1
|
Brandão NMCB, Maia RM, Gomes VDM, Resende C, Antunes ANDG, Souki BQ. Bonding positional accuracy of attachments and marginal adaptation of in-house aligners - A quality improvement laboratory study. Orthod Craniofac Res 2024; 27 Suppl 2:120-130. [PMID: 39115443 DOI: 10.1111/ocr.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVES To evaluate the 3D accuracy of attachment positioning and the adaptation of aligners to attachments using in-house templates made with either polyethylene terephthalate glycol (PETG) or ethylene-vinyl acetate (EVA) and either pressure or vacuum thermoforming machines. MATERIALS AND METHODS Overall, 140 test specimens were resin-printed. Templates for the attachment bonding were made with 1-mm EVA or 0.5-mm PETG laminates. Orthodontic aligners were manufactured with 0.75-mm PETG. The thermoplastification process was carried out using either vacuum or pressure machines. The positional differences between the virtual and bonded attachments were assessed in the X, Y and Z coordinates. The marginal adaptation between the aligners and the attachments was measured. RESULTS Minor inaccuracies in the positioning of the attachments were observed in all combinations of thermoforming machines and plastic laminates used to fabricate the templates, mainly in the superior-inferior (Z) dimension. PETG performed better than EVA in the anterior region (p < .05). No association was found between thermoplastification machines and the accuracy of the positioning of the attachments (p > .05). While small misadaptations between the aligners and the attachments were observed, the EVA templates performed better than the PETG templates. CONCLUSIONS The inaccuracy of the attachment positioning and the misadaptation of the aligners to the attachments were slight. The vacuum and pressure thermoplastification machines showed no difference in attachment positioning accuracy. The PETG template was better than the EVA template in the anterior region, but the EVA attachments presented a better adaptation to the aligners than the PETG attachments.
Collapse
Affiliation(s)
| | - Raiane Machado Maia
- Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Carolina Resende
- Department of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
2
|
Sayahpour B, Eslami S, Stuhlfelder J, Bühling S, Dahmer I, Goteni M, Kopp S, Nucci L. Evaluation of thickness of 3D printed versus thermoformed aligners: A prospective in vivo ageing experiment. Orthod Craniofac Res 2024; 27:831-838. [PMID: 38859724 DOI: 10.1111/ocr.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND To compare and investigate the effects of intraoral ageing on the thickness of one group of directly printed and two groups of thermoformed aligners on the labial surface of maxillary central incisors. MATERIALS AND METHODS Six groups (12 samples per group) were included in this prospective in vivo experiment. Groups DP-Clin, INV-Clin and CA-Clin consisted of directly printed (Tera Harz TC-85 DAC resin), thermoformed (Invisalign, PU based polymer) and in house thermoformed (CA-Pro, PET-G based polymer) aligners, retrieved after 1 week of intraoral service. Groups DP-Ctr, INV-Ctr and CA-Ctr included unused aligners samples. Thickness measurements were conducted using confocal laser scanning microscopy (CLSM). Data that underwent log-10 transformation was analysed by multiple linear regression analysis (p < .05). RESULTS Statistically significant differences were found between the materials in both Clin and Ctr categories (p < .001). Group DP had the highest thickness among the groups and the least thickness was observed in the CA group (p < .001). However, intraoral ageing did not significantly affect the aligner thickness of any groups. CONCLUSIONS Both thermoforming and direct printing of clear aligners led to thickness deviations in terms of increase for printed aligners and decrease for thermoformed aligners. Intraoral ageing did not affect the aligner thickness in any of the groups.
Collapse
Affiliation(s)
- Babak Sayahpour
- Department of Orthodontics, Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Sara Eslami
- Department of Orthodontics, Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Jakob Stuhlfelder
- Department of Orthodontics, Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Sarah Bühling
- Department of Orthodontics, Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Iulia Dahmer
- Institute of Biostatistics and Mathematical Modelling, Faculty of Medicine, J. W. Goethe University Frankfurt, Frankfurt am Maine, Germany
| | | | - Stefan Kopp
- Department of Orthodontics, Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
3
|
Nayak AS, H C KK. A comparative study on tensile strength of various thermoplastic polymers sheets following thermoforming on a pre-treatment and post-treatment maxillary model of a patient: an in vitro study. Clin Oral Investig 2024; 28:240. [PMID: 38570397 DOI: 10.1007/s00784-024-05640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES Thermoplastic polymers show alteration in their mechanical properties after thermoforming on a dental model. The purpose of this in-vitro study was to evaluate the tensile strength of different thermoplastic polymer sheets thermoformed on a pre-treatment (moderate crowding) and post-treatment (well-aligned) maxillary model of a patient. MATERIALS AND METHODS Forty maxillary models (Twenty Pre-treatment & twenty Post-treatment of uniform dimension) were made by duplicating them using alginate Hydrogum 5 (Zhermack). Samples were then divided into eight groups of 5 samples each. The thermoplastic sheets Imprelon® (Scheu-Dent), AVAC R® (Jaypee), Placa Crystal® (BioART), EZ-VAC® (3A Medes)-1.0 mm thick were thermoformed on these models respectively. The sample was retrieved using ceramic bur mounted on a straight hand-piece and subjected for testing using TINIUS Olsen 10ST micro universal testing machine and recorded. RESULTS There was no statistically significant difference (P > .05) in tensile strength of thermoformed thermoplastic polymer sheets between pre-treatment and post-treatment maxillary model. Tensile strength of EZ-VAC (3A Medes) showed higher variation between pre-treatment and post-treatment maxillary model though it was found to be statistically insignificant (P > .05). Significant difference (P < .05) was seen between groups when they were compared separately among pre-treatment and post-treatment models. CONCLUSION Placa Crystal (BioART) among the pre-treatment group, EZ - VAC (3A Medes) among the post-treatment group, showed highest tensile strength. CLINICAL RELEVANCE Results of the study highlights the necessity to test materials in conditions which stands in accordance with the clinical scenario to a considerable extent and also emphasizes the need for further study in aligner.
Collapse
Affiliation(s)
- Ashwath S Nayak
- Department of Orthodontics and Dentofacial Orthopedics, Bapuji Dental College and Hospital, Davangere, Karnataka, India, 577004.
| | - Kiran Kumar H C
- Department of Orthodontics and Dentofacial Orthopedics, Bapuji Dental College and Hospital, Davangere, Karnataka, India, 577004
| |
Collapse
|
4
|
Narongdej P, Hassanpour M, Alterman N, Rawlins-Buchanan F, Barjasteh E. Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies. Polymers (Basel) 2024; 16:371. [PMID: 38337260 DOI: 10.3390/polym16030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Clear aligners have revolutionized orthodontic treatment by offering an esthetically driven treatment modality to patients of all ages. Over the past two decades, aligners have been used to treat malocclusions in millions of patients worldwide. The inception of aligner therapy goes back to the 1940s, yet the protocols to fabricate aligners have been continuously evolved. CAD/CAM driven protocol was the latest approach which drastically changed the scalability of aligner fabrication-i.e., aligner mass production manufacturing. 3D printing technology has been adopted in various sectors including dentistry mostly because of the ability to create complex geometric structures at high accuracy while reducing labor and material costs-for the most part. The integration of 3D printing in dentistry has been across, starting in orthodontics and oral surgery and expanding in periodontics, prosthodontics, and oral implantology. Continuous progress in material development has led to improved mechanical properties, biocompatibility, and overall quality of aligners. Consequently, aligners have become less invasive, more cost-effective, and deliver outcomes comparable to existing treatment options. The promise of 3D printed aligners lies in their ability to treat malocclusions effectively while providing esthetic benefits to patients by remaining virtually invisible throughout the treatment process. Herein, this review aims to provide a comprehensive summary of studies regarding direct-3D printing of clear aligners up to the present, outlining all essential properties required in 3D-printed clear aligners and the challenges that need to be addressed. Additionally, the review proposes implementation methods to further enhance the effectiveness of the treatment outcome.
Collapse
Affiliation(s)
- Poom Narongdej
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA
| | - Mana Hassanpour
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| | - Nicolas Alterman
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| | | | - Ehsan Barjasteh
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
5
|
Park SY, Choi SH, Yu HS, Kim SJ, Kim H, Kim KB, Cha JY. Comparison of translucency, thickness, and gap width of thermoformed and 3D-printed clear aligners using micro-CT and spectrophotometer. Sci Rep 2023; 13:10921. [PMID: 37407694 DOI: 10.1038/s41598-023-36851-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
The present study compared the thickness and gap width of thermoformed and 3D-printed clear aligners (CAs) using micro-computed tomography (micro-CT) and evaluated their translucency using spectrophotometer. Four groups of CAs were tested: thermoformed with polyethylene terephthalate glycol (TS) or copolyester-elastomer combination (TM), and 3D-printed TC-85 cleaned with alcohol (PA) or with centrifuge (PC). CIELab coordinates were measured (n = 10) to evaluate translucency. CAs (n = 10) were fitted onto respective models and micro-CT was performed to evaluate the thickness and gap width. Thickness and gap width were measured for different tooth type and location in sagittal sections on all sides. The PC group showed significantly higher translucency than the PA group, which was similar to the TS and TM groups (p < 0.01). After the manufacturing process, thickness reduction was observed in the thermoformed groups, whereas thickness increase was observed in the 3D printed-groups. The TM group showed the least gap width amongst the groups (p < 0.01). Thermoformed and 3D-printed CAs had significantly varied thicknesses and regions of best fit depending on the tooth type and location. Differences in the translucency and thickness of the 3D-printed CAs were observed depending on the cleaning methods.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Orthodontics, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Institute for Innovation in Digital Healthcare, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Institute for Innovation in Digital Healthcare, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Su-Jung Kim
- Department of Orthodontics, Kyung Hee University School of Dentistry, Seoul, South Korea
| | - Hoon Kim
- Laboratory of Adhesion & Bio-Composites, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Ki Beom Kim
- Department of Orthodontics, Saint Louis University, Saint Louis, MO, USA
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Institute for Innovation in Digital Healthcare, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|