1
|
Rodgers G, Bikis C, Janz P, Tanner C, Schulz G, Thalmann P, Haas CA, Müller B. 3D X-ray Histology for the Investigation of Temporal Lobe Epilepsy in a Mouse Model. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1730-1745. [PMID: 37584515 DOI: 10.1093/micmic/ozad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023]
Abstract
The most common form of epilepsy among adults is mesial temporal lobe epilepsy (mTLE), with seizures often originating in the hippocampus due to abnormal electrical activity. The gold standard for the histopathological analysis of mTLE is histology, which is a two-dimensional technique. To fill this gap, we propose complementary three-dimensional (3D) X-ray histology. Herein, we used synchrotron radiation-based phase-contrast microtomography with 1.6 μm-wide voxels for the post mortem visualization of tissue microstructure in an intrahippocampal-kainate mouse model for mTLE. We demonstrated that the 3D X-ray histology of unstained, unsectioned, paraffin-embedded brain hemispheres can identify hippocampal sclerosis through the loss of pyramidal neurons in the first and third regions of the Cornu ammonis as well as granule cell dispersion within the dentate gyrus. Morphology and density changes during epileptogenesis were quantified by segmentations from a deep convolutional neural network. Compared to control mice, the total dentate gyrus volume doubled and the granular layer volume quadrupled 21 days after injecting kainate. Subsequent sectioning of the same mouse brains allowed for benchmarking 3D X-ray histology against well-established histochemical and immunofluorescence stainings. Thus, 3D X-ray histology is a complementary neuroimaging tool to unlock the third dimension for the cellular-resolution histopathological analysis of mTLE.
Collapse
Affiliation(s)
- Griffin Rodgers
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Christos Bikis
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Integrierte Psychiatrie Winterthur-Zürcher Unterland, 8408 Winterthur, Switzerland
| | - Philipp Janz
- Faculty of Medicine, Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79106 Freiburg, Germany
| | - Christine Tanner
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
- Core Facility Micro- and Nanotomography, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Peter Thalmann
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Carola A Haas
- Faculty of Medicine, Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79106 Freiburg, Germany
- Center of Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79114 Freiburg, Germany
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
2
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
3
|
Krivonosov YS, Buzmakov AV, Grigorev MY, Rusakov AA, Dymshits YM, Asadchikov VE. Laboratory Cone-Beam X-Ray MicroCT System. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522070239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|