1
|
Flores FJ, Dalla Betta I, Tauber J, Schreier DR, Stephen EP, Wilson MA, Brown EN. Electrographic seizures during low-current thalamic deep brain stimulation in mice. Brain Stimul 2024; 17:975-979. [PMID: 39134207 PMCID: PMC11575467 DOI: 10.1016/j.brs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Deep brain stimulation of the central thalamus (CT-DBS) has potential for modulating states of consciousness, but it can also trigger electrographic seizures, including poly-spike-wave trains (PSWT). OBJECTIVES To report the probability of inducing PSWTs during CT-DBS in awake, freely-moving mice. METHODS Mice were implanted with electrodes to deliver unilateral and bilateral CT-DBS at different frequencies while recording electroencephalogram (EEG). We titrated stimulation current by gradually increasing it at each frequency until a PSWT appeared. Subsequent stimulations to test arousal modulation were performed at the current one step below the current that caused a PSWT during titration. RESULTS In 2.21% of the test stimulations (10 out of 12 mice), CT-DBS caused PSWTs at currents lower than the titrated current, including currents as low as 20 μA. CONCLUSION Our study found a small but significant probability of inducing PSWTs even after titration and at relatively low currents. EEG should be closely monitored for electrographic seizures when performing CT-DBS in both research and clinical settings.
Collapse
Affiliation(s)
- Francisco J Flores
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, 02114, MA, USA; Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, 02139, MA, USA; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, 02139, MA, USA.
| | - Isabella Dalla Betta
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, 02114, MA, USA; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, 02139, MA, USA.
| | - John Tauber
- Department of Mathematics and Statistics, Boston University, 665 Commonwealth Ave, Boston, 02215, MA, USA.
| | - David R Schreier
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, 02114, MA, USA; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, 02139, MA, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac St, Boston, 02114, MA, USA; Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse 16, Bern, 3010, Switzerland.
| | - Emily P Stephen
- Department of Mathematics and Statistics, Boston University, 665 Commonwealth Ave, Boston, 02215, MA, USA.
| | - Matthew A Wilson
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, 02139, MA, USA; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, 02139, MA, USA.
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, 02114, MA, USA; Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, 02139, MA, USA; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, 02139, MA, USA; Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, 45 Carleton St, Cambridge, 02142, MA, USA.
| |
Collapse
|
2
|
Eitelmann S, Stephan J, Everaerts K, Durry S, Pape N, Gerkau NJ, Rose CR. Changes in Astroglial K + upon Brief Periods of Energy Deprivation in the Mouse Neocortex. Int J Mol Sci 2022; 23:ijms23094836. [PMID: 35563238 PMCID: PMC9102782 DOI: 10.3390/ijms23094836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Malfunction of astrocytic K+ regulation contributes to the breakdown of extracellular K+ homeostasis during ischemia and spreading depolarization events. Studying astroglial K+ changes is, however, hampered by a lack of suitable techniques. Here, we combined results from fluorescence imaging, ion-selective microelectrodes, and patch-clamp recordings in murine neocortical slices with the calculation of astrocytic [K+]. Brief chemical ischemia caused a reversible ATP reduction and a transient depolarization of astrocytes. Moreover, astrocytic [Na+] increased by 24 mM and extracellular [Na+] decreased. Extracellular [K+] increased, followed by an undershoot during recovery. Feeding these data into the Goldman-Hodgkin-Katz equation revealed a baseline astroglial [K+] of 146 mM, an initial K+ loss by 43 mM upon chemical ischemia, and a transient K+ overshoot of 16 mM during recovery. It also disclosed a biphasic mismatch in astrocytic Na+/K+ balance, which was initially ameliorated, but later aggravated by accompanying changes in pH and bicarbonate, respectively. Altogether, our study predicts a loss of K+ from astrocytes upon chemical ischemia followed by a net gain. The overshooting K+ uptake will promote low extracellular K+ during recovery, likely exerting a neuroprotective effect. The resulting late cation/anion imbalance requires additional efflux of cations and/or influx of anions, the latter eventually driving delayed astrocyte swelling.
Collapse
|
3
|
Low LE, Wang Q, Chen Y, Lin P, Yang S, Gong L, Lee J, Siva SP, Goh BH, Li F, Ling D. Microenvironment-tailored nanoassemblies for the diagnosis and therapy of neurodegenerative diseases. NANOSCALE 2021; 13:10197-10238. [PMID: 34027535 DOI: 10.1039/d1nr02127c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/12/2023]
Abstract
Neurodegenerative disorder is an illness involving neural dysfunction/death attributed to complex pathological processes, which eventually lead to the mortality of the host. It is generally recognized through features such as mitochondrial dysfunction, protein aggregation, oxidative stress, metal ions dyshomeostasis, membrane potential change, neuroinflammation and neurotransmitter impairment. The aforementioned neuronal dysregulations result in the formation of a complex neurodegenerative microenvironment (NME), and may interact with each other, hindering the performance of therapeutics for neurodegenerative disease (ND). Recently, smart nanoassemblies prepared from functional nanoparticles, which possess the ability to interfere with different NME factors, have shown great promise to enhance the diagnostic and therapeutic efficacy of NDs. Herein, this review highlights the recent advances of stimuli-responsive nanoassemblies that can effectively combat the NME for the management of ND. The first section outlined the NME properties and their interrelations that are exploitable for nanoscale targeting. The discussion is then extended to the controlled assembly of functional nanoparticles for the construction of stimuli-responsive nanoassemblies. Further, the applications of stimuli-responsive nanoassemblies for the enhanced diagnosis and therapy of ND are introduced. Finally, perspectives on the future development of NME-tailored nanomedicines are given.
Collapse
Affiliation(s)
- Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Qiyue Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Linji Gong
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Sangeetaprivya P Siva
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey-Hing Goh
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China and National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
4
|
Pfeiffer T, Li Y, Attwell D. Diverse mechanisms regulating brain energy supply at the capillary level. Curr Opin Neurobiol 2021; 69:41-50. [PMID: 33485189 DOI: 10.1016/j.conb.2020.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2020] [Revised: 11/28/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Neural information processing depends critically on the brain's energy supply, which is provided in the form of glucose and oxygen in the blood. Regulation of this supply occurs by smooth muscle and contractile pericytes adjusting the diameter of arterioles and capillaries, respectively. Controversies exist over the relative importance of capillary and arteriolar level control, whether enzymatically generated signals or K+ ions are the dominant controller of cerebral blood flow, and the involvement of capillary endothelial cells. Here, we try to synthesise the relevant recent data into a coherent view of how brain energy supply is controlled and suggest approaches to answering key questions.
Collapse
Affiliation(s)
- Thomas Pfeiffer
- Department of Neuroscience, Physiology & Pharmacology, University College London Gower Street, London, WC1E 6BT, UK.
| | - Yuening Li
- Department of Neuroscience, Physiology & Pharmacology, University College London Gower Street, London, WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Wei M, Lin P, Chen Y, Lee JY, Zhang L, Li F, Ling D. Applications of ion level nanosensors for neuroscience research. Nanomedicine (Lond) 2020; 15:2871-2881. [PMID: 33252311 DOI: 10.2217/nnm-2020-0320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
Ion activities are tightly associated with brain physiology, such as intracranial cell membrane potential, neural activity and neuropathology. Thus, monitoring the ion levels in the brain is of great significance in neuroscience research. Recently, nanosensors have emerged as powerful tools for monitoring brain ion levels and dynamics. With controllable structures and functions, nanosensors have been intensively used for monitoring neural activity and cell function and can be used in disease diagnosis. Here, we summarize the recent advances in the design and application of ion level nanosensors at different physiological levels, aiming to draw a connection of the interrelated intracranial ion activities. Furthermore, perspectives on the rationally designed ion level nanosensors in understanding the brain functions are highlighted.
Collapse
Affiliation(s)
- Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ji Young Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Tang Q, Tsytsarev V, Yan F, Wang C, Erzurumlu RS, Chen Y. In vivo voltage-sensitive dye imaging of mouse cortical activity with mesoscopic optical tomography. NEUROPHOTONICS 2020; 7:041402. [PMID: 33274250 PMCID: PMC7708784 DOI: 10.1117/1.nph.7.4.041402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/16/2020] [Accepted: 11/11/2020] [Indexed: 05/11/2023]
Abstract
Significance: Cellular layering is a hallmark of the mammalian neocortex with layer and cell type-specific connections within the cortical mantle and subcortical connections. A key challenge in studying circuit function within the neocortex is to understand the spatial and temporal patterns of information flow between different columns and layers. Aim: We aimed to investigate the three-dimensional (3D) layer- and area-specific interactions in mouse cortex in vivo. Approach: We applied a new promising neuroimaging method-fluorescence laminar optical tomography in combination with voltage-sensitive dye imaging (VSDi). VSDi is a powerful technique for interrogating membrane potential dynamics in assemblies of cortical neurons, but it is traditionally used for two-dimensional (2D) imaging. Our mesoscopic technique allows visualization of neuronal activity in a 3D manner with high temporal resolution. Results: We first demonstrated the depth-resolved capability of 3D mesoscopic imaging technology in Thy1-ChR2-YFP transgenic mice. Next, we recorded the long-range functional projections between sensory cortex (S1) and motor cortex (M1) in mice, in vivo, following single whisker deflection. Conclusions: The results show that mesoscopic imaging technique has the potential to investigate the layer-specific neural connectivity in the mouse cortex in vivo. Combination of mesoscopic imaging technique with optogenetic control strategy is a promising platform for determining depth-resolved interactions between cortical circuit elements.
Collapse
Affiliation(s)
- Qinggong Tang
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
- Address all correspondence to Qinggong Tang, ; Reha S. Erzurumlu, ; Yu Chen,
| | - Vassiliy Tsytsarev
- University of Maryland School of Medicine, Department of Anatomy and Neurobiology, Baltimore, Maryland, United States
| | - Feng Yan
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
| | - Chen Wang
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
| | - Reha S. Erzurumlu
- University of Maryland School of Medicine, Department of Anatomy and Neurobiology, Baltimore, Maryland, United States
- Address all correspondence to Qinggong Tang, ; Reha S. Erzurumlu, ; Yu Chen,
| | - Yu Chen
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
- University of Massachusetts, Department of Biomedical Engineering, Amherst, Massachusetts, United States
- Address all correspondence to Qinggong Tang, ; Reha S. Erzurumlu, ; Yu Chen,
| |
Collapse
|
7
|
Liu J, Li F, Wang Y, Pan L, Lin P, Zhang B, Zheng Y, Xu Y, Liao H, Ko G, Fei F, Xu C, Du Y, Shin K, Kim D, Jang SS, Chung HJ, Tian H, Wang Q, Guo W, Nam JM, Chen Z, Hyeon T, Ling D. A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. NATURE NANOTECHNOLOGY 2020; 15:321-330. [PMID: 32042163 DOI: 10.1038/s41565-020-0634-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/06/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Extracellular potassium concentration affects the membrane potential of neurons, and, thus, neuronal activity. Indeed, alterations of potassium levels can be related to neurological disorders, such as epilepsy and Alzheimer's disease, and, therefore, selectively detecting extracellular potassium would allow the monitoring of disease. However, currently available optical reporters are not capable of detecting small changes in potassium, in particular, in freely moving animals. Furthermore, they are susceptible to interference from sodium ions. Here, we report a highly sensitive and specific potassium nanosensor that can monitor potassium changes in the brain of freely moving mice undergoing epileptic seizures. An optical potassium indicator is embedded in mesoporous silica nanoparticles, which are shielded by an ultrathin layer of a potassium-permeable membrane, which prevents diffusion of other cations and allows the specific capturing of potassium ions. The shielded nanosensor enables the spatial mapping of potassium ion release in the hippocampus of freely moving mice.
Collapse
Affiliation(s)
- Jianan Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Fangyuan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Limin Pan
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Peihua Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yanrong Zheng
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingwei Xu
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongwei Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Giho Ko
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Fan Fei
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Kwangsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, Republic of Korea
| | - Sung-Soo Jang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - He Tian
- Center of Electron Microscope, State Key Laboratory of Silicon Material, School of Material Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Wei Guo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
| | - Daishun Ling
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Science, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Liu J, Pan L, Shang C, Lu B, Wu R, Feng Y, Chen W, Zhang R, Bu J, Xiong Z, Bu W, Du J, Shi J. A highly sensitive and selective nanosensor for near-infrared potassium imaging. SCIENCE ADVANCES 2020; 6:eaax9757. [PMID: 32494594 PMCID: PMC7164935 DOI: 10.1126/sciadv.aax9757] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/08/2019] [Accepted: 01/24/2020] [Indexed: 05/19/2023]
Abstract
Potassium ion (K+) concentration fluctuates in various biological processes. A number of K+ probes have been developed to monitor such fluctuations through optical imaging. However, the currently available K+ probes are far from being sensitive enough in detecting physiological fluctuations in living animals. Furthermore, the monitoring of deep tissues is not applicable because of short-wavelength excitation prevailingly used so far. Here, we report a highly sensitive and selective nanosensor for near-infrared (NIR) K+ imaging in living cells and animals. The nanosensor is constructed by encapsulating upconversion nanoparticles (UCNPs) and a commercial K+ indicator in the hollow cavity of mesoporous silica nanoparticles, followed by coating a K+-selective filter membrane. The membrane adsorbs K+ from the medium and filters out interfering cations. The UCNPs convert NIR to ultraviolet light, which excites the K+ indicator, thus allowing the detection of the fluctuations of K+ concentration in cultured cells and intact mouse brains.
Collapse
Affiliation(s)
- Jianan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Limin Pan
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chunfeng Shang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- Brain Disease and Cognitive Science Research Center, Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen 518060, China
- Shenzhen Institute of Neuroscience, Shenzhen 518057, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, China
| | - Bin Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rongjie Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiyu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Rongwei Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiwen Bu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiqi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
- Corresponding author. (J.D.); (W.B.); (Z.X.); (J.S.)
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Corresponding author. (J.D.); (W.B.); (Z.X.); (J.S.)
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
- Corresponding author. (J.D.); (W.B.); (Z.X.); (J.S.)
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Corresponding author. (J.D.); (W.B.); (Z.X.); (J.S.)
| |
Collapse
|
9
|
Kwon J, Ko S, Lee J, Na J, Sung J, Lee HJ, Lee S, Chung S, Choi HJ. Nanoelectrode-mediated single neuron activation. NANOSCALE 2020; 12:4709-4718. [PMID: 32049079 DOI: 10.1039/c9nr10559j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Elucidating cellular dynamics at the level of a single neuron and its associated role within neuronal circuits is essential for interpreting the complex nature of the brain. To investigate the operation of neural activity within its network, it is necessary to precisely manipulate the activation of each neuron and verify its propagation path via the synaptic connection. In this study, by exploiting the intrinsic physical and electrical advantages of a nanoelectrode, a vertical nanowire multi electrode array (VNMEA) is developed as a neuronal activation platform presenting the spatially confined effect on the intracellular space of individual cells. VNMEA makes a distinct difference between the interior and exterior cell potential and the current density, deriving the superior effects on activating Ca2+ responses compared to extracellular methods under the same conditions, with about 2.9-fold higher amplitude of Ca2+ elevation and a 2.6-fold faster recovery rate. Moreover, the synchronized propagation of evoked activities is shown in connected neurons implying cell-to-cell communications following the intracellular stimulation. The simulation and experimental consequences prove the outstanding property of temporal/spatial confinement of VNMEA-mediated intracellular stimulation to activate a single neuron and show its potential in localizing spiking neurons within neuronal populations, which may be utilized to reveal the connection and activation modalities of neural networks.
Collapse
Affiliation(s)
- Juyoung Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sukjin Ko
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jaejun Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jukwan Na
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jaesuk Sung
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hyo-Jung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Seonghyeon Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Seungsoo Chung
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Heon-Jin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Breithausen B, Kautzmann S, Boehlen A, Steinhäuser C, Henneberger C. Limited contribution of astroglial gap junction coupling to buffering of extracellular K + in CA1 stratum radiatum. Glia 2019; 68:918-931. [PMID: 31743499 DOI: 10.1002/glia.23751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
Astrocytes form large networks, in which individual cells are connected via gap junctions. It is thought that this astroglial gap junction coupling contributes to the buffering of extracellular K+ increases. However, it is largely unknown how the control of extracellular K+ by astroglial gap junction coupling depends on the underlying activity patterns and on the magnitude of extracellular K+ increases. We explored this dependency in acute hippocampal slices (CA1, stratum radiatum) by direct K+ -sensitive microelectrode recordings and acute pharmacological inhibition of gap junctions. K+ transients evoked by synaptic and axonal activity were largely unaffected by acute astroglial uncoupling in slices obtained from young and adult rats. Iontophoretic K+ -application enabled us to generate K+ gradients with defined spatial properties and magnitude. By varying the K+ -iontophoresis position and protocol, we found that acute pharmacological uncoupling increases the amplitude of K+ transients once their initial amplitude exceeded ~10 mM. Our experiments demonstrate that the contribution of gap junction coupling to buffering of extracellular K+ gradients is limited to large and localized K+ increases.
Collapse
Affiliation(s)
- Björn Breithausen
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Steffen Kautzmann
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Anne Boehlen
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,Institute of Neurology, University College London, London, UK.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
11
|
Smith ES, Porterfield JE, Kannan RM. Leveraging the interplay of nanotechnology and neuroscience: Designing new avenues for treating central nervous system disorders. Adv Drug Deliv Rev 2019; 148:181-203. [PMID: 30844410 PMCID: PMC7043366 DOI: 10.1016/j.addr.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology has the potential to open many novel diagnostic and treatment avenues for disorders of the central nervous system (CNS). In this review, we discuss recent developments in the applications of nanotechnology in CNS therapies, diagnosis and biology. Novel approaches for the diagnosis and treatment of neuroinflammation, brain dysfunction, psychiatric conditions, brain cancer, and nerve injury provide insights into the potential of nanomedicine. We also highlight nanotechnology-enabled neuroscience techniques such as electrophysiology and intracellular sampling to improve our understanding of the brain and its components. With nanotechnology integrally involved in the advancement of basic neuroscience and the development of novel treatments, combined diagnostic and therapeutic applications have begun to emerge. Nanotheranostics for the brain, able to achieve single-cell resolution, will hasten the rate in which we can diagnose, monitor, and treat diseases. Taken together, the recent advances highlighted in this review demonstrate the prospect for significant improvements to clinical diagnosis and treatment of a vast array of neurological diseases. However, it is apparent that a strong dialogue between the nanoscience and neuroscience communities will be critical for the development of successful nanotherapeutics that move to the clinic, benefit patients, and address unmet needs in CNS disorders.
Collapse
Affiliation(s)
- Elizabeth S Smith
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Calibration and characterization of intracellular Asante Potassium Green probes, APG-2 and APG-4. Anal Biochem 2018; 567:8-13. [PMID: 30503709 DOI: 10.1016/j.ab.2018.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022]
Abstract
The response of fluorescent ion probes to ions is affected by intracellular environment. To properly calibrate them, intracellular and extracellular concentrations of the measured ion must be made equal. In the first, computational, part of this work, we show, using the example of potassium, that the two requirements for ion equilibration are complete dissipation of membrane potential and high membrane permeability for both potassium and sodium. In the second part, we tested the ability of various ionophores to achieve potassium equilibration in Jurkat and U937 cells and found a combination of valinomycin, nigericin, gramicidin and ouabain to be the most effective. In the third part, we applied this protocol to two potassium probes, APG-4 and APG-2. APG-4 shows good sensitivity to potassium but its fluorescence is sensitive to cell volume. Because ionophores cause cell swelling, calibration buffers had to be supplemented with 50 mM sucrose to keep cell volume constant. With these precautions taken, the average potassium concentrations in U937 and Jurkat cells were measured at 132 mM and 118 mM, respectively. The other tested probe, APG-2, is nonselective for cations; this is, however, a potentially useful property because the sum [K+] + [Na+] determines the amount of intracellular water.
Collapse
|
13
|
Del Bonis-O’Donnell JT, Chio L, Dorlhiac GF, McFarlane IR, Landry MP. Advances in Nanomaterials for Brain Microscopy. NANO RESEARCH 2018; 11:5144-5172. [PMID: 31105899 PMCID: PMC6516768 DOI: 10.1007/s12274-018-2145-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/16/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 05/19/2023]
Abstract
Microscopic imaging of the brain continues to reveal details of its structure, connectivity, and function. To further improve our understanding of the emergent properties and functions of neural circuits, new methods are necessary to directly visualize the relationship between brain structure, neuron activity, and neurochemistry. Advances in engineering the chemical and optical properties of nanomaterials concurrent with developments in deep-tissue microscopy hold tremendous promise for overcoming the current challenges associated with in vivo brain imaging, particularly for imaging the brain through optically-dense brain tissue, skull, and scalp. To this end, developments in nanomaterials offer much promise toward implementing tunable chemical functionality for neurochemical targeting and sensing, and fluorescence stability for long-term imaging. In this review, we summarize current brain microscopy methods and describe the diverse classes of nanomaterials recently leveraged as contrast agents and functional probes for microscopic optical imaging of the brain.
Collapse
Affiliation(s)
| | - Linda Chio
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Gabriel F Dorlhiac
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Ian R McFarlane
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Innovative Genomics Institute (IGI), Berkeley, CA 94720
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
- Chan-Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
14
|
Lossi L, Merighi A. The Use of ex Vivo Rodent Platforms in Neuroscience Translational Research With Attention to the 3Rs Philosophy. Front Vet Sci 2018; 5:164. [PMID: 30073174 PMCID: PMC6060265 DOI: 10.3389/fvets.2018.00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
The principles of the 3Rs—Replacement, Reduction, and Refinement—are at the basis of most advanced national and supranational (EU) regulations on animal experimentation and welfare. In the perspective to reduce and refine the use of these animals in translational research, we here discuss the use of rodent acute and organotypically cultured central nervous system slices. We describe novel applications of these ex vivo platforms in medium-throughput screening of neuroactive molecules of potential pharmacological interest, with particular attention to more recent developments that permit to fully exploit the potential of direct genetic engineering of organotypic cultures using transfection techniques. We then describe the perspectives for expanding the use ex vivo platforms in neuroscience studies under the 3Rs philosophy using the following approaches: (1) Use of co-cultures of two brain regions physiologically connected to each other (source-target) to analyze axon regeneration and reconstruction of circuitries; (2) Microinjection or co-cultures of primary cells and/or cell lines releasing one or more neuroactive molecules to screen their physiological and/or pharmacological effects onto neuronal survival and slice circuitry. Microinjected or co-cultured cells are ideally made fluorescent after transfection with a plasmid construct encoding green or red fluorescent protein under the control of a general promoter such as hCMV; (3) Use of “sniffer” cells sensing the release of biologically active molecules from organotypic cultures by means of fluorescent probes. These cells can be prepared with activatable green fluorescent protein, a unique chromophore that remains in a “dark” state because its maturation is inhibited, and can be made fluorescent (de-quenched) if specific cellular enzymes, such as proteases or kinases, are activated.
Collapse
Affiliation(s)
- Laura Lossi
- Laboratory of Neurobiology, Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Adalberto Merighi
- Laboratory of Neurobiology, Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Bischof H, Rehberg M, Stryeck S, Artinger K, Eroglu E, Waldeck-Weiermair M, Gottschalk B, Rost R, Deak AT, Niedrist T, Vujic N, Lindermuth H, Prassl R, Pelzmann B, Groschner K, Kratky D, Eller K, Rosenkranz AR, Madl T, Plesnila N, Graier WF, Malli R. Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nat Commun 2017; 8:1422. [PMID: 29127288 PMCID: PMC5681659 DOI: 10.1038/s41467-017-01615-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023] Open
Abstract
Changes in intra- and extracellular potassium ion (K+) concentrations control many important cellular processes and related biological functions. However, our current understanding of the spatiotemporal patterns of physiological and pathological K+ changes is severely limited by the lack of practicable detection methods. We developed K+-sensitive genetically encoded, Förster resonance energy transfer-(FRET) based probes, called GEPIIs, which enable quantitative real-time imaging of K+ dynamics. GEPIIs as purified biosensors are suitable to directly and precisely quantify K+ levels in different body fluids and cell growth media. GEPIIs expressed in cells enable time-lapse and real-time recordings of global and local intracellular K+ signals. Hitherto unknown Ca2+-triggered, organelle-specific K+ changes were detected in pancreatic beta cells. Recombinant GEPIIs also enabled visualization of extracellular K+ fluctuations in vivo with 2-photon microscopy. Therefore, GEPIIs are relevant for diverse K+ assays and open new avenues for live-cell K+ imaging. K+ plays an important role in physiology and disease, but the lack of high specificity K+ sensors limits our understanding of its spatiotemporal dynamics. Here the authors develop genetically-encoded FRET-based probes able to quantify K+ concentration in body fluids, cells and specific organelles.
Collapse
Affiliation(s)
- Helmut Bischof
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Markus Rehberg
- Ludwig-Maximilians University (LMU), Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Sarah Stryeck
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Katharina Artinger
- Clinical Division of Nephrology, Medical University of Graz, Auenbruggerplatz 27, 8036, Graz, Austria
| | - Emrah Eroglu
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Benjamin Gottschalk
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Rene Rost
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Andras T Deak
- Clinical Division of Nephrology, Medical University of Graz, Auenbruggerplatz 27, 8036, Graz, Austria
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 27, 8036, Graz, Austria
| | - Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Hanna Lindermuth
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
| | - Brigitte Pelzmann
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
| | - Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Medical University of Graz, Auenbruggerplatz 27, 8036, Graz, Austria
| | - Alexander R Rosenkranz
- Clinical Division of Nephrology, Medical University of Graz, Auenbruggerplatz 27, 8036, Graz, Austria
| | - Tobias Madl
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Nikolaus Plesnila
- Ludwig-Maximilians University (LMU), Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria. .,BioTechMed-Graz, Graz, Austria.
| |
Collapse
|