1
|
Ridwan AR, Niaz MR, Wu Y, Qi X, Zhang S, Kontzialis M, Javierre-Petit C, Tazwar M, Bennett DA, Yang Y, Arfanakis K. Development and evaluation of a high performance T1-weighted brain template for use in studies on older adults. Hum Brain Mapp 2021; 42:1758-1776. [PMID: 33449398 PMCID: PMC7978143 DOI: 10.1002/hbm.25327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 01/03/2023] Open
Abstract
Τhe accuracy of template-based neuroimaging investigations depends on the template's image quality and representativeness of the individuals under study. Yet a thorough, quantitative investigation of how available standardized and study-specific T1-weighted templates perform in studies on older adults has not been conducted. The purpose of this work was to construct a high-quality standardized T1-weighted template specifically designed for the older adult brain, and systematically compare the new template to several other standardized and study-specific templates in terms of image quality, performance in spatial normalization of older adult data and detection of small inter-group morphometric differences, and representativeness of the older adult brain. The new template was constructed with state-of-the-art spatial normalization of high-quality data from 222 older adults. It was shown that the new template (a) exhibited high image sharpness, (b) provided higher inter-subject spatial normalization accuracy and (c) allowed detection of smaller inter-group morphometric differences compared to other standardized templates, (d) had similar performance to that of study-specific templates constructed with the same methodology, and (e) was highly representative of the older adult brain.
Collapse
Affiliation(s)
- Abdur Raquib Ridwan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Mohammad Rakeen Niaz
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Yingjuan Wu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Xiaoxiao Qi
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Shengwei Zhang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Marinos Kontzialis
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Carles Javierre-Petit
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Mahir Tazwar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Yongyi Yang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA.,Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA.,Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
2
|
Zhang S, Arfanakis K. Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences. Neuroimage 2018; 172:40-50. [PMID: 29414497 DOI: 10.1016/j.neuroimage.2018.01.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/29/2023] Open
Abstract
Digital diffusion tensor imaging (DTI) templates of the adult human brain are commonly used in neuroimaging research, and their characteristics influence the accuracy of the application. However, a systematic evaluation of the characteristics and performance of standardized and study-specific DTI templates has not been conducted. The purpose of this work was to compare eight available standardized DTI templates to each other (ICBM81, ENIGMA, FMRIB58, SRI24, IIT2, NTU-DSI-122-DTI, IIT v.3.0, Eve), as well as to study-specific templates, in terms of template characteristics (image sharpness, ability to identify small brain structures, artifacts, mean values, noise properties) and performance in spatial normalization and detection of small inter-group FA differences. The IIT v.3.0 template was shown to combine a number of desirable characteristics: includes full-tensor information, is population-based, has high image sharpness, shows no visible artifacts, has low noise levels, has diffusion tensor properties and spatial features representative of data from the average individual adult brain. Furthermore, the IIT v.3.0 template was shown to allow higher inter-subject DTI spatial normalization accuracy, and detection of smaller inter-group FA differences, compared to all other templates, including study-specific templates. These findings were consistent when evaluating the templates in younger as well as older adult cohorts.
Collapse
Affiliation(s)
- Shengwei Zhang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|