitrate dehydrogenase (IDH) mutation status is an important molecular biomarker for adult diffuse gliomas. In this study, we were aiming to predict IDH mutation status based on terahertz time-domain spectroscopy technology. Ninety-two frozen sections of glioma tissue from nine patients were included, and terahertz spectroscopy data were obtained. Through Least Absolute Shrinkage and Selection Operator (LASSO), Principal component analysis (PCA), and Random forest (RF) algorithms, a predictive model for predicting IDH mutation status in gliomas was established based on the terahertz spectroscopy dataset with an AUC of 0.844. These results indicate that gliomas with different IDH mutation status have different terahertz spectral features, and the use of terahertz spectroscopy can establish a predictive model of IDH mutation status, providing a new way for glioma research.
Collapse
Affiliation(s)
- Zhiyan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xianhao Wu
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tianyao Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China; Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haibin Wan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaowen Zheng
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyan Zhao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, China.
| | - Zhaohui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China; Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Qi X, Bertling K, Stark MS, Taimre T, Kao YC, Lim YL, Han S, O’Brien B, Collins A, Walsh M, Torniainen J, Gillespie T, Donose BC, Dean P, Li LH, Linfield EH, Davies AG, Indjin D, Soyer HP, Rakić AD. Terahertz imaging of human skin pathologies using laser feedback interferometry with quantum cascade lasers. BIOMEDICAL OPTICS EXPRESS 2023; 14:1393-1410. [PMID: 37078035 PMCID: PMC10110320 DOI: 10.1364/boe.480615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 05/03/2023]
Abstract
Early detection of skin pathologies with current clinical diagnostic tools is challenging, particularly when there are no visible colour changes or morphological cues present on the skin. In this study, we present a terahertz (THz) imaging technology based on a narrow band quantum cascade laser (QCL) at 2.8 THz for human skin pathology detection with diffraction limited spatial resolution. THz imaging was conducted for three different groups of unstained human skin samples (benign naevus, dysplastic naevus, and melanoma) and compared to the corresponding traditional histopathologic stained images. The minimum thickness of dehydrated human skin that can provide THz contrast was determined to be 50 µm, which is approximately one half-wavelength of the THz wave used. The THz images from different types of 50 µm-thick skin samples were well correlated with the histological findings. The per-sample locations of pathology vs healthy skin can be separated from the density distribution of the corresponding pixels in the THz amplitude-phase map. The possible THz contrast mechanisms relating to the origin of image contrast in addition to water content were analyzed from these dehydrated samples. Our findings suggest that THz imaging could provide a feasible imaging modality for skin cancer detection that is beyond the visible.
Collapse
Affiliation(s)
- Xiaoqiong Qi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karl Bertling
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mitchell S. Stark
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia
| | - Thomas Taimre
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yung-Ching Kao
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia
| | - Yah Leng Lim
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - She Han
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Blake O’Brien
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Angus Collins
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Michael Walsh
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Jari Torniainen
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy Gillespie
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bogdan C. Donose
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul Dean
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Lian He Li
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Edmund H. Linfield
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - A. Giles Davies
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Dragan Indjin
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - H. Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Aleksandar D. Rakić
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Zhan X, Liu Y, Chen Z, Luo J, Yang S, Yang X. Revolutionary approaches for cancer diagnosis by terahertz-based spectroscopy and imaging. Talanta 2023; 259:124483. [PMID: 37019007 DOI: 10.1016/j.talanta.2023.124483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Most tumors are easily missed and misdiagnosed due to the lack of specific clinical signs and symptoms in the early stage. Thus, an accurate, rapid and reliable early tumor detection method is highly desirable. The application of terahertz (THz) spectroscopy and imaging in biomedicine has made remarkable progress in the past two decades, which addresses the shortcomings of existing technologies and provides an alternative for early tumor diagnosis. Although issues such as size mismatch and strong absorption of THz waves by water have set hurdles for cancer diagnosis by THz technology, innovative materials and biosensors in recent years have led to possibilities for new THz biosensing and imaging methods. In this article, we reviewed the issues that need to be solved before THz technology is used for tumor-related biological sample detection and clinical auxiliary diagnosis. We focused on the recent research progress of THz technology, with an emphasis on biosensing and imaging. Finally, the application of THz spectroscopy and imaging for tumor diagnosis in clinical practice and the main challenges in this process were also mentioned. Collectively, THz-based spectroscopy and imaging reviewed here is envisioned as a cutting-edge approach for cancer diagnosis.
Collapse
Affiliation(s)
- Xinyu Zhan
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu Liu
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400037, China
| | - Zhiguo Chen
- Gastroenterology Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jie Luo
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Sha Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
10
|
Wu X, Tao R, Zhang T, Liu X, Wang J, Zhang Z, Zhao X, Yang P. Biomedical applications of terahertz spectra in clinical and molecular pathology of human glioma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121933. [PMID: 36208578 DOI: 10.1016/j.saa.2022.121933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Gliomas are the most common type of primary tumor originating in the central nervous system of adults. Tumor histological type, pathological grade, and molecular pathology are significant prognosis and predictive factors. In this study, we were aiming to predict histological type and molecular pathological features based on terahertz time-domain spectroscopy technology. Nine gliomas with different grades, one meningioma, and one lymphoma were enrolled. There were significant differences in terahertz absorption coefficient between normal brain tissue, tumoral-periphery, and tumoral-center tissue in specific frequency bands (0.2-1.4 THz). Histological type, pathological grade, and glioma-specific biomarkers were closely related to the terahertz absorption coefficient in both tumoral-periphery and tumoral-center tissues. Interestingly, tumoral-periphery showed more obvious differences than tumoral-center tissues in almost all aspects. All the results show that the terahertz technology has potential application value in the intraoperative real-time glioma recognition and diagnosis of glioma histological and molecular pathological features.
Collapse
Affiliation(s)
- Xianhao Wu
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tianyao Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyan Zhao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Discovering Glioma Tissue through Its Biomarkers' Detection in Blood by Raman Spectroscopy and Machine Learning. Pharmaceutics 2023; 15:pharmaceutics15010203. [PMID: 36678833 PMCID: PMC9862809 DOI: 10.3390/pharmaceutics15010203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
The most commonly occurring malignant brain tumors are gliomas, and among them is glioblastoma multiforme. The main idea of the paper is to estimate dependency between glioma tissue and blood serum biomarkers using Raman spectroscopy. We used the most common model of human glioma when continuous cell lines, such as U87, derived from primary human tumor cells, are transplanted intracranially into the mouse brain. We studied the separability of the experimental and control groups by machine learning methods and discovered the most informative Raman spectral bands. During the glioblastoma development, an increase in the contribution of lactate, tryptophan, fatty acids, and lipids in dried blood serum Raman spectra were observed. This overlaps with analogous results of glioma tissues from direct Raman spectroscopy studies. A non-linear relationship between specific Raman spectral lines and tumor size was discovered. Therefore, the analysis of blood serum can track the change in the state of brain tissues during the glioma development.
Collapse
|
12
|
Martins IS, Silva HF, Lazareva EN, Chernomyrdin NV, Zaytsev KI, Oliveira LM, Tuchin VV. Measurement of tissue optical properties in a wide spectral range: a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:249-298. [PMID: 36698664 PMCID: PMC9841994 DOI: 10.1364/boe.479320] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A distinctive feature of this review is a critical analysis of methods and results of measurements of the optical properties of tissues in a wide spectral range from deep UV to terahertz waves. Much attention is paid to measurements of the refractive index of biological tissues and liquids, the knowledge of which is necessary for the effective application of many methods of optical imaging and diagnostics. The optical parameters of healthy and pathological tissues are presented, and the reasons for their differences are discussed, which is important for the discrimination of pathologies and the demarcation of their boundaries. When considering the interaction of terahertz radiation with tissues, the concept of an effective medium is discussed, and relaxation models of the effective optical properties of tissues are presented. Attention is drawn to the manifestation of the scattering properties of tissues in the THz range and the problems of measuring the optical properties of tissues in this range are discussed. In conclusion, a method for the dynamic analysis of the optical properties of tissues under optical clearing using an application of immersion agents is presented. The main mechanisms and technologies of optical clearing, as well as examples of the successful application for differentiation of healthy and pathological tissues, are analyzed.
Collapse
Affiliation(s)
- Inês S. Martins
- Center for Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Hugo F. Silva
- Porto University, School of Engineering, Porto, Portugal
| | - Ekaterina N. Lazareva
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | | | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Luís M. Oliveira
- Physics Department, Polytechnic of Porto – School of Engineering (ISEP), Porto, Portugal
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| |
Collapse
|
13
|
Gezimati M, Singh G. Advances in terahertz technology for cancer detection applications. OPTICAL AND QUANTUM ELECTRONICS 2022; 55:151. [PMID: 36588663 PMCID: PMC9791634 DOI: 10.1007/s11082-022-04340-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/31/2022] [Indexed: 06/12/2023]
Abstract
Currently, there is an increasing demand for the diagnostic techniques that provide functional and morphological information with early cancer detection capability. Novel modern medical imaging systems driven by the recent advancements in technology such as terahertz (THz) and infrared radiation-based imaging technologies which are complementary to conventional modalities are being developed, investigated, and validated. The THz cancer imaging techniques offer novel opportunities for label free, non-ionizing, non-invasive and early cancer detection. The observed image contrast in THz cancer imaging studies has been mostly attributed to higher refractive index, absorption coefficient and dielectric properties in cancer tissue than that in the normal tissue due the local increase of the water molecule content in tissue and increased blood supply to the cancer affected tissue. Additional image contrast parameters and cancer biomarkers that have been reported to contribute to THz image contrast include cell structural changes, molecular density, interactions between agents (e.g., contrast agents and embedding agents) and biological tissue as well as tissue substances like proteins, fiber and fat etc. In this paper, we have presented a systematic and comprehensive review of the advancements in the technological development of THz technology for cancer imaging applications. Initially, the fundamentals principles and techniques for THz radiation generation and detection, imaging and spectroscopy are introduced. Further, the application of THz imaging for detection of various cancers tissues are presented, with more focus on the in vivo imaging of skin cancer. The data processing techniques for THz data are briefly discussed. Also, we identify the advantages and existing challenges in THz based cancer detection and report the performance improvement techniques. The recent advancements towards THz systems which are optimized and miniaturized are also reported. Finally, the integration of THz systems with artificial intelligent (AI), internet of things (IoT), cloud computing, big data analytics, robotics etc. for more sophisticated systems is proposed. This will facilitate the large-scale clinical applications of THz for smart and connected next generation healthcare systems and provide a roadmap for future research.
Collapse
Affiliation(s)
- Mavis Gezimati
- Centre for Smart Information and Communication Systems, Department of Electrical and Electronics Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O Box 524, Johannesburg, 2006 South Africa
| | - Ghanshyam Singh
- Centre for Smart Information and Communication Systems, Department of Electrical and Electronics Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O Box 524, Johannesburg, 2006 South Africa
| |
Collapse
|
14
|
Mu N, Yang C, Xu D, Wang S, Ma K, Lai Y, Guo P, Zhang S, Wang Y, Feng H, Chen T, Yao J. Molecular pathological recognition of freshly excised human glioma using terahertz ATR spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:222-236. [PMID: 35154866 PMCID: PMC8803014 DOI: 10.1364/boe.445111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 06/14/2023]
Abstract
The diagnosis and treatment of glioma depends greatly on the rapid extraction of molecular pathological features. In this study, human brain tumor tissues of different grades were analyzed using terahertz (THz) attenuated total reflectance (ATR) time-domain spectroscopy. Substantial differences in THz parameters were observed between paracarcinoma tissue and grade I-IV gliomas, Furthermore, the difference of THz absorption coefficient increases with the increase of THz frequency. It was also demonstrated that the isocitrate dehydrogenase (IDH) mutant and wild-type glioma tissues can be well distinguished using THz spectroscopy. Therefore, THz ATR spectroscopy can realize molecular typing recognition based on molecular pathology. This will provide a theoretical basis for developing intraoperative real-time glioma recognition and diagnosis technology.
Collapse
Affiliation(s)
- Ning Mu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Contributed equally
| | - Chuanyan Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Contributed equally
| | - Degang Xu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shi Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kang Ma
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Lai
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peiwen Guo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuixian Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yuye Wang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianquan Yao
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Wu L, Wang Y, Liao B, Zhao L, Chen K, Ge M, Li H, Chen T, Feng H, Xu D, Yao J. Temperature dependent terahertz spectroscopy and imaging of orthotopic brain gliomas in mouse models. BIOMEDICAL OPTICS EXPRESS 2022; 13:93-104. [PMID: 35154856 PMCID: PMC8803010 DOI: 10.1364/boe.445597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 05/07/2023]
Abstract
Terahertz (THz) spectroscopy and imaging were used to differentiate brain gliomas in a mouse model at different temperatures. The THz spectral difference between brain glioma and normal brain tissues at -10°C and 20°C was obtained in the 0.4-2.53 THz range. The absorption coefficient and refractive index values varied with both temperature and frequency. The fresh ex vivo brain glioma tissues were mapped by THz attenuated total reflection (ATR) imaging at 2.52 THz in the temperature range from -20°C to 35°C. Compared with histological examination, THz-ATR imaging could better display the tumor areas at a higher temperature. And the averaged reflectivity of normal tissue was increased with the increase of temperature, whereas the tumor region showed a decreasing trend. Thus, the larger THz imaging difference between glioma and normal tissues could be obtained. Moreover, in vivo brain gliomas in mouse models could also be differentiated clearly from normal brain tissues using THz-ATR imaging at 2.52 THz under room temperature. The THz-ATR images corresponded well with those of visual and hematoxylin and eosin (H&E) stained images. Therefore, this pilot study demonstrated that temperature dependence THz spectroscopy and imaging are helpful to the brain gliomas in mouse model detection.
Collapse
Affiliation(s)
- Limin Wu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yuye Wang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Bin Liao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lu Zhao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kai Chen
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Meilan Ge
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haibin Li
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Degang Xu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianquan Yao
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Fufurin IL, Shlygin PE, Pozvonkov AA, Vintaikin IB, Svetlichnyi SI, Barkhatov DA, Nebritova OA, Morozov AN. Temperature Dependence of the Sensitivity of an Infrared Fourier Spectrometer. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793121050146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Single-Fiber Diffuse Reflectance Spectroscopy and Spatial Frequency Domain Imaging in Surgery Guidance: A Study on Optical Phantoms. MATERIALS 2021; 14:ma14247502. [PMID: 34947102 PMCID: PMC8708622 DOI: 10.3390/ma14247502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Diffuse reflectance spectroscopy (DRS) and imaging are increasingly being used in surgical guidance for tumor margin detection during endoscopic operations. However, the accuracy of the boundary detection with optical techniques may depend on the acquisition parameters, and its evaluation is in high demand. In this work, using optical phantoms with homogeneous and heterogeneous distribution of chromophores mimicking normal and pathological bladder tissues, the accuracy of tumor margin detection using single-fiber diffuse reflectance spectroscopy and spatial frequency domain imaging was evaluated. We also showed how the diffuse reflectance response obtained at different spatial frequencies with the spatial frequency domain imaging technique could be used not only to quantitatively map absorption and scattering coefficients of normal tissues and tumor-like heterogeneities but also to estimate the tumor depth localization. The demonstrated results could be helpful for proper analysis of the DRS data measured in vivo and for translation of optical techniques for tumor margin detection to clinics.
Collapse
|
18
|
Pan W, Yang L, Ma Y, Xiao H, Liu B. Design of a terahertz dual-channel modulator based on metamaterials. APPLIED OPTICS 2021; 60:9519-9524. [PMID: 34807094 DOI: 10.1364/ao.440152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
In this paper, we propose a terahertz dual-channel modulator by combining a high electron mobility transistor (HEMT) with a metamaterials structure, in which the HEMT is embedded in the opening of the structure metamaterial. The modulator consists of a metamaterial structure, silicon carbide (SiC), HEMT active device, and feeder. The concentration of the two-dimensional electron gas (2DEG) in the HEMT can be controlled by gate voltages, and the change of the concentration can realize the modulation of the intensity and phase of the terahertz wave. The simulation results indicate that when a single channel works, the modulation depth is 90.7% at 0.22 THz and 94.0% at 0.34 THz. When both channels work, the modulation depth is 88.9% at 0.22 THz and 93.3% at 0.34 THz. The terahertz modulator designed in this paper can work in two frequency bands and can be controlled independently, which efficiently uses the spectrum resources and has broad application prospects in the field of terahertz communication.
Collapse
|
19
|
Cherkasova OP, Serdyukov DS, Nemova EF, Ratushnyak AS, Kucheryavenko AS, Dolganova IN, Xu G, Skorobogatiy M, Reshetov IV, Timashev PS, Spektor IE, Zaytsev KI, Tuchin VV. Cellular effects of terahertz waves. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210179VR. [PMID: 34595886 PMCID: PMC8483303 DOI: 10.1117/1.jbo.26.9.090902] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/08/2021] [Indexed: 05/15/2023]
Abstract
SIGNIFICANCE An increasing interest in the area of biological effects at exposure of tissues and cells to the terahertz (THz) radiation is driven by a rapid progress in THz biophotonics, observed during the past decades. Despite the attractiveness of THz technology for medical diagnosis and therapy, there is still quite limited knowledge about safe limits of THz exposure. Different modes of THz exposure of tissues and cells, including continuous-wave versus pulsed radiation, various powers, and number and duration of exposure cycles, ought to be systematically studied. AIM We provide an overview of recent research results in the area of biological effects at exposure of tissues and cells to THz waves. APPROACH We start with a brief overview of general features of the THz-wave-tissue interactions, as well as modern THz emitters, with an emphasis on those that are reliable for studying the biological effects of THz waves. Then, we consider three levels of biological system organization, at which the exposure effects are considered: (i) solutions of biological molecules; (ii) cultures of cells, individual cells, and cell structures; and (iii) entire organs or organisms; special attention is devoted to the cellular level. We distinguish thermal and nonthermal mechanisms of THz-wave-cell interactions and discuss a problem of adequate estimation of the THz biological effects' specificity. The problem of experimental data reproducibility, caused by rareness of the THz experimental setups and an absence of unitary protocols, is also considered. RESULTS The summarized data demonstrate the current stage of the research activity and knowledge about the THz exposure on living objects. CONCLUSIONS This review helps the biomedical optics community to summarize up-to-date knowledge in the area of cell exposure to THz radiation, and paves the ways for the development of THz safety standards and THz therapeutic applications.
Collapse
Affiliation(s)
- Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
- Novosibirsk State Technical University, Russian Federation
| | - Danil S. Serdyukov
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Eugenia F. Nemova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Alexander S. Ratushnyak
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Anna S. Kucheryavenko
- Institute of Solid State Physics of the Russian Academy of Sciences, Russian Federation
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
| | - Irina N. Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Russian Federation
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Sechenov University, World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Russian Federation
| | - Guofu Xu
- Polytechnique Montreal, Department of Engineering Physics, Canada
| | | | - Igor V. Reshetov
- Sechenov University, Institute for Cluster Oncology, Russian Federation
- Academy of Postgraduate Education FSCC FMBA, Russian Federation
| | - Peter S. Timashev
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Sechenov University, World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Russian Federation
- N.N. Semenov Institute of Chemical Physics, Department of Polymers and Composites, Russian Federation
- Lomonosov Moscow State University, Department of Chemistry, Russian Federation
| | - Igor E. Spektor
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
| | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Bauman Moscow State Technical University, Russian Federation
| | - Valery V. Tuchin
- Saratov State University, Russian Federation
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Russian Federation
- National Research Tomsk State University, Russian Federation
| |
Collapse
|
20
|
Musina GR, Chernomyrdin NV, Gafarova ER, Gavdush AA, Shpichka AJ, Komandin GA, Anzin VB, Grebenik EA, Kravchik MV, Istranova EV, Dolganova IN, Zaytsev KI, Timashev PS. Moisture adsorption by decellularized bovine pericardium collagen matrices studied by terahertz pulsed spectroscopy and solid immersion microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:5368-5386. [PMID: 34692188 PMCID: PMC8515980 DOI: 10.1364/boe.433216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 05/03/2023]
Abstract
In this paper, terahertz (THz) pulsed spectroscopy and solid immersion microscopy were applied to study interactions between water vapor and tissue scaffolds-the decellularized bovine pericardium (DBP) collagen matrices, in intact form, cross-linked with the glutaraldehyde or treated by plasma. The water-absorbing properties of biomaterials are prognostic for future cell-mediated reactions of the recipient tissue with the scaffold. Complex dielectric permittivity of DBPs was measured in the 0.4-2.0 THz frequency range, while the samples were first dehydrated and then exposed to water vapor atmosphere with 80.0 ± 5.0% relative humidity. These THz dielectric measurements of DBPs and the results of their weighting allowed to estimate the adsorption time constants, an increase of tissue mass, as well as dispersion of these parameters. During the adsorption process, changes in the DBPs' dielectric permittivity feature an exponential character, with the typical time constant of =8-10 min, the transient process saturation at =30 min, and the tissue mass improvement by =1-3%. No statistically-relevant differences between the measured properties of the intact and treated DBPs were observed. Then, contact angles of wettability were measured for the considered DBPs using a recumbent drop method, while the observed results showed that treatments of DBP somewhat affects their surface energies, polarity, and hydrophilicity. Thus, our studies revealed that glutaraldehyde and plasma treatment overall impact the DBP-water interactions, but the resultant effects appear to be quite complex and comparable to the natural variability of the tissue properties. Such a variability was attributed to the natural heterogeneity of tissues, which was confirmed by the THz microscopy data. Our findings are important for further optimization of the scaffolds' preparation and treatment technologies. They pave the way for THz technology use as a non-invasive diagnosis tool in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- G R Musina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
- Bauman Moscow State Technical University, Russia
| | - N V Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Russia
- World-Class Research Center "Digital Biodesign & Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - E R Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Russia
- World-Class Research Center "Digital Biodesign & Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - A A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
- Bauman Moscow State Technical University, Russia
| | - A J Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Russia
- World-Class Research Center "Digital Biodesign & Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Russia
- Chemistry Department, Lomonosov Moscow State University, Russia
| | - G A Komandin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
- Bauman Moscow State Technical University, Russia
| | - V B Anzin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
| | - E A Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - M V Kravchik
- Scientific Research Institute of Eye Diseases, Russia
| | - E V Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - I N Dolganova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Russia
- World-Class Research Center "Digital Biodesign & Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Russia
- Institute of Solid State Physics of the Russian Academy of Sciences, Russia
| | - K I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
- Bauman Moscow State Technical University, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - P S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Russia
- World-Class Research Center "Digital Biodesign & Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Russia
- Chemistry Department, Lomonosov Moscow State University, Russia
- Department of Polymers and Composites, N. N. Semenov Institute of Chemical Physics, Russia
| |
Collapse
|
21
|
Kucheryavenko AS, Chernomyrdin NV, Gavdush AA, Alekseeva AI, Nikitin PV, Dolganova IN, Karalkin PA, Khalansky AS, Spektor IE, Skorobogatiy M, Tuchin VV, Zaytsev KI. Terahertz dielectric spectroscopy and solid immersion microscopy of ex vivo glioma model 101.8: brain tissue heterogeneity. BIOMEDICAL OPTICS EXPRESS 2021; 12:5272-5289. [PMID: 34513256 PMCID: PMC8407834 DOI: 10.1364/boe.432758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 05/23/2023]
Abstract
Terahertz (THz) technology holds strong potential for the intraoperative label-free diagnosis of brain gliomas, aimed at ensuring their gross-total resection. Nevertheless, it is still far from clinical applications due to the limited knowledge about the THz-wave-brain tissue interactions. In this work, rat glioma model 101.8 was studied ex vivo using both the THz pulsed spectroscopy and the 0.15λ-resolution THz solid immersion microscopy (λ is a free-space wavelength). The considered homograft model mimics glioblastoma, possesses heterogeneous character, unclear margins, and microvascularity. Using the THz spectroscopy, effective THz optical properties of brain tissues were studied, as averaged within the diffraction-limited beam spot. Thus measured THz optical properties revealed a persistent difference between intact tissues and a tumor, along with fluctuations of the tissue response over the rat brain. The observed THz microscopic images showed heterogeneous character of brain tissues at the scale posed by the THz wavelengths, which is due to the distinct response of white and gray matters, the presence of different neurovascular structures, as well as due to the necrotic debris and hemorrhage in a tumor. Such heterogeneities might significantly complicate delineation of tumor margins during the intraoperative THz neurodiagnosis. The presented results for the first time pose the problem of studying the inhomogeneity of brain tissues that causes scattering of THz waves, as well as the urgent need to use the radiation transfer theory for describing the THz-wave - tissue interactions.
Collapse
Affiliation(s)
- A S Kucheryavenko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
- Institute of Solid State Physics of the Russian Academy of Sciences, Russia
| | - N V Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
- Bauman Moscow State Technical University, Russia
| | - A A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
- Bauman Moscow State Technical University, Russia
| | | | - P V Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
- Institute for Regenerative Medicine, Sechenov University, Russia
- Burdenko Neurosurgery Institute, Russia
| | - I N Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Russia
- Bauman Moscow State Technical University, Russia
- Institute for Regenerative Medicine, Sechenov University, Russia
| | - P A Karalkin
- Institute for Cluster Oncology, Sechenov University, Russia
| | | | - I E Spektor
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
| | - M Skorobogatiy
- Department of Engineering Physics, Polytechnique Montreal, Canada
| | - V V Tuchin
- Science Medical Center, Saratov State University, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Russia
- National Research Tomsk State University, Russia
| | - K I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
- Bauman Moscow State Technical University, Russia
| |
Collapse
|
22
|
Konnikova MR, Cherkasova OP, Nazarov MM, Vrazhnov DA, Kistenev YV, Titov SE, Kopeikina EV, Shevchenko SP, Shkurinov AP. Malignant and benign thyroid nodule differentiation through the analysis of blood plasma with terahertz spectroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:1020-1035. [PMID: 33680557 PMCID: PMC7901318 DOI: 10.1364/boe.412715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 05/04/2023]
Abstract
The liquid and lyophilized blood plasma of patients with benign or malignant thyroid nodules and healthy individuals were studied by terahertz (THz) time-domain spectroscopy and machine learning. The blood plasma samples from malignant nodule patients were shown to have higher absorption. The glucose concentration and miRNA-146b level were correlated with the sample's absorption at 1 THz. A two-stage ensemble algorithm was proposed for the THz spectra analysis. The first stage was based on the Support Vector Machine with a linear kernel to separate healthy and thyroid nodule participants. The second stage included additional data preprocessing by Ornstein-Uhlenbeck kernel Principal Component Analysis to separate benign and malignant thyroid nodule participants. Thus, the distinction of malignant and benign thyroid nodule patients through their lyophilized blood plasma analysis by terahertz time-domain spectroscopy and machine learning was demonstrated.
Collapse
Affiliation(s)
- Maria R. Konnikova
- Institute for Problems of Laser and Information Technologies of the Russian Academy of Sciences, Branch of Federal Scientific Research Center, “Crystallography and Photonics” of the RAS, Shatura 140700, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Olga P. Cherkasova
- Institute for Problems of Laser and Information Technologies of the Russian Academy of Sciences, Branch of Federal Scientific Research Center, “Crystallography and Photonics” of the RAS, Shatura 140700, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Maxim M. Nazarov
- National Research Centre Kurchatov Institute, Moscow, 123182, Russia
| | - Denis A. Vrazhnov
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, 634055, Russia
| | - Yuri V. Kistenev
- Tomsk State University, Tomsk, 634050, Russia
- Siberian State Medical University, Tomsk, 634050, Russia
| | - Sergei E. Titov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | | | - Alexander P. Shkurinov
- Institute for Problems of Laser and Information Technologies of the Russian Academy of Sciences, Branch of Federal Scientific Research Center, “Crystallography and Photonics” of the RAS, Shatura 140700, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
23
|
Nikitkina AI, Bikmulina PY, Gafarova ER, Kosheleva NV, Efremov YM, Bezrukov EA, Butnaru DV, Dolganova IN, Chernomyrdin NV, Cherkasova OP, Gavdush AA, Timashev PS. Terahertz radiation and the skin: a review. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200356VSSR. [PMID: 33583155 PMCID: PMC7881098 DOI: 10.1117/1.jbo.26.4.043005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Terahertz (THz) radiation has demonstrated a great potential in biomedical applications over the past three decades, mainly due to its non-invasive and label-free nature. Among all biological specimens, skin tissue is an optimal sample for the application of THz-based methods because it allows for overcoming some intrinsic limitations of the technique, such as a small penetration depth (0.1 to 0.3 mm for the skin, on average). AIM We summarize the modern research results achieved when THz technology was applied to the skin, considering applications in both imaging/detection and treatment/modulation of the skin constituents. APPROACH We perform a review of literature and analyze the recent research achievements in THz applications for skin diagnosis and investigation. RESULTS The reviewed results demonstrate the possibilities of THz spectroscopy and imaging, both pulsed and continuous, for diagnosis of skin melanoma and non-melanoma cancer, dysplasia, scars, and diabetic condition, mainly based on the analysis of THz optical properties. The possibility of modulating cell activity and treatment of various diseases by THz-wave exposure is shown as well. CONCLUSIONS The rapid development of THz technologies and the obtained research results for skin tissue highlight the potential of THz waves as a research and therapeutic instrument. The perspectives on the use of THz radiation are related to both non-invasive diagnostics and stimulation and control of different processes in a living skin tissue for regeneration and cancer treatment.
Collapse
Affiliation(s)
| | - Polina Y. Bikmulina
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Elvira R. Gafarova
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Nastasia V. Kosheleva
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
- Federal State Budgetary Scientific Institution “Institute of General Pathology and Pathophysiology,” Moscow, Russia
| | - Yuri M. Efremov
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Evgeny A. Bezrukov
- Sechenov University, Institute for Urology and Reproductive Health, Moscow, Russia
| | - Denis V. Butnaru
- Sechenov University, Institute for Urology and Reproductive Health, Moscow, Russia
| | - Irina N. Dolganova
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Nikita V. Chernomyrdin
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- Russian Academy of Sciences, Prokhorov General Physics Institute, Moscow, Russia
| | - Olga P. Cherkasova
- Russian Academy of Sciences, Institute of Laser Physics of the Siberian Branch, Novosibirsk, Russia
- Novosibirsk State Technical University, Novosibirsk, Russia
| | - Arsenii A. Gavdush
- Russian Academy of Sciences, Prokhorov General Physics Institute, Moscow, Russia
| | - Peter S. Timashev
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
- N. N. Semenov Institute of Chemical Physics, Department of Polymers and Composites, Moscow, Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, Russia
- Address all correspondence to Peter S. Timashev,
| |
Collapse
|
24
|
Abstract
This review considers glioma molecular markers in brain tissues and body fluids, shows the pathways of their formation, and describes traditional methods of analysis. The most important optical properties of glioma markers in the terahertz (THz) frequency range are also presented. New metamaterial-based technologies for molecular marker detection at THz frequencies are discussed. A variety of machine learning methods, which allow the marker detection sensitivity and differentiation of healthy and tumor tissues to be improved with the aid of THz tools, are considered. The actual results on the application of THz techniques in the intraoperative diagnosis of brain gliomas are shown. THz technologies’ potential in molecular marker detection and defining the boundaries of the glioma’s tissue is discussed.
Collapse
|
25
|
Zotov AK, Gavdush AA, Katyba GM, Safonova LP, Chernomyrdin NV, Dolganova IN. In situ terahertz monitoring of an ice ball formation during tissue cryosurgery: a feasibility test. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200372SSR. [PMID: 33506657 PMCID: PMC7839928 DOI: 10.1117/1.jbo.26.4.043003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE Uncontrolled cryoablation of tissues is a strong reason limiting the wide application of cryosurgery and cryotherapy due to the certain risks of unpredicted damaging of healthy tissues. The existing guiding techniques are unable to be applied in situ or provide insufficient spatial resolution. Terahertz (THz) pulsed spectroscopy (TPS) based on sensitivity of THz time-domain signal to changes of tissue properties caused by freezing could form the basis of an instrument for observation of the ice ball formation. AIM The ability of TPS for in situ monitoring of tissue freezing depth is studied experimentally. APPROACH A THz pulsed spectrometer operated in reflection mode and equipped with a cooled sample holder and ex vivo samples of bovine visceral adipose tissue is applied. Signal spectrograms are used to analyze the changes of THz time-domain signals caused by the interface between frozen and unfrozen tissue parts. RESULTS Experimental observation of TPS signals reflected from freezing tissue demonstrates the feasibility of TPS to detect ice ball formation up to 657-μm depth. CONCLUSIONS TPS could become the promising instrument for in situ control of cryoablation, enabling observation of the freezing front propagation, which could find applications in various fields of oncology, regenerative medicine, and THz biophotonics.
Collapse
Affiliation(s)
- Arsen K. Zotov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Arsenii A. Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb M. Katyba
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | | | - Nikita V. Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Institute for Regenerative Medicine, Moscow, Russia
| | - Irina N. Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
- Bauman Moscow State Technical University, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Institute for Regenerative Medicine, Moscow, Russia
- Address all correpsondence to Irina N. Dolganova,
| |
Collapse
|
26
|
Gavdush AA, Chernomyrdin NV, Komandin GA, Dolganova IN, Nikitin PV, Musina GR, Katyba GM, Kucheryavenko AS, Reshetov IV, Potapov AA, Tuchin VV, Zaytsev KI. Terahertz dielectric spectroscopy of human brain gliomas and intact tissues ex vivo: double-Debye and double-overdamped-oscillator models of dielectric response. BIOMEDICAL OPTICS EXPRESS 2021; 12:69-83. [PMID: 33659071 PMCID: PMC7899500 DOI: 10.1364/boe.411025] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 05/07/2023]
Abstract
Terahertz (THz) technology offers novel opportunities in the intraoperative neurodiagnosis. Recently, the significant progress was achieved in the study of brain gliomas and intact tissues, highlighting a potential for THz technology in the intraoperative delineation of tumor margins. However, a lack of physical models describing the THz dielectric permittivity of healthy and pathological brain tissues restrains the further progress in this field. In the present work, the ex vivo THz dielectric response of human brain tissues was analyzed using relaxation models of complex dielectric permittivity. Dielectric response of tissues was parametrized by a pair of the Debye relaxators and a pair of the overdamped-oscillators - namely, the double-Debye (DD) and double-overdamped-oscillator (DO) models. Both models accurately reproduce the experimental curves for the intact tissues and the WHO Grades I-IV gliomas. While the DD model is more common for THz biophotonics, the DO model is more physically rigorous, since it satisfies the sum rule. In this way, the DO model and the sum rule were, then, applied to estimate the content of water in intact tissues and gliomas ex vivo. The observed results agreed well with the earlier-reported data, justifying water as a main endogenous label of brain tumors in the THz range. The developed models can be used to describe completely the THz-wave - human brain tissues interactions in the frameworks of classical electrodynamics, being quite important for further research and developments in THz neurodiagnosis of tumors.
Collapse
Affiliation(s)
- A A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - N V Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G A Komandin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - I N Dolganova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - P V Nikitin
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - G R Musina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - G M Katyba
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - A S Kucheryavenko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - I V Reshetov
- Institute for Cluster Oncology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A A Potapov
- Burdenko Neurosurgery Institute, Moscow, Russia
| | - V V Tuchin
- Saratov State University, Saratov, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - K I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Musina GR, Dolganova IN, Chernomyrdin NV, Gavdush AA, Ulitko VE, Cherkasova OP, Tuchina DK, Nikitin PV, Alekseeva AI, Bal NV, Komandin GA, Kurlov VN, Tuchin VV, Zaytsev KI. Optimal hyperosmotic agents for tissue immersion optical clearing in terahertz biophotonics. JOURNAL OF BIOPHOTONICS 2020; 13:e202000297. [PMID: 32881362 DOI: 10.1002/jbio.202000297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 05/05/2023]
Abstract
In this work, a thorough analysis of hyperosmotic agents for the immersion optical clearing (IOC) in terahertz (THz) range was performed. It was aimed at the selection of agents for the efficient enhancement of penetration depth of THz waves into biological tissues. Pulsed spectroscopy in the frequency range of 0.1 to 2.5 THz was applied for investigation of the optical properties of common IOC agents. Using the collimated transmission spectroscopy in visible range, binary diffusion coefficients of tissue water and agent in ex vivo rat brain tissue were measured. IOC agents were objectively compared using two-dimensional nomogram, accounting for their THz-wave absorption coefficients and binary diffusion coefficients. The results of this study demonstrate an interplay between the penetration depth enhancement and the diffusion rate and allow for pointing out glycerol as an optimal agent among the considered ones for particular applications in THz biophotonics.
Collapse
Affiliation(s)
- Guzel R Musina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Irina N Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russian Federation
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Nikita V Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Arsenii A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladislav E Ulitko
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Olga P Cherkasova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
- Institute of Laser Physics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Daria K Tuchina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
- National Research Tomsk State University, Tomsk, Russian Federation
- Saratov State University, Saratov, Russian Federation
| | - Pavel V Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
- Burdenko Neurosurgery Institute, Moscow, Russian Federation
| | - Anna I Alekseeva
- Research Institute of Human Morphology, Moscow, Russian Federation
| | - Natalia V Bal
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Gennady A Komandin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir N Kurlov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russian Federation
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Valery V Tuchin
- National Research Tomsk State University, Tomsk, Russian Federation
- Saratov State University, Saratov, Russian Federation
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russian Federation
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
- Bauman Moscow State Technical University, Moscow, Russian Federation
| |
Collapse
|
28
|
Dolganova IN, Aleksandrova PV, Nikitin PV, Alekseeva AI, Chernomyrdin NV, Musina GR, Beshplav ST, Reshetov IV, Potapov AA, Kurlov VN, Tuchin VV, Zaytsev KI. Capability of physically reasonable OCT-based differentiation between intact brain tissues, human brain gliomas of different WHO grades, and glioma model 101.8 from rats. BIOMEDICAL OPTICS EXPRESS 2020; 11:6780-6798. [PMID: 33282523 PMCID: PMC7687948 DOI: 10.1364/boe.409692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 05/17/2023]
Abstract
Optical coherence tomography (OCT) of the ex vivo rat and human brain tissue samples is performed. The set of samples comprises intact white and gray matter, as well as human brain gliomas of the World Health Organization (WHO) Grades I-IV and glioma model 101.8 from rats. Analysis of OCT signals is aimed at comparing the physically reasonable properties of tissues, and determining the attenuation coefficient, parameter related to effective refractive index, and their standard deviations. Data analysis is based on the linear discriminant analysis and estimation of their dispersion in a four-dimensional principal component space. The results demonstrate the distinct contrast between intact tissues and low-grade gliomas and moderate contrast between intact tissues and high-grade gliomas. Particularly, the mean values of attenuation coefficient are 7.56±0.91, 3.96±0.98, and 5.71±1.49 mm-1 for human white matter, glioma Grade I, and glioblastoma, respectively. The significant variability of optical properties of high Grades and essential differences between rat and human brain tissues are observed. The dispersion of properties enlarges with increase of the glioma WHO Grade, which can be attributed to the growing heterogeneity of pathological brain tissues. The results of this study reveal the advantages and drawbacks of OCT for the intraoperative diagnosis of brain gliomas and compare its abilities separately for different grades of malignancy. The perspective of OCT to differentiate low-grade gliomas is highlighted by the low performance of the existing intraoperational methods and instruments.
Collapse
Affiliation(s)
- I. N. Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka 142432, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - P. V. Aleksandrova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - P. V. Nikitin
- Burdenko Neurosurgery Institute, Moscow 125047, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - A. I. Alekseeva
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka 142432, Russia
- Research Institute of Human Morphology, Moscow 117418, Russia
| | - N. V. Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - G. R. Musina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - S. T. Beshplav
- Burdenko Neurosurgery Institute, Moscow 125047, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - I. V. Reshetov
- Institute for Cluster Oncology, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Academy of Postgraduate Education FSCC FMBA, Moscow 125310, Russia
| | - A. A. Potapov
- Burdenko Neurosurgery Institute, Moscow 125047, Russia
| | - V. N. Kurlov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka 142432, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - V. V. Tuchin
- Saratov State University, Saratov 410012, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov 410028, Russia
- Tomsk State University, Tomsk 634050, Russia
| | - K. I. Zaytsev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
29
|
Li D, Yang Z, Fu A, Chen T, Chen L, Tang M, Zhang H, Mu N, Wang S, Liang G, Wang H. Detecting melanoma with a terahertz spectroscopy imaging technique. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118229. [PMID: 32193158 DOI: 10.1016/j.saa.2020.118229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 05/18/2023]
Abstract
Transmission mode terahertz time-domain spectroscopy system was employed to image BALB/c mouse skin tissue slices containing melanoma. The melanoma was unambiguously identified in the frequency region of 0.6-1.8 THz because melanoma has a higher refractive index as well as a higher absorption coefficient than the normal region of the skin tissue. Based on the results of hematoxylin-eosin staining and mass weighing, it was further suggested that the higher density of nucleic acids, higher water content, and lower fat content in the melanoma compared to the normal region are major factors responsible for melanoma's higher refractive index and absorption coefficient than normal tissue. The present work validates that terahertz time-domain spectroscopy imaging technique is possible to be used for the diagnosis of melanoma.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhongbo Yang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ligang Chen
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mingjie Tang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hua Zhang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ning Mu
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Shi Wang
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Huabin Wang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
30
|
Vohra N, Bowman T, Bailey K, El-Shenawee M. Terahertz Imaging and Characterization Protocol for Freshly Excised Breast Cancer Tumors. J Vis Exp 2020:10.3791/61007. [PMID: 32310233 PMCID: PMC7179081 DOI: 10.3791/61007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This manuscript presents a protocol to handle, characterize, and image freshly excised human breast tumors using pulsed terahertz imaging and spectroscopy techniques. The protocol involves terahertz transmission mode at normal incidence and terahertz reflection mode at an oblique angle of 30°. The collected experimental data represent time domain pulses of the electric field. The terahertz electric field signal transmitted through a fixed point on the excised tissue is processed, through an analytical model, to extract the refractive index and absorption coefficient of the tissue. Utilizing a stepper motor scanner, the terahertz emitted pulse is reflected from each pixel on the tumor providing a planar image of different tissue regions. The image can be presented in time or frequency domain. Furthermore, the extracted data of the refractive index and absorption coefficient at each pixel are utilized to provide a tomographic terahertz image of the tumor. The protocol demonstrates clear differentiation between cancerous and healthy tissues. On the other hand, not adhering to the protocol can result in noisy or inaccurate images due to the presence of air bubbles and fluid remains on the tumor surface. The protocol provides a method for surgical margins assessment of breast tumors.
Collapse
Affiliation(s)
- Nagma Vohra
- Department of Electrical Engineering, University of Arkansas;
| | - Tyler Bowman
- Department of Electrical Engineering, University of Arkansas
| | - Keith Bailey
- Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University
| | | |
Collapse
|
31
|
Investigation of Fresh Gastric Normal and Cancer Tissues Using Terahertz Time-Domain Spectroscopy. MATERIALS 2019; 13:ma13010085. [PMID: 31877967 PMCID: PMC6981444 DOI: 10.3390/ma13010085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022]
Abstract
In recent times, terahertz (THz) technologies have been actively applied in many biomedical research work, including gastric cancer diagnosis. In order to provide an effective removal of tumor during surgery, it is necessary to clearly distinguish it from different membranes of the stomach. In this work, we reported an investigation of various normal and cancer fresh gastric tissues using terahertz time-domain spectroscopy in the reflection mode. Refractive index and absorption coefficient of moderately differentiated and poorly differentiated gastric adenocarcinomas, as well as both serosa and mucosa were obtained in the frequency range from 0.2 to 1 THz. All cancer tissues were distinguishable from normal ones. The influence of the morphology of the investigated tissues on the obtained optical properties is discussed. The obtained results demonstrated a potential of THz time-domain spectroscopy to discriminate a tumor from normal serous and mucous gastric membranes. Thus, this method might be applied to gastric cancer diagnosis.
Collapse
|
32
|
Genina EA, Bashkatov AN, Tuchina DK, Dyachenko (Timoshina) PA, Navolokin N, Shirokov A, Khorovodov A, Terskov A, Klimova M, Mamedova A, Blokhina I, Agranovich I, Zinchenko E, Semyachkina-Glushkovskaya OV, Tuchin VV. Optical properties of brain tissues at the different stages of glioma development in rats: pilot study. BIOMEDICAL OPTICS EXPRESS 2019; 10:5182-5197. [PMID: 31646040 PMCID: PMC6788608 DOI: 10.1364/boe.10.005182] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 05/03/2023]
Abstract
In this paper, measurements of the optical properties (diffuse reflectance, total and collimated transmittance) of brain tissues in healthy rats and rats with C6-glioma were performed in the spectral range from 350 to 1800 nm. Using these measurements, characteristic tissue optical parameters, such as absorption coefficient, scattering coefficient, reduced scattering coefficient, and scattering anisotropy factor were reconstructed. It was obtained that the 10-day development of glioma led to increase of absorption coefficient, which was associated with the water content elevation in the tumor. However, further development of the tumor (formation of the necrotic core) led to decrease in the water content. The dependence of the scattering properties on the different stages of model glioma development was more complex. Light penetration depth into the healthy and tumor brain was evaluated.
Collapse
Affiliation(s)
- Elina A. Genina
- Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
- Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Alexey N. Bashkatov
- Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
- Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Daria K. Tuchina
- Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
- Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova str., Moscow 119991, Russia
| | - Polina A. Dyachenko (Timoshina)
- Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
- Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Nikita Navolokin
- Saratov State Medical University, 112, B. Kazachya str., Saratov 410012, Russia
| | - Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, IBPPM RAS, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | | - Andrey Terskov
- Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
| | - Maria Klimova
- Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
| | - Aysel Mamedova
- Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
| | - Inna Blokhina
- Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
| | - Ilana Agranovich
- Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
| | | | | | - Valery V. Tuchin
- Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
- Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, 24, Rabochaya Str., Saratov 410028, Russia
| |
Collapse
|
33
|
Wu L, Xu D, Wang Y, Liao B, Jiang Z, Zhao L, Sun Z, Wu N, Chen T, Feng H, Yao J. Study of in vivo brain glioma in a mouse model using continuous-wave terahertz reflection imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:3953-3962. [PMID: 31452987 PMCID: PMC6701535 DOI: 10.1364/boe.10.003953] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 05/21/2023]
Abstract
We demonstrated that in vivo brain glioma in a mouse model using a continuous-wave terahertz reflection imaging system, as well as the ex vivo fresh brain tissues in mouse model. The tumor regions of in vivo and ex vivo brain tissues can be well distinguished by THz intensity imaging at the frequency of 2.52THz. The THz images with high sensitivity correlated well with magnetic resonance, visual and hematoxylin and eosin stained images. Furthermore, the THz spectral difference between brain gliomas and normal brain tissues were obtained in the 0.6THz to 2.8THz range, where brain gliomas have the higher refractive indices and absorption coefficients, and their differences increase particularly in the high frequency range. These results suggest that THz imaging has great potential as an alternative method for the intraoperative label-free diagnosis of brain glioma in vivo.
Collapse
Affiliation(s)
- Limin Wu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Degang Xu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yuye Wang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Liao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhinan Jiang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Lu Zhao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhongcheng Sun
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Nan Wu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianquan Yao
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|