1
|
Gryska E, Schneiderman J, Björkman-Burtscher I, Heckemann RA. Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 2021; 11:e042660. [PMID: 33514580 PMCID: PMC7849889 DOI: 10.1136/bmjopen-2020-042660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Medical image analysis practices face challenges that can potentially be addressed with algorithm-based segmentation tools. In this study, we map the field of automatic MR brain lesion segmentation to understand the clinical applicability of prevalent methods and study designs, as well as challenges and limitations in the field. DESIGN Scoping review. SETTING Three databases (PubMed, IEEE Xplore and Scopus) were searched with tailored queries. Studies were included based on predefined criteria. Emerging themes during consecutive title, abstract, methods and whole-text screening were identified. The full-text analysis focused on materials, preprocessing, performance evaluation and comparison. RESULTS Out of 2990 unique articles identified through the search, 441 articles met the eligibility criteria, with an estimated growth rate of 10% per year. We present a general overview and trends in the field with regard to publication sources, segmentation principles used and types of lesions. Algorithms are predominantly evaluated by measuring the agreement of segmentation results with a trusted reference. Few articles describe measures of clinical validity. CONCLUSIONS The observed reporting practices leave room for improvement with a view to studying replication, method comparison and clinical applicability. To promote this improvement, we propose a list of recommendations for future studies in the field.
Collapse
Affiliation(s)
- Emilia Gryska
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| | - Justin Schneiderman
- Sektionen för klinisk neurovetenskap, Goteborgs Universitet Institutionen for Neurovetenskap och fysiologi, Goteborg, Sweden
| | | | - Rolf A Heckemann
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| |
Collapse
|
2
|
Le M, Tang LYW, Hernández-Torres E, Jarrett M, Brosch T, Metz L, Li DKB, Traboulsee A, Tam RC, Rauscher A, Wiggermann V. FLAIR 2 improves LesionTOADS automatic segmentation of multiple sclerosis lesions in non-homogenized, multi-center, 2D clinical magnetic resonance images. NEUROIMAGE-CLINICAL 2019; 23:101918. [PMID: 31491827 PMCID: PMC6646743 DOI: 10.1016/j.nicl.2019.101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 11/05/2022]
Abstract
Background Accurate segmentation of MS lesions on MRI is difficult and, if performed manually, time consuming. Automatic segmentations rely strongly on the image contrast and signal-to-noise ratio. Literature examining segmentation tool performances in real-world multi-site data acquisition settings is scarce. Objective FLAIR2, a combination of T2-weighted and fluid attenuated inversion recovery (FLAIR) images, improves tissue contrast while suppressing CSF. We compared the use of FLAIR and FLAIR2 in LesionTOADS, OASIS and the lesion segmentation toolbox (LST) when applied to non-homogenized, multi-center 2D-imaging data. Methods Lesions were segmented on 47 MS patient data sets obtained from 34 sites using LesionTOADS, OASIS and LST, and compared to a semi-automatically generated reference. The performance of FLAIR and FLAIR2 was assessed using the relative lesion volume difference (LVD), Dice coefficient (DSC), sensitivity (SEN) and symmetric surface distance (SSD). Performance improvements related to lesion volumes (LVs) were evaluated for all tools. For comparison, LesionTOADS was also used to segment lesions from 3 T single-center MR data of 40 clinically isolated syndrome (CIS) patients. Results Compared to FLAIR, the use of FLAIR2 in LesionTOADS led to improvements of 31.6% (LVD), 14.0% (DSC), 25.1% (SEN), and 47.0% (SSD) in the multi-center study. DSC and SSD significantly improved for larger LVs, while LVD and SEN were enhanced independent of LV. OASIS showed little difference between FLAIR and FLAIR2, likely due to its inherent use of T2w and FLAIR. LST replicated the benefits of FLAIR2 only in part, indicating that further optimization, particularly at low LVs is needed. In the CIS study, LesionTOADS did not benefit from the use of FLAIR2 as the segmentation performance for both FLAIR and FLAIR2 was heterogeneous. Conclusions In this real-world, multi-center experiment, FLAIR2 outperformed FLAIR in its ability to segment MS lesions with LesionTOADS. The computation of FLAIR2 enhanced lesion detection, at minimally increased computational time or cost, even retrospectively. Further work is needed to determine how LesionTOADS and other tools, such as LST, can optimally benefit from the improved FLAIR2 contrast. FLAIR2 improves automatic MS lesion segmentation with LesionTOADS compared to FLAIR. Segmentation similarity improves for higher lesion volumes, particularly for FLAIR2. FLAIR2 provides greater sensitivity independent of lesion volume than FLAIR alone. Other segmentation tools need further optimization to fully benefit from FLAIR2. FLAIR2 provides immediate benefits at 1.5 T and visually improves segmentation at 3 T.
Collapse
Affiliation(s)
- M Le
- MS/MRI Research Group (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| | - L Y W Tang
- MS/MRI Research Group (Division of Neurology), University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - E Hernández-Torres
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - M Jarrett
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Population Data BC, Vancouver, BC, Canada
| | - T Brosch
- MS/MRI Research Group (Division of Neurology), University of British Columbia, Vancouver, BC, Canada; Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada; Philips Medical Innovative Technologies, Hamburg, Germany
| | - L Metz
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - D K B Li
- MS/MRI Research Group (Division of Neurology), University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada; UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - A Traboulsee
- Department of Neurology (Division of Medicine), University of British Columbia, Vancouver, BC, Canada
| | - R C Tam
- MS/MRI Research Group (Division of Neurology), University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - A Rauscher
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - V Wiggermann
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion. PATCH-BASED TECHNIQUES IN MEDICAL IMAGING : THIRD INTERNATIONAL WORKSHOP, PATCH-MI 2017, HELD IN CONJUNCTION WITH MICCAI 2017, QUEBEC CITY, QC, CANADA, SEPTEMBER 14, 2017, PROCEEDINGS. PATCH-MI (WORKSHOP) (3RD : 2017 : QUEBEC, QUEBEC) 2017; 10530:138-145. [PMID: 29707700 DOI: 10.1007/978-3-319-67434-6_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper adapts the joint label fusion (JLF) multi-atlas image segmentation algorithm to the problem of multiple sclerosis (MS) lesion segmentation in multi-modal MRI. Conventionally, JLF requires a set of atlas images to be co-registered to the target image using deformable registration. However, given the variable spatial distribution of lesions in the brain, whole-brain deformable registration is unlikely to line up lesions between atlases and the target image. As a solution, we propose to first pre-segment the target image using an intensity regression based technique, yielding a set of "candidate" lesions. Each "candidate" lesion is then matched to a set of similar lesions in the atlas based on location and size; and deformable registration and JLF are applied at the level of the "candidate" lesion. The approach is evaluated on a dataset of 74 subjects with MS and shown to improve Dice similarity coefficient with reference manual segmentation by 12% over intensity regression technique.
Collapse
|
4
|
Fritz NE, Roy S, Keller J, Prince J, Calabresi PA, Zackowski KM. Pain, cognition and quality of life associate with structural measures of brain volume loss in multiple sclerosis. NeuroRehabilitation 2017; 39:535-544. [PMID: 27689612 DOI: 10.3233/nre-161384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by physical and mental impairments that often result in pain and reduced quality of life. OBJECTIVE To understand the relationship of pain, quality of life, and cognition to structural measures of brain volume. METHODS Behavioral measures were assessed in a single session using standardized questionnaires and rating scales. Brain volume measures were assessed with structural magnetic resonance imaging (MRI). RESULTS Twenty-nine individuals with relapsing-remitting MS and 29 age-matched controls participated in this study. Pain, quality of life, and cognition were significantly interrelated. Higher fluid attenuation inversion recovery weighted lesion volume was significantly associated with increased reports of pain (p = 0.01), lower physical quality of life (p < 0.0001), and lower cognitive performance (p = 0.001) in our cohort. CONCLUSIONS Assessment of pain and quality of life along with structural MRI highlights the importance of understanding structure-function relationships in MS and suggests that therapists should not only evaluate individuals for cognition and quality of life, but should consider rehabilitation goals that target these areas.
Collapse
Affiliation(s)
- Nora E Fritz
- Department of Physical Therapy, Wayne State University, Detroit, MI, USA.,Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins School of Medicine, Department of Physical Medicine & Rehabilitation, Baltimore, MD, USA
| | - Snehashis Roy
- Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, USA
| | - Jennifer Keller
- Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jerry Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathleen M Zackowski
- Motion Analysis Laboratory, Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins School of Medicine, Department of Physical Medicine & Rehabilitation, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J, Nguyen J, Prados F, Sudre CH, Jorge Cardoso M, Cawley N, Ciccarelli O, Wheeler-Kingshott CAM, Ourselin S, Catanese L, Deshpande H, Maurel P, Commowick O, Barillot C, Tomas-Fernandez X, Warfield SK, Vaidya S, Chunduru A, Muthuganapathy R, Krishnamurthi G, Jesson A, Arbel T, Maier O, Handels H, Iheme LO, Unay D, Jain S, Sima DM, Smeets D, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Bazin PL, Calabresi PA, Crainiceanu CM, Ellingsen LM, Reich DS, Prince JL, Pham DL. Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. Neuroimage 2017; 148:77-102. [PMID: 28087490 PMCID: PMC5344762 DOI: 10.1016/j.neuroimage.2016.12.064] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/15/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023] Open
Abstract
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website2 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Snehashis Roy
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| | - Amod Jog
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jennifer L Cuzzocreo
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Magrath
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| | - Adrian Gherman
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Julia Button
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - James Nguyen
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ferran Prados
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Carole H Sudre
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
| | - Manuel Jorge Cardoso
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Niamh Cawley
- NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Olga Ciccarelli
- NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | | | - Sébastien Ourselin
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Laurence Catanese
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | | | - Pierre Maurel
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Olivier Commowick
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Christian Barillot
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Xavier Tomas-Fernandez
- Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Suthirth Vaidya
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Abhijith Chunduru
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Ramanathan Muthuganapathy
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Ganapathy Krishnamurthi
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Andrew Jesson
- Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
| | - Tal Arbel
- Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
| | - Oskar Maier
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
| | - Leonardo O Iheme
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
| | - Devrim Unay
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
| | | | | | | | - Mohsen Ghafoorian
- Institute for Computing and Information Sciences, Radboud University, 6525 HP Nijmegen, Netherlands
| | - Bram Platel
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Ariel Birenbaum
- Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Hayit Greenspan
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Pierre-Louis Bazin
- Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany
| | - Peter A Calabresi
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | - Lotta M Ellingsen
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland
| | - Daniel S Reich
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dzung L Pham
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Roy S, Butman JA, Pham DL. Robust skull stripping using multiple MR image contrasts insensitive to pathology. Neuroimage 2017; 146:132-147. [PMID: 27864083 PMCID: PMC5321800 DOI: 10.1016/j.neuroimage.2016.11.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/31/2016] [Accepted: 11/04/2016] [Indexed: 01/18/2023] Open
Abstract
Automatic skull-stripping or brain extraction of magnetic resonance (MR) images is often a fundamental step in many neuroimage processing pipelines. The accuracy of subsequent image processing relies on the accuracy of the skull-stripping. Although many automated stripping methods have been proposed in the past, it is still an active area of research particularly in the context of brain pathology. Most stripping methods are validated on T1-w MR images of normal brains, especially because high resolution T1-w sequences are widely acquired and ground truth manual brain mask segmentations are publicly available for normal brains. However, different MR acquisition protocols can provide complementary information about the brain tissues, which can be exploited for better distinction between brain, cerebrospinal fluid, and unwanted tissues such as skull, dura, marrow, or fat. This is especially true in the presence of pathology, where hemorrhages or other types of lesions can have similar intensities as skull in a T1-w image. In this paper, we propose a sparse patch based Multi-cONtrast brain STRipping method (MONSTR),2 where non-local patch information from one or more atlases, which contain multiple MR sequences and reference delineations of brain masks, are combined to generate a target brain mask. We compared MONSTR with four state-of-the-art, publicly available methods: BEaST, SPECTRE, ROBEX, and OptiBET. We evaluated the performance of these methods on 6 datasets consisting of both healthy subjects and patients with various pathologies. Three datasets (ADNI, MRBrainS, NAMIC) are publicly available, consisting of 44 healthy volunteers and 10 patients with schizophrenia. Other three in-house datasets, comprising 87 subjects in total, consisted of patients with mild to severe traumatic brain injury, brain tumors, and various movement disorders. A combination of T1-w, T2-w were used to skull-strip these datasets. We show significant improvement in stripping over the competing methods on both healthy and pathological brains. We also show that our multi-contrast framework is robust and maintains accurate performance across different types of acquisitions and scanners, even when using normal brains as atlases to strip pathological brains, demonstrating that our algorithm is applicable even when reference segmentations of pathological brains are not available to be used as atlases.
Collapse
Affiliation(s)
- Snehashis Roy
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, United States.
| | - John A Butman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, United States; Diagnostic Radiology Department, National Institute of Health, United States
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, United States
| |
Collapse
|
7
|
Automatic iterative segmentation of multiple sclerosis lesions using Student's t mixture models and probabilistic anatomical atlases in FLAIR images. Comput Biol Med 2016; 73:10-23. [DOI: 10.1016/j.compbiomed.2016.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 11/23/2022]
|
8
|
Roy S, Carass A, Pacheco J, Bilgel M, Resnick SM, Prince JL, Pham DL. Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation. Neuroimage Clin 2016; 11:264-275. [PMID: 26958465 PMCID: PMC4773508 DOI: 10.1016/j.nicl.2016.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/13/2016] [Accepted: 02/12/2016] [Indexed: 01/13/2023]
Abstract
Longitudinal analysis of magnetic resonance images of the human brain provides knowledge of brain changes during both normal aging as well as the progression of many diseases. Previous longitudinal segmentation methods have either ignored temporal information or have incorporated temporal consistency constraints within the algorithm. In this work, we assume that some anatomical brain changes can be explained by temporal transitions in image intensities. Once the images are aligned in the same space, the intensities of each scan at the same voxel constitute a temporal (or 4D) intensity trend at that voxel. Temporal intensity variations due to noise or other artifacts are corrected by a 4D intensity-based filter that smooths the intensity values where appropriate, while preserving real anatomical changes such as atrophy. Here smoothing refers to removal of sudden changes or discontinuities in intensities. Images processed with the 4D filter can be used as a pre-processing step to any segmentation method. We show that such a longitudinal pre-processing step produces robust and consistent longitudinal segmentation results, even when applying 3D segmentation algorithms. We compare with state-of-the-art 4D segmentation algorithms. Specifically, we experimented on three longitudinal datasets containing 4-12 time-points, and showed that the 4D temporal filter is more robust and has more power in distinguishing between healthy subjects and those with dementia, mild cognitive impairment, as well as different phenotypes of multiple sclerosis.
Collapse
Affiliation(s)
- Snehashis Roy
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, United States,Corresponding author.
| | - Aaron Carass
- Image Analysis and Communications Laboratory, Department of Electrical and Computer Engineering, Johns Hopkins University, United States,Department of Computer Science, Johns Hopkins University, United States
| | - Jennifer Pacheco
- Laboratory of Behavioral Neuroscience, National Institute on Aging, United States
| | - Murat Bilgel
- Image Analysis and Communications Laboratory, Department of Electrical and Computer Engineering, Johns Hopkins University, United States,Laboratory of Behavioral Neuroscience, National Institute on Aging, United States
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, United States
| | - Jerry L. Prince
- Image Analysis and Communications Laboratory, Department of Electrical and Computer Engineering, Johns Hopkins University, United States
| | - Dzung L. Pham
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, United States
| |
Collapse
|
9
|
Mechrez R, Goldberger J, Greenspan H. Patch-Based Segmentation with Spatial Consistency: Application to MS Lesions in Brain MRI. Int J Biomed Imaging 2016; 2016:7952541. [PMID: 26904103 PMCID: PMC4745344 DOI: 10.1155/2016/7952541] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/24/2015] [Accepted: 12/31/2015] [Indexed: 11/18/2022] Open
Abstract
This paper presents an automatic lesion segmentation method based on similarities between multichannel patches. A patch database is built using training images for which the label maps are known. For each patch in the testing image, k similar patches are retrieved from the database. The matching labels for these k patches are then combined to produce an initial segmentation map for the test case. Finally an iterative patch-based label refinement process based on the initial segmentation map is performed to ensure the spatial consistency of the detected lesions. The method was evaluated in experiments on multiple sclerosis (MS) lesion segmentation in magnetic resonance images (MRI) of the brain. An evaluation was done for each image in the MICCAI 2008 MS lesion segmentation challenge. Results are shown to compete with the state of the art in the challenge. We conclude that the proposed algorithm for segmentation of lesions provides a promising new approach for local segmentation and global detection in medical images.
Collapse
Affiliation(s)
- Roey Mechrez
- Biomedical Engineering Department, Tel-Aviv University, 69978 Tel Aviv, Israel
| | - Jacob Goldberger
- Engineering Faculty, Bar-Ilan University, 52900 Ramat Gan, Israel
| | - Hayit Greenspan
- Biomedical Engineering Department, Tel-Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
10
|
Roy S, Carass A, Prince JL, Pham DL. Longitudinal Patch-Based Segmentation of Multiple Sclerosis White Matter Lesions. MACHINE LEARNING IN MEDICAL IMAGING. MLMI (WORKSHOP) 2015; 9352:194-202. [PMID: 27570846 DOI: 10.1007/978-3-319-24888-2_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Segmenting T2-hyperintense white matter lesions from longitudinal MR images is essential in understanding progression of multiple sclerosis. Most lesion segmentation techniques find lesions independently at each time point, even though there are different noise and image contrast variations at each point in the time series. In this paper, we present a patch based 4D lesion segmentation method that takes advantage of the temporal component of longitudinal data. For each subject with multiple time-points, 4D patches are constructed from the T1-w and FLAIR scans of all time-points. For every 4D patch from a subject, a few relevant matching 4D patches are found from a reference, such that their convex combination reconstructs the subject's 4D patch. Then corresponding manual segmentation patches of the reference are combined in a similar manner to generate a 4D membership of lesions of the subject patch. We compare our 4D patch-based segmentation with independent 3D voxel-based and patch-based lesion segmentation algorithms. Based on ground truth segmentations from 30 data sets, we show that the mean Dice coefficients between manual and automated segmentations improve after using the 4D approach compared to two state-of-the-art 3D segmentation algorithms.
Collapse
Affiliation(s)
- Snehashis Roy
- Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation
| | - Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation
| |
Collapse
|
11
|
Roy S, He Q, Sweeney E, Carass A, Reich DS, Prince JL, Pham DL. Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation. IEEE J Biomed Health Inform 2015; 19:1598-609. [PMID: 26340685 PMCID: PMC4562064 DOI: 10.1109/jbhi.2015.2439242] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches.
Collapse
|
12
|
Guizard N, Coupé P, Fonov VS, Manjón JV, Arnold DL, Collins DL. Rotation-invariant multi-contrast non-local means for MS lesion segmentation. NEUROIMAGE-CLINICAL 2015; 8:376-89. [PMID: 26106563 PMCID: PMC4474283 DOI: 10.1016/j.nicl.2015.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/02/2015] [Accepted: 05/03/2015] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) lesion segmentation is crucial for evaluating disease burden, determining disease progression and measuring the impact of new clinical treatments. MS lesions can vary in size, location and intensity, making automatic segmentation challenging. In this paper, we propose a new supervised method to segment MS lesions from 3D magnetic resonance (MR) images using non-local means (NLM). The method uses a multi-channel and rotation-invariant distance measure to account for the diversity of MS lesions. The proposed segmentation method, rotation-invariant multi-contrast non-local means segmentation (RMNMS), captures the MS lesion spatial distribution and can accurately and robustly identify lesions regardless of their orientation, shape or size. An internal validation on a large clinical magnetic resonance imaging (MRI) dataset of MS patients demonstrated a good similarity measure result (Dice similarity = 60.1% and sensitivity = 75.4%), a strong correlation between expert and automatic lesion load volumes (R2 = 0.91), and a strong ability to detect lesions of different sizes and in varying spatial locations (lesion detection rate = 79.8%). On the independent MS Grand Challenge (MSGC) dataset validation, our method provided competitive results with state-of-the-art supervised and unsupervised methods. Qualitative visual and quantitative voxel- and lesion-wise evaluations demonstrated the accuracy of RMNMS method. We propose a new multi-channel MS lesion segmentation technique. We adapt for lesion segmentation the non-local means operator to account for multi-contrast and rotation-invariant distance. The proposed method presents highly competitive results compared to state-of-the-art methods. The proposed method provides segmentation quality near inter-rater variability for MS lesion segmentation. Our non-local approach is able to detect structures that vary in size, shape and location such as MS lesions.
Collapse
Affiliation(s)
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), PICTURA Research Group, 351, Talence, France
| | | | - Jose V Manjón
- IBIME Research Group, ITACA Institute, Universidad Politécnica de Valencia, Medical Imaging Area, Valencia, Spain
| | | | | |
Collapse
|
13
|
Jog A, Carass A, Pham DL, Prince JL. Multi-Output Decision Trees for Lesion Segmentation in Multiple Sclerosis. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9413. [PMID: 27695155 DOI: 10.1117/12.2082157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Multiple Sclerosis (MS) is a disease of the central nervous system in which the protective myelin sheath of the neurons is damaged. MS leads to the formation of lesions, predominantly in the white matter of the brain and the spinal cord. The number and volume of lesions visible in magnetic resonance (MR) imaging (MRI) are important criteria for diagnosing and tracking the progression of MS. Locating and delineating lesions manually requires the tedious and expensive efforts of highly trained raters. In this paper, we propose an automated algorithm to segment lesions in MR images using multi-output decision trees. We evaluated our algorithm on the publicly available MICCAI 2008 MS Lesion Segmentation Challenge training dataset of 20 subjects, and showed improved results in comparison to state-of-the-art methods. We also evaluated our algorithm on an in-house dataset of 49 subjects with a true positive rate of 0.41 and a positive predictive value 0.36.
Collapse
Affiliation(s)
- Amod Jog
- Image Analysis and Communications Laboratory, The Johns Hopkins University
| | - Aaron Carass
- Image Analysis and Communications Laboratory, The Johns Hopkins University
| | - Dzung L Pham
- Henry M. Jackson Foundation for the Advancement of Military Medicine
| | - Jerry L Prince
- Image Analysis and Communications Laboratory, The Johns Hopkins University
| |
Collapse
|