1
|
Chang Q, Ahmad D, Toth J, Bascom R, Higgins WE. ESFPNet: Efficient Stage-Wise Feature Pyramid on Mix Transformer for Deep Learning-Based Cancer Analysis in Endoscopic Video. J Imaging 2024; 10:191. [PMID: 39194980 DOI: 10.3390/jimaging10080191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For patients at risk of developing either lung cancer or colorectal cancer, the identification of suspect lesions in endoscopic video is an important procedure. The physician performs an endoscopic exam by navigating an endoscope through the organ of interest, be it the lungs or intestinal tract, and performs a visual inspection of the endoscopic video stream to identify lesions. Unfortunately, this entails a tedious, error-prone search over a lengthy video sequence. We propose a deep learning architecture that enables the real-time detection and segmentation of lesion regions from endoscopic video, with our experiments focused on autofluorescence bronchoscopy (AFB) for the lungs and colonoscopy for the intestinal tract. Our architecture, dubbed ESFPNet, draws on a pretrained Mix Transformer (MiT) encoder and a decoder structure that incorporates a new Efficient Stage-Wise Feature Pyramid (ESFP) to promote accurate lesion segmentation. In comparison to existing deep learning models, the ESFPNet model gave superior lesion segmentation performance for an AFB dataset. It also produced superior segmentation results for three widely used public colonoscopy databases and nearly the best results for two other public colonoscopy databases. In addition, the lightweight ESFPNet architecture requires fewer model parameters and less computation than other competing models, enabling the real-time analysis of input video frames. Overall, these studies point to the combined superior analysis performance and architectural efficiency of the ESFPNet for endoscopic video analysis. Lastly, additional experiments with the public colonoscopy databases demonstrate the learning ability and generalizability of ESFPNet, implying that the model could be effective for region segmentation in other domains.
Collapse
Affiliation(s)
- Qi Chang
- School of Electrical Engineering and Computer Science, Penn State University, University Park, PA 16802, USA
| | - Danish Ahmad
- Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Jennifer Toth
- Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Rebecca Bascom
- Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - William E Higgins
- School of Electrical Engineering and Computer Science, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Costa S, Fang Q, Farrell T, Dao E, Farquharson M. Time-resolved fluorescence and diffuse reflectance for lung squamous carcinoma margin detection. Lasers Surg Med 2024; 56:279-287. [PMID: 38357847 DOI: 10.1002/lsm.23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVES A major challenge in non-small cell lung cancer surgery is the occurrence of positive tumor margins. This may lead to the need for additional surgeries and has been linked to poor patient prognosis. This study aims to develop an in vivo surgical tool that can differentiate cancerous from noncancerous lung tissue at the margin. METHODS A time-resolved fluorescence and diffuse reflectance bimodal device was used to measure the lifetime, spectra, and intensities of endogenous fluorophores as well as optical properties of lung tissue. The tumor and fibrotic tissue data, each containing 36 samples, was obtained from patients who underwent surgical removal of lung tissue after being diagnosed with squamous carcinoma but before any other treatment was administered. The normal lung tissue data were obtained from nine normal tissue samples. RESULTS The results show a statistically significant difference between cancerous and noncancerous tissue. The results also show a difference in metabolic related optical properties between fibrotic and normal lung tissue samples. CONCLUSIONS This work demonstrates the feasibility of a device that can differentiate cancerous and noncancerous lung tissue for patients diagnosed with squamous cell carcinoma.
Collapse
Affiliation(s)
- Sarah Costa
- Department of Physics, McMaster University, Ontario, Hamilton, Canada
| | - Qiyin Fang
- Department of Engineering Physics, Faculty of Engineering, McMaster University, Ontario, Hamilton, Canada
| | - Thomas Farrell
- Radiation Physics Program, Juravinski Cancer Centre, Ontario, Hamilton, Canada
| | - Erica Dao
- Department of Physics, McMaster University, Ontario, Hamilton, Canada
| | - Michael Farquharson
- Department of Interdisciplinary Science, McMaster University, Ontario, Hamilton, Canada
| |
Collapse
|
3
|
Galvez D, Hong Z, Rocha AD, Heusinkveld JM, Ye P, Liang R, Barton JK. Characterizing close-focus lenses for microendoscopy. JOURNAL OF OPTICAL MICROSYSTEMS 2023; 3:011003. [PMID: 38084130 PMCID: PMC10712292 DOI: 10.1117/1.jom.3.1.011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Microendoscopes are commonly used in small lumens in the body, for which a focus near to the distal tip and ability to operate in an aqueous environment are paramount for navigation and disease detection. Commercially available distal optic systems below 1mm in diameter are severely limited, and custom micro lenses are generally very expensive. Gradient index of refraction (GRIN) singlets are available in small diameters but have limited optical performance adjustability. Three-dimensional (3D) printed monolithic optical systems are an emerging option that may be suitable for enabling high performance, close-focus imaging. In this manuscript, we compared the optical performance of three custom distal optic systems; a custom-pitch GRIN singlet, 3D-printed monolithic doublet, and 3D-printed monolithic triplet, with a nominal working distance (WD) of 1.5mm, 0.5mm and 0.4mm in 0.9% saline. These short WDs are ideal for microendoscopy in collapsed or flushed lumens such as pancreatic duct or fallopian tube. The GRIN singlet had performance limited only by the fiber bundle relay over 0.9mm to 1.6 mm depth of field (DOF). The 3D printed doublet was able to achieve a comparable DOF of 0.71mm, while the 3D printed triplet suffered the most limited DOF of 0.55mm. 3D printing enables flexible design of monolithic multi-element systems with aspheric surfaces of very short WDs and relative ease of integration.
Collapse
Affiliation(s)
- Dominique Galvez
- University of Arizona, Wyant College of Optical Sciences, Tucson, United States of America
| | - Zhihan Hong
- University of Arizona, Wyant College of Optical Sciences, Tucson, United States of America
| | - Andrew D. Rocha
- University of Arizona, Wyant College of Optical Sciences, Tucson, United States of America
| | - John M. Heusinkveld
- University of Arizona, Department of Obstetrics and Gynecology, Tucson, United States of America
| | - Piaoran Ye
- University of Arizona, Department of Chemistry & Biochemistry, Tucson, United States of America
| | - Rongguang Liang
- University of Arizona, Wyant College of Optical Sciences, Tucson, United States of America
| | - Jennifer K. Barton
- University of Arizona, Wyant College of Optical Sciences, Tucson, United States of America
- University of Arizona, Department of Biomedical Engineering, Tucson, United States of America
| |
Collapse
|
4
|
Yang L, Chen Y, Ling S, Wang J, Wang G, Zhang B, Zhao H, Zhao Q, Mao J. Research progress on the application of optical coherence tomography in the field of oncology. Front Oncol 2022; 12:953934. [PMID: 35957903 PMCID: PMC9358962 DOI: 10.3389/fonc.2022.953934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Optical coherence tomography (OCT) is a non-invasive imaging technique which has become the “gold standard” for diagnosis in the field of ophthalmology. However, in contrast to the eye, nontransparent tissues exhibit a high degree of optical scattering and absorption, resulting in a limited OCT imaging depth. And the progress made in the past decade in OCT technology have made it possible to image nontransparent tissues with high spatial resolution at large (up to 2mm) imaging depth. On the one hand, OCT can be used in a rapid, noninvasive way to detect diseased tissues, organs, blood vessels or glands. On the other hand, it can also identify the optical characteristics of suspicious parts in the early stage of the disease, which is of great significance for the early diagnosis of tumor diseases. Furthermore, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This review summarizes the recent advances in the OCT area, which application in oncological diagnosis and treatment in different types: (1) superficial tumors:OCT could detect microscopic information on the skin’s surface at high resolution and has been demonstrated to help diagnose common skin cancers; (2) gastrointestinal tumors: OCT can be integrated into small probes and catheters to image the structure of the stomach wall, enabling the diagnosis and differentiation of gastrointestinal tumors and inflammation; (3) deep tumors: with the rapid development of OCT imaging technology, it has shown great potential in the diagnosis of deep tumors such in brain tumors, breast cancer, bladder cancer, and lung cancer.
Collapse
Affiliation(s)
- Linhai Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Yulun Chen
- School of Medicine, Xiamen University, Xiamen, China
| | - Shuting Ling
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Jing Wang
- Department of Imaging, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Guangxing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Bei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Hengyu Zhao
- Department of Imaging, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Hengyu Zhao, ; Qingliang Zhao, ; Jingsong Mao,
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Hengyu Zhao, ; Qingliang Zhao, ; Jingsong Mao,
| | - Jingsong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
- Department of Radiology, Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, Xiamen, China
- *Correspondence: Hengyu Zhao, ; Qingliang Zhao, ; Jingsong Mao,
| |
Collapse
|
5
|
Scolaro L, Lorenser D, Quirk BC, Kirk RW, Ho LA, Thomas E, Li J, Saunders CM, Sampson DD, Fuller RO, McLaughlin RA. Multimodal imaging needle combining optical coherence tomography and fluorescence for imaging of live breast cancer cells labeled with a fluorescent analog of tamoxifen. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:076004. [PMID: 35831923 PMCID: PMC9278982 DOI: 10.1117/1.jbo.27.7.076004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Imaging needles consist of highly miniaturized focusing optics encased within a hypodermic needle. The needles may be inserted tens of millimeters into tissue and have the potential to visualize diseased cells well beyond the penetration depth of optical techniques applied externally. Multimodal imaging needles acquire multiple types of optical signals to differentiate cell types. However, their use has not previously been demonstrated with live cells. AIM We demonstrate the ability of a multimodal imaging needle to differentiate cell types through simultaneous optical coherence tomography (OCT) and fluorescence imaging. APPROACH We characterize the performance of a multimodal imaging needle. This is paired with a fluorescent analog of the therapeutic drug, tamoxifen, which enables cell-specific fluorescent labeling of estrogen receptor-positive (ER+) breast cancer cells. We perform simultaneous OCT and fluorescence in situ imaging on MCF-7 ER+ breast cancer cells and MDA-MB-231 ER- cells. Images are compared against unlabeled control samples and correlated with standard confocal microscopy images. RESULTS We establish the feasibility of imaging live cells with these miniaturized imaging probes by showing clear differentiation between cancerous cells. CONCLUSIONS Imaging needles have the potential to aid in the detection of specific cancer cells within solid tissue.
Collapse
Affiliation(s)
- Loretta Scolaro
- The University of Adelaide, Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
- The University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
- The University of Western Australia, School of Engineering, Optical+Biomedical Engineering Laboratory, Crawley, Western Australia, Australia
| | - Dirk Lorenser
- The University of Western Australia, School of Engineering, Optical+Biomedical Engineering Laboratory, Crawley, Western Australia, Australia
| | - Bryden C. Quirk
- The University of Adelaide, Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
- The University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
- The University of Western Australia, School of Engineering, Optical+Biomedical Engineering Laboratory, Crawley, Western Australia, Australia
| | - Rodney W. Kirk
- The University of Adelaide, Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
- The University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
- The University of Western Australia, School of Engineering, Optical+Biomedical Engineering Laboratory, Crawley, Western Australia, Australia
| | - Louisa A. Ho
- The University of Western Australia, School of Molecular Sciences, Crawley, Western Australia, Australia
| | - Elizabeth Thomas
- The University of Western Australia, Medical School, Division of Surgery, Nedlands, Western Australia, Australia
| | - Jiawen Li
- The University of Adelaide, Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
- The University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
- The University of Western Australia, School of Engineering, Optical+Biomedical Engineering Laboratory, Crawley, Western Australia, Australia
- The University of Adelaide, School of Electrical and Electronic Engineering, Adelaide, South Australia, Australia
| | - Christobel M. Saunders
- The University of Western Australia, Medical School, Division of Surgery, Nedlands, Western Australia, Australia
- Fiona Stanley Hospital, Breast Centre, Murdoch, Western Australia, Australia
- Royal Perth Hospital, Breast Clinic, Perth, Western Australia, Australia
| | - David D. Sampson
- The University of Western Australia, School of Engineering, Optical+Biomedical Engineering Laboratory, Crawley, Western Australia, Australia
- University of Surrey, School of Biosciences and Medicine, Surrey Biophotonics, Guildford, United Kingdom
- University of Surrey, Advanced Technology Institute, School of Physics, Surrey Biophotonics, Guildford, United Kingdom
| | - Rebecca O. Fuller
- The University of Western Australia, School of Molecular Sciences, Crawley, Western Australia, Australia
- University of Tasmania, School of Natural Sciences – Chemistry, Hobart, Tasmania, Australia
| | - Robert A. McLaughlin
- The University of Adelaide, Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
- The University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
- The University of Western Australia, School of Engineering, Optical+Biomedical Engineering Laboratory, Crawley, Western Australia, Australia
| |
Collapse
|
6
|
Wilson BC, Eu D. Optical Spectroscopy and Imaging in Surgical Management of Cancer Patients. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Brian C. Wilson
- Princess Margaret Cancer Centre/University Health Network 101 College Street Toronto Ontario Canada
- Department of Medical Biophysics, Faculty of Medicine University of Toronto Canada
| | - Donovan Eu
- Department of Otolaryngology‐Head and Neck Surgery‐Surgical Oncology, Princess Margaret Cancer Centre/University Health Network University of Toronto Canada
- Department of Otolaryngology‐Head and Neck Surgery National University Hospital System Singapore
| |
Collapse
|
7
|
Beaudette K, Li J, Lamarre J, Majeau L, Boudoux C. Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications. BIOSENSORS 2022; 12:90. [PMID: 35200350 PMCID: PMC8869713 DOI: 10.3390/bios12020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Optical fibers have been used to probe various tissue properties such as temperature, pH, absorption, and scattering. Combining different sensing and imaging modalities within a single fiber allows for increased sensitivity without compromising the compactness of an optical fiber probe. A double-clad fiber (DCF) can sustain concurrent propagation modes (single-mode, through its core, and multimode, through an inner cladding), making DCFs ideally suited for multimodal approaches. This study provides a technological review of how DCFs are used to combine multiple sensing functionalities and imaging modalities. Specifically, we discuss the working principles of DCF-based sensors and relevant instrumentation as well as fiber probe designs and functionalization schemes. Secondly, we review different applications using a DCF-based probe to perform multifunctional sensing and multimodal bioimaging.
Collapse
Affiliation(s)
- Kathy Beaudette
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Jiawen Li
- Institute for Photonics and Advanced Sensing, School of Electrical Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Joseph Lamarre
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Lucas Majeau
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Caroline Boudoux
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|