1
|
Klein F, Kohl SH, Lührs M, Mehler DMA, Sorger B. From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230087. [PMID: 39428887 PMCID: PMC11513164 DOI: 10.1098/rstb.2023.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobility-the latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potential-the targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS—Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Simon H. Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute of Translational Psychiatry, Medical Faculty, University of Münster, Münster, Germany
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Klein F. Optimizing spatial specificity and signal quality in fNIRS: an overview of potential challenges and possible options for improving the reliability of real-time applications. FRONTIERS IN NEUROERGONOMICS 2024; 5:1286586. [PMID: 38903906 PMCID: PMC11188482 DOI: 10.3389/fnrgo.2024.1286586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
The optical brain imaging method functional near-infrared spectroscopy (fNIRS) is a promising tool for real-time applications such as neurofeedback and brain-computer interfaces. Its combination of spatial specificity and mobility makes it particularly attractive for clinical use, both at the bedside and in patients' homes. Despite these advantages, optimizing fNIRS for real-time use requires careful attention to two key aspects: ensuring good spatial specificity and maintaining high signal quality. While fNIRS detects superficial cortical brain regions, consistently and reliably targeting specific regions of interest can be challenging, particularly in studies that require repeated measurements. Variations in cap placement coupled with limited anatomical information may further reduce this accuracy. Furthermore, it is important to maintain good signal quality in real-time contexts to ensure that they reflect the true underlying brain activity. However, fNIRS signals are susceptible to contamination by cerebral and extracerebral systemic noise as well as motion artifacts. Insufficient real-time preprocessing can therefore cause the system to run on noise instead of brain activity. The aim of this review article is to help advance the progress of fNIRS-based real-time applications. It highlights the potential challenges in improving spatial specificity and signal quality, discusses possible options to overcome these challenges, and addresses further considerations relevant to real-time applications. By addressing these topics, the article aims to help improve the planning and execution of future real-time studies, thereby increasing their reliability and repeatability.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS - Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Chai W, Zhang P, Zhang X, Wu J, Chen C, Li F, Xie X, Shi G, Liang J, Zhu C, Dong M. Feasibility study of functional near-infrared spectroscopy in the ventral visual pathway for real-life applications. NEUROPHOTONICS 2024; 11:015002. [PMID: 38192584 PMCID: PMC10773254 DOI: 10.1117/1.nph.11.1.015002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Significance fNIRS-based neuroenhancement depends on the feasible detection of hemodynamic responses in target brain regions. Using the lateral occipital complex (LOC) and the fusiform face area (FFA) in the ventral visual pathway as neurofeedback targets boosts performance in visual recognition. However, the feasibility of utilizing fNIRS to detect LOC and FFA activity in adults remains to be validated as the depth of these regions may exceed the detection limit of fNIRS. Aim This study aims to investigate the feasibility of using fNIRS to measure hemodynamic responses in the ventral visual pathway, specifically in the LOC and FFA, in adults. Approach We recorded the hemodynamic activities of the LOC and FFA regions in 35 subjects using a portable eight-channel fNIRS instrument. A standard one-back object and face recognition task was employed to elicit selective brain responses in the LOC and FFA regions. The placement of fNIRS optodes for LOC and FFA detection was guided by our group's transcranial brain atlas (TBA). Results Our findings revealed selective activation of the LOC target channel (CH2) in response to objects, whereas the FFA target channel (CH7) did not exhibit selective activation in response to faces. Conclusions Our findings indicate that, although fNIRS detection has limitations in capturing FFA activity, the LOC region emerges as a viable target for fNIRS-based detection. Furthermore, our results advocate for the adoption of the TBA-based method for setting the LOC target channel, offering a promising solution for optrode placement. This feasibility study stands as the inaugural validation of fNIRS for detecting cortical activity in the ventral visual pathway, underscoring its ecological validity. We suggest that our findings establish a pivotal technical groundwork for prospective real-life applications of fNIRS-based research.
Collapse
Affiliation(s)
- Weilu Chai
- Xidian University, School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, Xi'an, China
- Xidian University, School of Life Science and Technology, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xi'an, China
- Xidian University, School of Artificial Intelligence, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xi'an, China
| | - Peiming Zhang
- Xidian University, School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, Xi'an, China
- Xidian University, School of Life Science and Technology, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xi'an, China
| | - Xiaoyan Zhang
- Xidian University, School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, Xi'an, China
- Xidian University, School of Life Science and Technology, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xi'an, China
| | - Jia Wu
- Northwestern Polytechnical University, School of Foreign Languages, Xi'an, China
| | - Chao Chen
- PLA Funding Payment Center, Beijing, China
| | - Fu Li
- Xidian University, School of Artificial Intelligence, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xi'an, China
| | - Xuemei Xie
- Xidian University, School of Artificial Intelligence, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xi'an, China
| | - Guangming Shi
- Xidian University, School of Artificial Intelligence, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xi'an, China
| | - Jimin Liang
- Xidian University, School of Electronics and Engineering, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xi'an, China
| | - Chaozhe Zhu
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Minghao Dong
- Xidian University, School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, Xi'an, China
- Xidian University, School of Life Science and Technology, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xi'an, China
- Xidian University, School of Artificial Intelligence, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xi'an, China
| |
Collapse
|
4
|
Nishimoto R, Fujiwara S, Kutoku Y, Ogata T, Mihara M. Effect of dual-task interaction combining postural and visual perturbations on cortical activity and postural control ability. Neuroimage 2023; 280:120352. [PMID: 37648121 DOI: 10.1016/j.neuroimage.2023.120352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/27/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
Previous studies have suggested cortical involvement in postural control in humans by measuring cortical activities and conducting dual-task paradigms. In dual-task paradigms, task performance deteriorates and can be facilitated in specific dual-task settings. Theoretical frameworks explaining these dual-task interactions have been proposed and debated for decades. Therefore, we investigated postural control performance under different visual conditions using a virtual reality system, simultaneously measuring cortical activities with a functional near-infrared spectroscopy system. Twenty-four healthy participants were included in this study. Postural stability and cortical activities after perturbations were measured under several conditions consisting of postural and visual perturbations. The results showed that concurrent visual and postural perturbations could facilitate cortical activities in the supplementary motor area and superior parietal lobe. Additionally, visual distractors deteriorated postural control ability and cortical activation of the supplementary motor area. These findings supported the theoretical framework of the "Cross talk model", in which concurrent tasks using similar neural domains can facilitate these task performances. Furthermore, it indicated that the cortical resource capacity and domains activated for information processing should be considered in experiments involving dual-task paradigms and training.
Collapse
Affiliation(s)
- Ryoki Nishimoto
- Department of Neurology, Kawasaki Medical School, Okayama 701-0192, Japan; Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Sayaka Fujiwara
- Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yumiko Kutoku
- Department of Neurology, Kawasaki Medical School, Okayama 701-0192, Japan
| | - Toru Ogata
- Department of Rehabilitation Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Okayama 701-0192, Japan.
| |
Collapse
|
5
|
Godet A, Serrand Y, Fortier A, Léger B, Bannier E, Val-Laillet D, Coquery N. Subjective feeling of control during fNIRS-based neurofeedback targeting the DL-PFC is related to neural activation determined with short-channel correction. PLoS One 2023; 18:e0290005. [PMID: 37585456 PMCID: PMC10431651 DOI: 10.1371/journal.pone.0290005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Neurofeedback (NF) training is a promising preventive and therapeutic approach for brain and behavioral impairments, the dorsolateral prefrontal cortex (DL-PFC) being a relevant region of interest. Functional near-infrared spectroscopy (NIRS) has recently been applied in NF training. However, this approach is highly sensitive to extra-cerebral vascularization, which could bias measurements of cortical activity. Here, we examined the feasibility of a NF training targeting the DL-PFC and its specificity by assessing the impact of physiological confounds on NF success via short-channel offline correction under different signal filtering conditions. We also explored whether the individual mental strategies affect the NF success. Thirty volunteers participated in a single 15-trial NF session in which they had to increase the oxy-hemoglobin (HbO2) level of their bilateral DL-PFC. We found that 0.01-0.09 Hz band-pass filtering was more suited than the 0.01-0.2 Hz band-pass filter to highlight brain activation restricted to the NF channels in the DL-PFC. Retaining the 10 out of 15 best trials, we found that 18 participants (60%) managed to control their DL-PFC. This number dropped to 13 (43%) with short-channel correction. Half of the participants reported a positive subjective feeling of control, and the "cheering" strategy appeared to be more effective in men (p<0.05). Our results showed successful DL-PFC fNIRS-NF in a single session and highlighted the value of accounting for extra cortical signals, which can profoundly affect the success and specificity of NF training.
Collapse
Affiliation(s)
- Ambre Godet
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Yann Serrand
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Alexandra Fortier
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Brieuc Léger
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Elise Bannier
- Inria, CRNS, Inserm, IRISA UMR 6074, Empenn U1228, Univ Rennes, Rennes, France
- CHU Rennes, Radiology Department, Rennes, France
| | - David Val-Laillet
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Nicolas Coquery
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| |
Collapse
|
6
|
Sawai S, Fujikawa S, Ohsumi C, Ushio R, Tamura K, Yamamoto R, Kai Y, Murata S, Shima K, Nakano H. Effects of neurofeedback on standing postural control task with combined imagined and executed movements. Front Neurosci 2023; 17:1199398. [PMID: 37483338 PMCID: PMC10360181 DOI: 10.3389/fnins.2023.1199398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Motor imagery (MI) is a method of imagining movement without actual movement, and its use in combination with motor execution (ME) enhances the effects of motor learning. Neurofeedback (NFB) is another method that promotes the effects of MI. This study aimed to investigate the effects of NFB on combined MI and ME (MIME) training in a standing postural control task. Methods Sixteen participants were randomly divided into MIME and MIME + NFB groups and performed 10 trials of a postural control task on an unstable board, with nine trials of MI in between. Electroencephalogram was assessed during MI, and the MIME + NFB group received neurofeedback on the degree of MI via auditory stimulation. A postural control task using an unstable board was performed before and after the MIME task, during which postural instability was evaluated. Results Postural instability was reduced after the MIME task in both groups. In addition, the root mean square, which indicates the sway of the unstable board, was significantly reduced in the MIME + NFB group compared to that in the MIME group. Conclusion Our results indicate that MIME training is effective for motor learning of standing postural control. Furthermore, when MI and ME are combined, the feedback on the degree of MI enhances the learning effect.
Collapse
Affiliation(s)
- Shun Sawai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Rehabilitation, Kyoto Kuno Hospital, Kyoto, Japan
| | - Shoya Fujikawa
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Chihiro Ohsumi
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Ryu Ushio
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Kosuke Tamura
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Ryosuke Yamamoto
- Department of Rehabilitation, Tesseikai Neurosurgical Hospital, Shijonawate, Japan
| | - Yoshihiro Kai
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Keisuke Shima
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Hideki Nakano
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| |
Collapse
|
7
|
Tetsuka M, Sakurada T, Matsumoto M, Nakajima T, Morita M, Fujimoto S, Kawai K. Higher prefrontal activity based on short-term neurofeedback training can prevent working memory decline in acute stroke. Front Syst Neurosci 2023; 17:1130272. [PMID: 37388942 PMCID: PMC10300420 DOI: 10.3389/fnsys.2023.1130272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
This study aimed to clarify whether short-term neurofeedback training during the acute stroke phase led to prefrontal activity self-regulation, providing positive efficacy to working memory. A total of 30 patients with acute stroke performed functional near-infrared spectroscopy-based neurofeedback training for a day to increase their prefrontal activity. A randomized, Sham-controlled, double-blind study protocol was used comparing working memory ability before and after neurofeedback training. Working memory was evaluated using a target-searching task requiring spatial information retention. A decline in spatial working memory performance post-intervention was prevented in patients who displayed a higher task-related right prefrontal activity during neurofeedback training compared with the baseline. Neurofeedback training efficacy was not associated with the patient's clinical background such as Fugl-Meyer Assessment score and time since stroke. These findings demonstrated that even short-term neurofeedback training can strengthen prefrontal activity and help maintain cognitive ability in acute stroke patients, at least immediately after training. However, further studies investigating the influence of individual patient clinical background, especially cognitive impairment, on neurofeedback training is needed. Current findings provide an encouraging option for clinicians to design neurorehabilitation programs, including neurofeedback protocols, for acute stroke patients.
Collapse
Affiliation(s)
- Masayuki Tetsuka
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Sakurada
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Faculty of Science and Technology, Seikei University, Tokyo, Japan
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - Mayuko Matsumoto
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Rehabilitation Center, Jichi Medical University Hospital, Tochigi, Japan
| | - Mitsuya Morita
- Rehabilitation Center, Jichi Medical University Hospital, Tochigi, Japan
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
8
|
Onagawa R, Muraoka Y, Hagura N, Takemi M. An investigation of the effectiveness of neurofeedback training on motor performance in healthy adults: A systematic review and meta-analysis. Neuroimage 2023; 270:120000. [PMID: 36870431 DOI: 10.1016/j.neuroimage.2023.120000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Neurofeedback training (NFT) refers to a training where the participants voluntarily aim to manipulate their own brain activity using the sensory feedback abstracted from their brain activity. NFT has attracted attention in the field of motor learning due to its potential as an alternative or additional training method for general physical training. In this study, a systematic review of NFT studies for motor performance improvements in healthy adults and a meta-analysis on the effectiveness of NFT were conducted. A computerized search was performed using the databases Web of Science, Scopus, PubMed, JDreamIII, and Ichushi-Web to identify relevant studies published between January 1st, 1990, and August 3rd, 2021. Thirty-three studies were identified for the qualitative synthesis and 16 randomized controlled trials (374 subjects) for the meta-analysis. The meta-analysis, including all trials found in the search, revealed significant effects of NFT for motor performance improvement examined at the timing after the last NFT session (standardized mean difference = 0.85, 95% CI [0.18-1.51]), but with the existence of publication biases and substantial heterogeneity among the trials. Subsequent meta-regression analysis demonstrated the dose-response gradient between NFTs and motor performance improvements; more than 125 min of cumulative training time may benefit for the subsequent motor performance. For each motor performance measure (e.g., speed, accuracy, and hand dexterity), the effectiveness of NFT remains inconclusive, mainly due to its small sample sizes. More empirical NFT studies for motor performance improvement may be needed to show beneficial effects on motor performance and to safely incorporate NFT into real-world scenarios.
Collapse
Affiliation(s)
- Ryoji Onagawa
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
| | - Yoshihito Muraoka
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Nobuhiro Hagura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan; Graduate School of Frontiers Biosciences, Osaka University, Osaka, Japan
| | - Mitsuaki Takemi
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan.
| |
Collapse
|
9
|
Klein F, Lührs M, Benitez-Andonegui A, Roehn P, Kranczioch C. Performance comparison of systemic activity correction in functional near-infrared spectroscopy for methods with and without short distance channels. NEUROPHOTONICS 2023; 10:013503. [PMID: 36248616 PMCID: PMC9555616 DOI: 10.1117/1.nph.10.1.013503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/25/2022] [Indexed: 05/20/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) is a promising tool for neurofeedback (NFB) or brain-computer interfaces (BCIs). However, fNIRS signals are typically highly contaminated by systemic activity (SA) artifacts, and, if not properly corrected, NFB or BCIs run the risk of being based on noise instead of brain activity. This risk can likely be reduced by correcting for SA, in particular when short-distance channels (SDCs) are available. Literature comparing correction methods with and without SDCs is still sparse, specifically comparisons considering single trials are lacking. Aim: This study aimed at comparing the performance of SA correction methods with and without SDCs. Approach: Semisimulated and real motor task data of healthy older adults were used. Correction methods without SDCs included a simple and a more advanced spatial filter. Correction methods with SDCs included a regression approach considering only the closest SDC and two GLM-based methods, one including all eight SDCs and one using only two a priori selected SDCs as regressors. All methods were compared with data uncorrected for SA and correction performance was assessed with quality measures quantifying signal improvement and spatial specificity at single trial level. Results: All correction methods were found to improve signal quality and enhance spatial specificity as compared with the uncorrected data. Methods with SDCs usually outperformed methods without SDCs. Correction methods without SDCs tended to overcorrect the data. However, the exact pattern of results and the degree of differences observable between correction methods varied between semisimulated and real data, and also between quality measures. Conclusions: Overall, results confirmed that both Δ [ HbO ] and Δ [ HbR ] are affected by SA and that correction methods with SDCs outperform methods without SDCs. Nonetheless, improvements in signal quality can also be achieved without SDCs and should therefore be given priority over not correcting for SA.
Collapse
Affiliation(s)
- Franziska Klein
- Carl von Ossietzky University of Oldenburg, Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Oldenburg, Germany
| | - Michael Lührs
- Maastricht University, Faculty of Psychology and Neuroscience, Maastricht, The Netherlands
- Brain Innovation B.V., Maastricht, The Netherlands
| | | | - Pauline Roehn
- Carl von Ossietzky University of Oldenburg, Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Oldenburg, Germany
| | - Cornelia Kranczioch
- Carl von Ossietzky University of Oldenburg, Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Oldenburg, Germany
| |
Collapse
|
10
|
Lammers-Lietz F, Zacharias N, Mörgeli R, Spies CD, Winterer G. Functional Connectivity of the Supplementary and Presupplementary Motor Areas in Postoperative Transition Between Stages of Frailty. J Gerontol A Biol Sci Med Sci 2022; 77:2464-2473. [PMID: 35040961 DOI: 10.1093/gerona/glac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Frailty is a multietiological geriatric syndrome of run-down physical reserves with high vulnerability to stressors. Transitions between physical robustness and frailty often occur in the context of medical interventions. Studies suggest that neurological disorders contribute to faster progression of frailty. In a previous cross-sectional study we found altered functional connectivity of supplementary motor area (SMA) in (pre)frail compared to robust patients. We analyzed functional connectivity of the SMA and presupplementary motor area (pre-SMA) in patients with postoperative transitions between physical robustness and stages of frailty. METHODS We investigated 120 cognitively healthy patients (49.2% robust, 47.5% prefrail, 3.3% frail, 37.5% female, median age 71 [65-87] years) undergoing elective surgery from the BioCog project, a multicentric prospective cohort study on postoperative delirium and cognitive dysfunction. Assessments took place 14 days before and 3 months after surgery, comprising assessments of a modified frailty phenotype according to Fried and resting-state functional magnetic resonance imaging at 3 T. The associations between functional connectivity of the SMA and pre-SMA networks, preoperative frailty stages, and postoperative transitions were examined using mixed linear effects models. RESULTS Nineteen patients showed physical improvement after surgery, 24 patients progressed to (pre)frailty and in 77 patients no transition was observed. At follow-up, 57 (47.5%) patients were robust, 52 (43.3%) prefrail, and 11 (9.2%) frail. Lower functional connectivity in the pre-SMA network was associated with more unfavorable postoperative transition types. An exploratory analysis suggested that the association was restricted to patients who were prefrail at baseline. There was no association of transition type with SMA functional connectivity in the primary analysis. In an exploratory analysis, transition from prefrailty to robustness was associated with higher functional connectivity and progression in robust patients was associated with higher SMA network segregation. CONCLUSIONS Our findings implicate that dysfunctions of cortical networks involved in higher cognitive control of motion are associated with postoperative transitions between frailty stages. The pre-SMA may be a target for neurofeedback or brain stimulation in approaches to prevent frailty. Clinical Trials Registration Number: NCT02265263.
Collapse
Affiliation(s)
- Florian Lammers-Lietz
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norman Zacharias
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | - Rudolf Mörgeli
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg Winterer
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| |
Collapse
|
11
|
Behboodi A, Lee WA, Hinchberger VS, Damiano DL. Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review. J Neuroeng Rehabil 2022; 19:104. [PMID: 36171602 PMCID: PMC9516814 DOI: 10.1186/s12984-022-01081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Brain–computer interfaces (BCI), initially designed to bypass the peripheral motor system to externally control movement using brain signals, are additionally being utilized for motor rehabilitation in stroke and other neurological disorders. Also called neurofeedback training, multiple approaches have been developed to link motor-related cortical signals to assistive robotic or electrical stimulation devices during active motor training with variable, but mostly positive, functional outcomes reported. Our specific research question for this scoping review was: for persons with non-progressive neurological injuries who have the potential to improve voluntary motor control, which mobile BCI-based neurofeedback methods demonstrate or are associated with improved motor outcomes for Neurorehabilitation applications? Methods We searched PubMed, Web of Science, and Scopus databases with all steps from study selection to data extraction performed independently by at least 2 individuals. Search terms included: brain machine or computer interfaces, neurofeedback and motor; however, only studies requiring a motor attempt, versus motor imagery, were retained. Data extraction included participant characteristics, study design details and motor outcomes. Results From 5109 papers, 139 full texts were reviewed with 23 unique studies identified. All utilized EEG and, except for one, were on the stroke population. The most commonly reported functional outcomes were the Fugl-Meyer Assessment (FMA; n = 13) and the Action Research Arm Test (ARAT; n = 6) which were then utilized to assess effectiveness, evaluate design features, and correlate with training doses. Statistically and functionally significant pre-to post training changes were seen in FMA, but not ARAT. Results did not differ between robotic and electrical stimulation feedback paradigms. Notably, FMA outcomes were positively correlated with training dose. Conclusion This review on BCI-based neurofeedback training confirms previous findings of effectiveness in improving motor outcomes with some evidence of enhanced neuroplasticity in adults with stroke. Associative learning paradigms have emerged more recently which may be particularly feasible and effective methods for Neurorehabilitation. More clinical trials in pediatric and adult neurorehabilitation to refine methods and doses and to compare to other evidence-based training strategies are warranted.
Collapse
Affiliation(s)
- Ahad Behboodi
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Walker A Lee
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | | | - Diane L Damiano
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Zheng Y, Tian B, Zhuang Z, Zhang Y, Wang D. fNIRS-based adaptive visuomotor task improves sensorimotor cortical activation. J Neural Eng 2022; 19. [PMID: 35853431 DOI: 10.1088/1741-2552/ac823f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Investigating how to promote the functional activation of the central sensorimotor system is an important goal in the neurorehabilitation research domain. We aim to validate the effectiveness of facilitating cortical excitability using a closed-loop visuomotor task, in which the task difficulty is adaptively adjusted based on an individual's sensorimotor cortical activation. APPROACH We developed a novel visuomotor task, in which subjects moved a handle of a haptic device along a specific path while exerting a constant force against a virtual surface under visual feedback. The difficulty levels of the task were adapted with the aim of increasing the activation of sensorimotor areas, measured non-invasively by functional near-infrared spectroscopy. The changes in brain activation of the bilateral prefrontal cortex, sensorimotor cortex, and the occipital cortex obtained during the adaptive visuomotor task (adaptive group), were compared to the brain activation pattern elicited by the same duration of task with random difficulties in a control group. MAIN RESULTS During one intervention session, the adaptive group showed significantly increased activation in the bilateral sensorimotor cortex, also enhanced effective connectivity between the prefrontal and sensorimotor areas compared to the control group. SIGNIFICANCE Our findings demonstrated that the fNIRS-based adaptive visuomotor task with high ecological validity can facilitate the neural activity in sensorimotor areas and thus has the potential to improve hand motor functions.
Collapse
Affiliation(s)
- Yilei Zheng
- Beihang University, State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Bohao Tian
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Zhiqi Zhuang
- Beihang University, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Yuru Zhang
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Dangxiao Wang
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| |
Collapse
|
13
|
Sakurada T, Matsumoto M, Yamamoto SI. Individual Sensory Modality Dominance as an Influential Factor in the Prefrontal Neurofeedback Training for Spatial Processing: A Functional Near-Infrared Spectroscopy Study. Front Syst Neurosci 2022; 16:774475. [PMID: 35221936 PMCID: PMC8866872 DOI: 10.3389/fnsys.2022.774475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Neurofeedback is a neuromodulation technique used to improve brain function by self-regulating brain activity. However, the efficacy of neurofeedback training varies widely between individuals, and some participants fail to self-regulate brain activity. To overcome intersubject variation in neurofeedback training efficacy, it is critical to identify the factors that influence this type of neuromodulation. In this study, we considered that individual differences in cognitive ability may influence neurofeedback training efficacy and aimed to clarify the effect of individual working memory (WM) abilities, as characterized by sensory modality dominance, on neurofeedback training efficacy in healthy young adults. In particular, we focused on the abilities of individuals to retain internal (tactile or somatosensory) or external (visual) body information in their WM. Forty participants performed functional near-infrared spectroscopy-based neurofeedback training aimed at producing efficient and lower-level activity in the bilateral dorsolateral prefrontal cortex and frontopolar cortex. We carried out a randomized, sham-controlled, double-blind study that compared WM ability before and after neurofeedback training. Individual WM ability was quantified using a target searching task that required the participants to retain spatial information presented as vibrotactile or visual stimuli. Participants who received feedback information based on their own prefrontal activity showed gradually decreasing activity in the right prefrontal area during the neurofeedback training and demonstrated superior WM ability during the target searching task with vibrotactile stimuli compared with the participants who performed dummy neurofeedback training. In comparison, left prefrontal activity was not influenced by the neurofeedback training. Furthermore, the efficacy of neurofeedback training (i.e., lower right prefrontal activity and better searching task performance) was higher in participants who exhibited tactile dominance rather than visual dominance in their WM. These findings indicate that sensory modality dominance in WM may be an influential neurophysiological factor in determining the efficacy of neurofeedback training. These results may be useful in the development of neurofeedback training protocols tailored to individual needs.
Collapse
Affiliation(s)
- Takeshi Sakurada
- Department of Robotics, College of Science and Engineering, Ritsumeikan University, Shiga, Japan
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- *Correspondence: Takeshi Sakurada,
| | - Mayuko Matsumoto
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
- Graduate School of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Shin-ichiroh Yamamoto
- Graduate School of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
14
|
Girges C, Vijiaratnam N, Zrinzo L, Ekanayake J, Foltynie T. Volitional Control of Brain Motor Activity and Its Therapeutic Potential. Neuromodulation 2022; 25:1187-1196. [DOI: 10.1016/j.neurom.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/08/2021] [Accepted: 12/28/2021] [Indexed: 12/01/2022]
|
15
|
Daly S, Hanson JT, Mavanji V, Gravely A, Jean J, Jonason A, Lewis S, Ashe J, Looft JM, McGovern RA. Using kinematics to re-define the pull test as a quantitative biomarker of the postural response in normal pressure hydrocephalus patients. Exp Brain Res 2022; 240:791-802. [PMID: 35041069 DOI: 10.1007/s00221-021-06292-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
Quantitative biomarkers are needed for the diagnosis, monitoring and therapeutic assessment of postural instability in movement disorder patients. The goal of this study was to create a practical, objective measure of postural instability using kinematic measurements of the pull test. Twenty-one patients with normal pressure hydrocephalus and 20 age-matched control subjects were fitted with inertial measurement units and underwent 10-20 pull tests of varying intensities performed by a trained clinician. Kinematic data were extracted for each pull test and aggregated. Patients participated in 103 sessions for a total of 1555 trials while controls participated in 20 sessions for a total of 299 trials. Patients were separated into groups by MDS-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) pull test score. The center of mass velocity profile easily distinguished between patient groups such that score increases correlated with decreases in peak velocity and later peak velocity onset. All patients except those scored as "3" demonstrated an increase in step length and decrease in reaction time with increasing pull intensity. Groups were distinguished by differences in the relationship of step length to pull intensity (slope) and their overall step length or reaction time regardless of pull intensity (y-intercept). NPH patients scored as "normal" on the MDS-UPDRS scale were kinematically indistinguishable from age-matched control subjects during a standardized perturbation, but could be distinguished from controls by their response to a range of pull intensities. An instrumented, purposefully varied pull test produces kinematic metrics useful for distinguishing clinically meaningful differences within hydrocephalus patients as well as distinguishing these patients from healthy, control subjects.
Collapse
Affiliation(s)
- Samuel Daly
- Department of Neurosurgery, University of Minnesota Medical School, University of Minnesota, 420 Delaware St. SE, MMC 96, Room D-429, Minneapolis, MN, 55455, USA
| | - Jacob T Hanson
- Department of Neurosurgery, University of Minnesota Medical School, University of Minnesota, 420 Delaware St. SE, MMC 96, Room D-429, Minneapolis, MN, 55455, USA
| | - Vibha Mavanji
- Division of Prosthetics, Motion Capture Analysis Laboratory, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Amy Gravely
- Department of Statistics, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - James Jean
- Department of Neurosurgery, University of Minnesota Medical School, University of Minnesota, 420 Delaware St. SE, MMC 96, Room D-429, Minneapolis, MN, 55455, USA
| | - Alec Jonason
- Department of Neurosurgery, University of Minnesota Medical School, University of Minnesota, 420 Delaware St. SE, MMC 96, Room D-429, Minneapolis, MN, 55455, USA
| | - Scott Lewis
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Neurology, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - James Ashe
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Neurology, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - John M Looft
- Division of Prosthetics, Motion Capture Analysis Laboratory, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Robert A McGovern
- Department of Neurosurgery, University of Minnesota Medical School, University of Minnesota, 420 Delaware St. SE, MMC 96, Room D-429, Minneapolis, MN, 55455, USA. .,Division of Neurosurgery, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Hou X, Xiao X, Gong Y, Li Z, Chen A, Zhu C. Functional Near-Infrared Spectroscopy Neurofeedback Enhances Human Spatial Memory. Front Hum Neurosci 2021; 15:681193. [PMID: 34658812 PMCID: PMC8511425 DOI: 10.3389/fnhum.2021.681193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Spatial memory is an important cognitive function for human daily life and may present dysfunction or decline due to aging or clinical diseases. Functional near-infrared spectroscopy neurofeedback (fNIRS-NFB) is a promising neuromodulation technique with several special advantages that can be used to improve human cognitive functions by manipulating the neural activity of targeted brain regions or networks. In this pilot study, we intended to test the feasibility of fNIRS-NFB to enhance human spatial memory ability. The lateral parietal cortex, an accessible cortical region in the posterior medial hippocampal-cortical network that plays a crucial role in human spatial memory processing, was selected as the potential feedback target. A placebo-controlled fNIRS-NFB experiment was conducted to instruct individuals to regulate the neural activity in this region or an irrelevant control region. Experimental results showed that individuals learned to up-regulate the neural activity in the region of interest successfully. A significant increase in spatial memory performance was found after 8-session neurofeedback training in the experimental group but not in the control group. Furthermore, neurofeedback-induced neural activation increase correlated with spatial memory improvement. In summary, this study preliminarily demonstrated the feasibility of fNIRS-NFB to improve human spatial memory and has important implications for further applications.
Collapse
Affiliation(s)
- Xin Hou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Xiang Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yilong Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zheng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University at Zhuhai, Zhuhai, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Antao Chen
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
17
|
Mihara M, Fujimoto H, Hattori N, Otomune H, Kajiyama Y, Konaka K, Watanabe Y, Hiramatsu Y, Sunada Y, Miyai I, Mochizuki H. Effect of Neurofeedback Facilitation on Poststroke Gait and Balance Recovery: A Randomized Controlled Trial. Neurology 2021; 96:e2587-e2598. [PMID: 33879597 PMCID: PMC8205450 DOI: 10.1212/wnl.0000000000011989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/01/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that supplementary motor area (SMA) facilitation with functional near-infrared spectroscopy-mediated neurofeedback (fNIRS-NFB) augments poststroke gait and balance recovery, we conducted a 2-center, double-blind, randomized controlled trial involving 54 Japanese patients using the 3-meter Timed Up and Go (TUG) test. METHODS Patients with subcortical stroke-induced mild to moderate gait disturbance more than 12 weeks from onset underwent 6 sessions of SMA neurofeedback facilitation during gait- and balance-related motor imagery using fNIRS-NFB. Participants were randomly allocated to intervention (28 patients) or placebo (sham: 26 patients). In the intervention group, the fNIRS signal contained participants' cortical activation information. The primary outcome was TUG improvement 4 weeks postintervention. RESULTS The intervention group showed greater improvement in the TUG test (12.84 ± 15.07 seconds, 95% confidence interval 7.00-18.68) than the sham group (5.51 ± 7.64 seconds, 95% confidence interval 2.43-8.60; group difference 7.33 seconds, 95% CI 0.83-13.83; p = 0.028), even after adjusting for covariates (group × time interaction; F 1.23,61.69 = 4.50, p = 0.030, partial η2 = 0.083). Only the intervention group showed significantly increased imagery-related SMA activation and enhancement of resting-state connectivity between SMA and ventrolateral premotor area. Adverse effects associated with fNIRS-mediated neurofeedback intervention were absent. CONCLUSION SMA facilitation during motor imagery using fNIRS neurofeedback may augment poststroke gait and balance recovery by modulating the SMA and its related network. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that for patients with gait disturbance from subcortical stroke, SMA neurofeedback facilitation improves TUG time (UMIN000010723 at UMIN-CTR; umin.ac.jp/english/).
Collapse
Affiliation(s)
- Masahito Mihara
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan.
| | - Hiroaki Fujimoto
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Noriaki Hattori
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Hironori Otomune
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Yuta Kajiyama
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Kuni Konaka
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Yoshiyuki Watanabe
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Yuichi Hiramatsu
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Yoshihide Sunada
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Ichiro Miyai
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Hideki Mochizuki
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| |
Collapse
|
18
|
Lammers F, Zacharias N, Borchers F, Mörgeli R, Spies CD, Winterer G. Functional Connectivity of the Supplementary Motor Network Is Associated with Fried's Modified Frailty Score in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 75:2239-2248. [PMID: 31900470 DOI: 10.1093/gerona/glz297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Indexed: 01/22/2023] Open
Abstract
Frailty is a geriatric syndrome defined by coexistence of unintentional weight loss, low physical reserve, or activity and is associated with adverse health events. Neuroimaging studies reported structural white matter changes in frail patients. In the current study, we hypothesized that clinical frailty is associated also with functional changes in motion-related cortical areas, that is, (pre-)supplementary motor areas (SMA, pre-SMA). We expected that observed functional changes are related to motor-cognitive test performance. We studied a clinical sample of 143 cognitively healthy patients ≥65 years presenting for elective surgery, enrolled in the BioCog prospective multicentric cohort study on postoperative cognitive disorders. Participants underwent preoperative resting-state functional magnetic resonance imaging, motor-cognitive testing, and assessment of Fried's modified frailty criteria. We analyzed functional connectivity associations with frailty and motor-cognitive test performance. Clinically robust patients (N = 60) showed higher connectivity in the SMA network compared to frail (N = 13) and prefrail (N = 70) patients. No changes were found in the pre-SMA network. SMA connectivity correlated with motor speed (Trail-Making-Test A) and manual dexterity (Grooved Pegboard Test). Our results suggest that diminished functional connectivity of the SMA is an early correlate of functional decline in the older adults . The SMA may serve as a potential treatment target in frailty.
Collapse
Affiliation(s)
- Florian Lammers
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Norman Zacharias
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | - Friedrich Borchers
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Rudolf Mörgeli
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Claudia Doris Spies
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Georg Winterer
- Department of Anaesthesiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| |
Collapse
|
19
|
Soekadar SR, Kohl SH, Mihara M, von Lühmann A. Optical brain imaging and its application to neurofeedback. Neuroimage Clin 2021; 30:102577. [PMID: 33545580 PMCID: PMC7868728 DOI: 10.1016/j.nicl.2021.102577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022]
Abstract
Besides passive recording of brain electric or magnetic activity, also non-ionizing electromagnetic or optical radiation can be used for real-time brain imaging. Here, changes in the radiation's absorption or scattering allow for continuous in vivo assessment of regional neurometabolic and neurovascular activity. Besides magnetic resonance imaging (MRI), over the last years, also functional near-infrared spectroscopy (fNIRS) was successfully established in real-time metabolic brain imaging. In contrast to MRI, fNIRS is portable and can be applied at bedside or in everyday life environments, e.g., to restore communication and movement. Here we provide a comprehensive overview of the history and state-of-the-art of real-time optical brain imaging with a special emphasis on its clinical use towards neurofeedback and brain-computer interface (BCI) applications. Besides pointing to the most critical challenges in clinical use, also novel approaches that combine real-time optical neuroimaging with other recording modalities (e.g. electro- or magnetoencephalography) are described, and their use in the context of neuroergonomics, neuroenhancement or neuroadaptive systems discussed.
Collapse
Affiliation(s)
- Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Dept. of Psychiatry and Psychotherapy, Neuroscience Research Center, Campus Charité Mitte (CCM), Charité - University Medicine of Berlin, Berlin, Germany.
| | - Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Kurashiki-City, Okayama, Japan
| | - Alexander von Lühmann
- Machine Learning Department, Computer Science, Technische Universität Berlin, Berlin, Germany; Neurophotonics Center, Biomedical Engineering, Boston University, Boston, USA
| |
Collapse
|
20
|
Kohl SH, Mehler DMA, Lührs M, Thibault RT, Konrad K, Sorger B. The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback-A Systematic Review and Recommendations for Best Practice. Front Neurosci 2020; 14:594. [PMID: 32848528 PMCID: PMC7396619 DOI: 10.3389/fnins.2020.00594] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background: The effects of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)-neurofeedback on brain activation and behaviors have been studied extensively in the past. More recently, researchers have begun to investigate the effects of functional near-infrared spectroscopy-based neurofeedback (fNIRS-neurofeedback). FNIRS is a functional neuroimaging technique based on brain hemodynamics, which is easy to use, portable, inexpensive, and has reduced sensitivity to movement artifacts. Method: We provide the first systematic review and database of fNIRS-neurofeedback studies, synthesizing findings from 22 peer-reviewed studies (including a total of N = 441 participants; 337 healthy, 104 patients). We (1) give a comprehensive overview of how fNIRS-neurofeedback training protocols were implemented, (2) review the online signal-processing methods used, (3) evaluate the quality of studies using pre-set methodological and reporting quality criteria and also present statistical sensitivity/power analyses, (4) investigate the effectiveness of fNIRS-neurofeedback in modulating brain activation, and (5) review its effectiveness in changing behavior in healthy and pathological populations. Results and discussion: (1–2) Published studies are heterogeneous (e.g., neurofeedback targets, investigated populations, applied training protocols, and methods). (3) Large randomized controlled trials are still lacking. In view of the novelty of the field, the quality of the published studies is moderate. We identified room for improvement in reporting important information and statistical power to detect realistic effects. (4) Several studies show that people can regulate hemodynamic signals from cortical brain regions with fNIRS-neurofeedback and (5) these studies indicate the feasibility of modulating motor control and prefrontal brain functioning in healthy participants and ameliorating symptoms in clinical populations (stroke, ADHD, autism, and social anxiety). However, valid conclusions about specificity or potential clinical utility are premature. Conclusion: Due to the advantages of practicability and relatively low cost, fNIRS-neurofeedback might provide a suitable and powerful alternative to EEG and fMRI neurofeedback and has great potential for clinical translation of neurofeedback. Together with more rigorous research and reporting practices, further methodological improvements may lead to a more solid understanding of fNIRS-neurofeedback. Future research will benefit from exploiting the advantages of fNIRS, which offers unique opportunities for neurofeedback research.
Collapse
Affiliation(s)
- Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David M A Mehler
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael Lührs
- Brain Innovation B.V., Research Department, Maastricht, Netherlands.,Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Robert T Thibault
- School of Psychological Science, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Kerstin Konrad
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Bettina Sorger
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
21
|
New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci 2020; 10:brainsci10060342. [PMID: 32503207 PMCID: PMC7348779 DOI: 10.3390/brainsci10060342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking. While there is a strong theoretical rationale for using indicators of internal load (e.g., heart rate) in exercise prescription, the most suitable parameters have yet to be determined. In this perspective article, we discuss the role of brain-derived parameters (e.g., brain activity) as valuable indicators of internal load which can be beneficial for individualizing the exercise prescription in exercise–cognition research. Therefore, we focus on the application of functional near-infrared spectroscopy (fNIRS), since this neuroimaging modality provides specific advantages, making it well suited for monitoring cortical hemodynamics as a proxy of brain activity during physical exercise.
Collapse
|
22
|
Ota Y, Takamoto K, Urakawa S, Nishimaru H, Matsumoto J, Takamura Y, Mihara M, Ono T, Nishijo H. Motor Imagery Training With Neurofeedback From the Frontal Pole Facilitated Sensorimotor Cortical Activity and Improved Hand Dexterity. Front Neurosci 2020; 14:34. [PMID: 32116496 PMCID: PMC7025527 DOI: 10.3389/fnins.2020.00034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
To develop a real-time neurofeedback system from the anterior prefrontal cortex (aPFC) using functional near-infrared spectroscopy (fNIRS) for motor rehabilitation, we investigated the effects of motor imagery training with neurofeedback from the aPFC on hand dexterity and cerebral hemodynamic activity during a motor rehabilitation task. Thirty-one right-handed healthy subjects participated in this study. They received motor imagery training six times for 2 weeks under fNIRS neurofeedback from the aPFC, in which they were instructed to increase aPFC activity. The real group subjects (n = 16) were shown real fNIRS neurofeedback signals from the aPFC, whereas the sham group subjects (n = 15) were shown irrelevant randomized signals during neurofeedback training. Before and after the training, hand dexterity was assessed by a motor rehabilitation task, during which cerebral hemodynamic activity was also measured. The results indicated that aPFC activity was increased during the training, and performance improvement rates in the rehabilitation task after the training was increased in the real group when compared with the sham group. Improvement rates of mean aPFC activity across the training were positively correlated with performance improvement rates in the motor rehabilitation task. During the motor rehabilitation task after the training, the hemodynamic activity in the left somatosensory motor-related areas [premotor area (PM), primary motor area (M1), and primary somatosensory area (S1)] was increased in the real group, whereas the hemodynamic activity was increased in the supplementary motor area in the sham group. This hemodynamic activity increases in the somatosensory motor-related areas after the training correlated with aPFC activity during the last 2 days of motor imagery training. Furthermore, improvement rates of M1 hemodynamic activity after the training was positively correlated with performance improvement rates in the motor rehabilitation task. The results suggest that the aPFC might shape activity in the somatosensory motor-related areas to improve hand dexterity. These findings further suggest that the motor imagery training using neurofeedback signals from the aPFC might be useful to patients with motor disability.
Collapse
Affiliation(s)
- Yuya Ota
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kouichi Takamoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Department of Sports and Health Sciences, Faculty of Human Sciences, University of East Asia, Shimonoseki, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Okayama, Japan
| | - Taketoshi Ono
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
23
|
Wang Z, Zhou Y, Chen L, Gu B, Liu S, Xu M, Qi H, He F, Ming D. A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery. J Neural Eng 2019; 16:066012. [DOI: 10.1088/1741-2552/ab377d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Wang Z, Zhou Y, Chen L, Gu B, Yi W, Liu S, Xu M, Qi H, He F, Ming D. BCI Monitor Enhances Electroencephalographic and Cerebral Hemodynamic Activations During Motor Training. IEEE Trans Neural Syst Rehabil Eng 2019; 27:780-787. [PMID: 30843846 DOI: 10.1109/tnsre.2019.2903685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Motor imagery-based brain-computer interface (MI-BCI) controlling functional electrical stimulation (FES) is promising for disabled patients to restore their motor functions. However, it remains unclear how much the BCI part can contribute to the functional coupling between the brain and muscle. Specifically, whether it can enhance the cerebral activation for motor training? Here, we investigate the electroencephalographic and cerebral hemodynamic responses for MI-BCI-FES training and MI-FES training, respectively. Twelve healthy subjects were recruited in the motor training study when concurrent electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) were recorded. Compared with the MI-FES training conditions, the MI-BCI-FES could induce significantly stronger event-related desynchronization (ERD) and blood oxygen response, which demonstrates that BCI indeed plays a functional role in the closed-loop motor training. Therefore, this paper verifies the feasibility of using BCI to train motor functions in a closed-loop manner.
Collapse
|