1
|
Dumas N, Pecchi E, O'Connor R, Bos R, Moreau D. Infrared neuroglial modulation of spinal locomotor networks. Sci Rep 2024; 14:22282. [PMID: 39333287 PMCID: PMC11437012 DOI: 10.1038/s41598-024-73577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Infrared neural stimulation (INS) emerges as a promising tool for stimulating the nervous system by its high spatial precision and absence of the use of exogenous agents into the tissue, which led to the first successful proof of concept in human brain. While neural networks have been the focal point of INS research, this technique is also non cell type specific as it triggers activity in non electrically excitable cells. Despite increasing interest, there remains to demonstrate well defined simultaneous astrocytic and neuronal signals in response to INS. Using calcium imaging, we show that INS has the capacity to initiate calcium signaling in both astrocytes and neurons simultaneously from the rostral lumbar spinal cord, each exhibiting distinct temporal and amplitude characteristics. Importantly, the mechanism underlying infrared-induced neuronal and astrocytic calcium signaling differ, with neuronal activity relying on sodium channels, whereas induced astrocytic signaling is predominantly influenced by extracellular calcium and TRPV4 channels. Furthermore, our findings demonstrate the frequency shift of neuronal calcium oscillations through infrared stimulation. By deepening our understanding in INS fundamentals, this technique holds great promise for advancing neuroscience, deepening our understanding of pathologies, and potentially paving the way for future clinical applications.
Collapse
Affiliation(s)
- Nathan Dumas
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Emilie Pecchi
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Rémi Bos
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France.
| |
Collapse
|
2
|
Sander MY, Zhu X. Infrared neuromodulation-a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066701. [PMID: 38701769 DOI: 10.1088/1361-6633/ad4729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Infrared (IR) neuromodulation (INM) is an emerging light-based neuromodulation approach that can reversibly control neuronal and muscular activities through the transient and localized deposition of pulsed IR light without requiring any chemical or genetic pre-treatment of the target cells. Though the efficacy and short-term safety of INM have been widely demonstrated in both peripheral and central nervous systems, the investigations of the detailed cellular and biological processes and the underlying biophysical mechanisms are still ongoing. In this review, we discuss the current research progress in the INM field with a focus on the more recently discovered IR nerve inhibition. Major biophysical mechanisms associated with IR nerve stimulation are summarized. As the INM effects are primarily attributed to the spatiotemporal thermal transients induced by water and tissue absorption of pulsed IR light, temperature monitoring techniques and simulation models adopted in INM studies are discussed. Potential translational applications, current limitations, and challenges of the field are elucidated to provide guidance for future INM research and advancement.
Collapse
Affiliation(s)
- Michelle Y Sander
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, MA 02446, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| | - Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| |
Collapse
|
3
|
Zhuo J, Weidrick CE, Liu Y, Moffitt MA, Jansen ED, Chiel HJ, Jenkins MW. Selective Infrared Neural Inhibition Can Be Reproduced by Resistive Heating. Neuromodulation 2023; 26:1757-1771. [PMID: 36707292 PMCID: PMC10366334 DOI: 10.1016/j.neurom.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Small-diameter afferent axons carry various sensory signals that are critical for vital physiological conditions but sometimes contribute to pathologies. Infrared (IR) neural inhibition (INI) can induce selective heat block of small-diameter axons, which holds potential for translational applications such as pain management. Previous research suggested that IR-heating-induced acceleration of voltage-gated potassium channel kinetics is the mechanism for INI. Therefore, we hypothesized that other heating methods, such as resistive heating (RH) in a cuff, could reproduce the selective inhibition observed in INI. MATERIALS AND METHODS We conducted ex vivo nerve-heating experiments on pleural-abdominal connective nerves of Aplysia californica using both IR and RH. We fabricated a transparent silicone nerve cuff for simultaneous IR heating, RH, and temperature measurements. Temperature elevations (ΔT) on the nerve surface were recorded for both heating modalities, which were tested over a range of power levels that cover a similar ΔT range. We recorded electrically evoked compound action potentials (CAPs) and segmented them into fast and slow subcomponents on the basis of conduction velocity differences between the large and small-diameter axonal subpopulations. We calculated the normalized inhibition strength and inhibition selectivity index on the basis of the rectified area under the curve of each subpopulation. RESULTS INI and RH showed a similar selective inhibition effect on CAP subcomponents for slow-conducting axons, confirmed by the inhibition probability vs ΔT dose-response curve based on approximately 2000 CAP measurements. The inhibition selectivity indexes of the two heating modalities were similar across six nerves. RH only required half the total electrical power required by INI to achieve a similar ΔT. SIGNIFICANCE We show that selective INI can be reproduced by other heating modalities such as RH. RH, because of its high energy efficiency and simple design, can be a good candidate for future implantable neural interface designs.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Chloe E Weidrick
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael A Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Biophotonics Center, Vanderbilt University, Nashville, TN, USA; Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Lewis THJ, Zhuo J, McClellan JX, Getsy PM, Ryan RM, Jenkins MJ, Lewis SJ. Infrared light elicits endothelium-dependent vasodilation in isolated occipital arteries of the rat via soluble guanylyl cyclase-dependent mechanisms. Front Physiol 2023; 14:1219998. [PMID: 37664436 PMCID: PMC10471192 DOI: 10.3389/fphys.2023.1219998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
The left and right occipital arteries provide blood supply to afferent cell bodies in the ipsilateral nodose and petrosal ganglia. This supply is free of an effective blood-ganglion barrier, so changes in occipital artery blood flow directly affect the access of circulating factors to the afferent cell bodies. The application of infrared (IR) light to modulate neural and other cell processes has yielded information about basic biological processes within tissues and is gaining traction as a potential therapy for a variety of disease processes. To address whether IR can directly modulate vascular function, we performed wire myography studies to determine the actions of IR on occipital arteries isolated from male Sprague-Dawley rats. Based on our previous research that functionally-important differences exist between occipital artery segments close to their origin at the external carotid artery (ECA) and those closer to the nodose ganglion, the occipital arteries were dissected into two segments, one closer to the ECA and the other closer to the nodose ganglion. Segments were constricted with 5-hydroxytryptamine to a level equal to 50% of the maximal response generated by the application of a high (80 mM) concentration of K+ ions. The direct application of pulsed IR (1,460 nm) for 5 s produced a rapid vasodilation in occipital arteries that was significantly more pronounced in segments closest to the ECA, although the ECA itself was minimally responsive. The vasodilation remained for a substantial time (at least 120 s) after cessation of IR application. The vasodilation during and following cessation of the IR application was markedly diminished in occipital arteries denuded of the endothelium. In addition, the vasodilation elicited by IR in endothelium-intact occipital arteries was substantially reduced in the presence of a selective inhibitor of the nitric oxide-sensitive guanylate cyclase, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). It appears that IR causes endothelium-dependent, nitric-oxide-mediated vasodilation in the occipital arteries of the rat. The ability of IR to generate rapid and sustained vasodilation may provide new therapeutic approaches for restoring or improving blood flow to targeted tissues.
Collapse
Affiliation(s)
- Tristan H. J. Lewis
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob X. McClellan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Rita M. Ryan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Michael. J. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Departments of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
5
|
Zhuo J, Gill JP, Jansen ED, Jenkins MW, Chiel HJ. Use of an invertebrate animal model ( Aplysia californica) to develop novel neural interfaces for neuromodulation. Front Neurosci 2022; 16:1080027. [PMID: 36620467 PMCID: PMC9813496 DOI: 10.3389/fnins.2022.1080027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
New tools for monitoring and manipulating neural activity have been developed with steadily improving functionality, specificity, and reliability, which are critical both for mapping neural circuits and treating neurological diseases. This review focuses on the use of an invertebrate animal, the marine mollusk Aplysia californica, in the development of novel neurotechniques. We review the basic physiological properties of Aplysia neurons and discuss the specific aspects that make it advantageous for developing novel neural interfaces: First, Aplysia nerves consist only of unmyelinated axons with various diameters, providing a particularly useful model of the unmyelinated C fibers in vertebrates that are known to carry important sensory information, including those that signal pain. Second, Aplysia's neural tissues can last for a long period in an ex vivo experimental setup. This allows comprehensive tests such as the exploration of parameter space on the same nerve to avoid variability between animals and minimize animal use. Third, nerves in large Aplysia can be many centimeters in length, making it possible to easily discriminate axons with different diameters based on their conduction velocities. Aplysia nerves are a particularly good approximation of the unmyelinated C fibers, which are hard to stimulate, record, and differentiate from other nerve fibers in vertebrate animal models using epineural electrodes. Fourth, neurons in Aplysia are large, uniquely identifiable, and electrically compact. For decades, researchers have used Aplysia for the development of many novel neurotechnologies. Examples include high-frequency alternating current (HFAC), focused ultrasound (FUS), optical neural stimulation, recording, and inhibition, microelectrode arrays, diamond electrodes, carbon fiber microelectrodes, microscopic magnetic stimulation and magnetic resonance electrical impedance tomography (MREIT). We also review a specific example that illustrates the power of Aplysia for accelerating technology development: selective infrared neural inhibition of small-diameter unmyelinated axons, which may lead to a translationally useful treatment in the future. Generally, Aplysia is suitable for testing modalities whose mechanism involves basic biophysics that is likely to be similar across species. As a tractable experimental system, Aplysia californica can help the rapid development of novel neuromodulation technologies.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jeffrey P Gill
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Biophotonics Center, Vanderbilt University, Nashville, TN, United States.,Department of Neurological Surgery, Vanderbilt University, Nashville, TN, United States
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
6
|
Ford JB, Ganguly M, Zhuo J, McPheeters MT, Jenkins MW, Chiel HJ, Jansen ED. Optimizing thermal block length during infrared neural inhibition to minimize temperature thresholds. J Neural Eng 2021; 18:10.1088/1741-2552/abf00d. [PMID: 33735846 PMCID: PMC11189657 DOI: 10.1088/1741-2552/abf00d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/18/2021] [Indexed: 11/11/2022]
Abstract
Objective. Infrared neural inhibition (INI) is a method of blocking the generation or propagation of neural action potentials through laser heating with wavelengths strongly absorbed by water. Recent work has identified that the distance heated along axons, the block length (BL), modulates the temperature needed for inhibition; however, this relationship has not been characterized. This study explores how BL during INI can be optimized towards minimizing its temperature threshold.Approach. To understand the relationship between BL and the temperature required for INI, excised nerves fromAplysia californicawere laser-heated over different lengths of axon during electrical stimulation of compound action potentials. INI was provided by irradiation (λ= 1470 nm) from a custom probe (n= 6 nerves), and subsequent validation was performed by providing heat block using perfused hot media over nerves (n= 5 nerves).Main Results. Two BL regimes were identified. Short BLs (thermal full width at half maximum (tFWHM) = 0.81-1.13 mm) demonstrated that increasing the tFWHM resulted in lower temperature thresholds for INI (p< 0.0125), while longer BLs (tFWHM = 1.13-3.03 mm) showed no significant change between the temperature threshold and tFWHM (p> 0.0125). Validation of this longer regime was performed using perfused hot media over different lengths of nerves. This secondary heating method similarly showed no significant change (p> 0.025) in the temperature threshold (tFWHM = 1.25-4.42 mm).Significance. This work characterized how the temperature threshold for neural heat block varies with BL and identified an optimal BL around tFWHM = 1.13 mm which minimizes both the maximum temperature applied to tissue and the volume of tissue heated during INI. Understanding how to optimally target lengths of nerve to minimize temperature during INI can help inform the design of devices for longitudinal animal studies and human implementation.
Collapse
Affiliation(s)
- Jeremy B Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Mohit Ganguly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Matthew T McPheeters
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, United States of America
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|