1
|
Wang A, Cunningham I, Danielsson M, Fahrig R, Flohr T, Hoeschen C, Noo F, Sabol JM, Siewerdsen JH, Tingberg A, Yorkston J, Zhao W, Samei E. Science and practice of imaging physics through 50 years of SPIE Medical Imaging conferences. J Med Imaging (Bellingham) 2022; 9:012205. [PMID: 35309720 PMCID: PMC8926876 DOI: 10.1117/1.jmi.9.s1.012205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
Abstract
Purpose: For 50 years now, SPIE Medical Imaging (MI) conferences have been the premier forum for disseminating and sharing new ideas, technologies, and concepts on the physics of MI. Approach: Our overarching objective is to demonstrate and highlight the major trajectories of imaging physics and how they are informed by the community and science present and presented at SPIE MI conferences from its inception to now. Results: These contributions range from the development of image science, image quality metrology, and image reconstruction to digital x-ray detectors that have revolutionized MI modalities including radiography, mammography, fluoroscopy, tomosynthesis, and computed tomography (CT). Recent advances in detector technology such as photon-counting detectors continue to enable new capabilities in MI. Conclusion: As we celebrate the past 50 years, we are also excited about what the next 50 years of SPIE MI will bring to the physics of MI.
Collapse
Affiliation(s)
- Adam Wang
- Stanford University, Department of Radiology, Stanford, California, United States
| | - Ian Cunningham
- Western University, Robarts Research Institute, London, Ontario, Canada
| | - Mats Danielsson
- KTH Royal Institute of Technology, Department of Physics, Stockholm, Sweden
| | - Rebecca Fahrig
- Siemens Healthineers, Forchheim, Germany
- Friedrich-Alexander Universität, Department of Computer Science, Erlangen, Germany
| | | | - Christoph Hoeschen
- Otto-von-Guericke University, Institute of Medical Engineering, Magdeburg, Germany
| | - Frederic Noo
- University of Utah, Department of Radiology and Imaging Sciences, Salt Lake City, Utah, United States
| | - John M. Sabol
- Konica Minolta Healthcare Americas, Wayne, New Jersey, United States
| | - Jeffrey H. Siewerdsen
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Anders Tingberg
- Lund University, Skåne University Hospital, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - John Yorkston
- Carestream Health, Rochester, New York, United States
| | - Wei Zhao
- Stony Brook University, Department of Radiology, Stony Brook, New York, United States
| | - Ehsan Samei
- Duke University, Department of Radiology, Durham, North Carolina, United States
| |
Collapse
|
2
|
Sisniega A, Lu A, Huang H, Zbijewski W, Unberath M, Siewerdsen JH, Weiss CR. Targeted Deformable Motion Compensation for Vascular Interventional Cone-Beam CT Imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12031:120311H. [PMID: 36381563 PMCID: PMC9654751 DOI: 10.1117/12.2613232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Purpose Cone-beam CT has become commonplace for 3D guidance in interventional radiology (IR), especially for vascular procedures in which identification of small vascular structures is crucial. However, its long image acquisition time poses a limit to image quality due to soft-tissue deformable motion that hampers visibility of small vessels. Autofocus motion compensation has shown promising potential for soft-tissue deformable motion compensation, but it lacks specific target to the imaging task. This work presents an approach for deformable motion compensation targeted at imaging of vascular structures. Methods The proposed method consists on a two-stage framework for: i) identification of contrast-enhanced blood vessels in 2D projection data and delineation of an approximate region covering the vascular target in the volume space, and, ii) a novel autofocus approach including a metric designed to promote the presence of vascular structures acting solely in the region of interest. The vesselness of the image is quantified via evaluation of the properties of the 3D image Hessian, yielding a vesselness filter that gives larger values to voxels candidate to be part of a tubular structure. A cost metric is designed to promote large vesselness values and spatial sparsity, as expected in regions of fine vascularity. A targeted autofocus method was designed by combining the presented metric with a conventional autofocus term acting outside of the region of interest. The resulting method was evaluated on simulated data including synthetic vascularity merged with real anatomical features obtained from MDCT data. Further evaluation was obtained in two clinical datasets obtained during TACE procedures with a robotic C-arm (Artis Zeego, Siemens Healthineers). Results The targeted vascular autofocus effectively restored the shape and contrast of the contrast-enhanced vascularity in the simulation cases, resulting in improved visibility and reduced artifacts. Segmentations performed with a single threshold value on the target vascular regions yielded a net increase of up to 42% in DICE coefficient computed against the static reference. Motion compensation in clinical datasets resulted in improved visibility of vascular structures, observed in maximum intensity projections of the contrast-enhanced liver vessel tree. Conclusion Targeted motion compensation for vascular imaging showed promising performance for increased identification of small vascular structures in presence of motion. The development of autofocus metrics and methods tailored to vascular imaging opens the way for reliable compensation of deformable motion while preserving the integrity of anatomical structures in the image.
Collapse
Affiliation(s)
- A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - A Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - H Huang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - W Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - M Unberath
- Department of Computer Science, Johns Hopkins University, Baltimore, MD USA
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
- Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, MD USA
| | - C R Weiss
- Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
3
|
Cao Q, Sisniega A, Brehler M, Stayman JW, Yorkston J, Siewerdsen JH, Zbijewski W. Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities. Med Phys 2018; 45:114-130. [PMID: 29095489 PMCID: PMC5774240 DOI: 10.1002/mp.12654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Quantitative assessment of trabecular bone microarchitecture in extremity cone-beam CT (CBCT) would benefit from the high spatial resolution, low electronic noise, and fast scan time provided by complementary metal-oxide semiconductor (CMOS) x-ray detectors. We investigate the performance of CMOS sensors in extremity CBCT, in particular with respect to potential advantages of thin (<0.7 mm) scintillators offering higher spatial resolution. METHODS A cascaded systems model of a CMOS x-ray detector incorporating the effects of CsI:Tl scintillator thickness was developed. Simulation studies were performed using nominal extremity CBCT acquisition protocols (90 kVp, 0.126 mAs/projection). A range of scintillator thickness (0.35-0.75 mm), pixel size (0.05-0.4 mm), focal spot size (0.05-0.7 mm), magnification (1.1-2.1), and dose (15-40 mGy) was considered. The detectability index was evaluated for both CMOS and a-Si:H flat-panel detector (FPD) configurations for a range of imaging tasks emphasizing spatial frequencies associated with feature size aobj. Experimental validation was performed on a CBCT test bench in the geometry of a compact orthopedic CBCT system (SAD = 43.1 cm, SDD = 56.0 cm, matching that of the Carestream OnSight 3D system). The test-bench studies involved a 0.3 mm focal spot x-ray source and two CMOS detectors (Dalsa Xineos-3030HR, 0.099 mm pixel pitch) - one with the standard CsI:Tl thickness of 0.7 mm (C700) and one with a custom 0.4 mm thick scintillator (C400). Measurements of modulation transfer function (MTF), detective quantum efficiency (DQE), and CBCT scans of a cadaveric knee (15 mGy) were obtained for each detector. RESULTS Optimal detectability for high-frequency tasks (feature size of ~0.06 mm, consistent with the size of trabeculae) was ~4× for the C700 CMOS detector compared to the a-Si:H FPD at nominal system geometry of extremity CBCT. This is due to ~5× lower electronic noise of a CMOS sensor, which enables input quantum-limited imaging at smaller pixel size. Optimal pixel size for high-frequency tasks was <0.1 mm for a CMOS, compared to ~0.14 mm for an a-Si:H FPD. For this fine pixel pitch, detectability of fine features could be improved by using a thinner scintillator to reduce light spread blur. A 22% increase in detectability of 0.06 mm features was found for the C400 configuration compared to C700. An improvement in the frequency at 50% modulation (f50 ) of MTF was measured, increasing from 1.8 lp/mm for C700 to 2.5 lp/mm for C400. The C400 configuration also achieved equivalent or better DQE as C700 for frequencies above ~2 mm-1 . Images of cadaver specimens confirmed improved visualization of trabeculae with the C400 sensor. CONCLUSIONS The small pixel size of CMOS detectors yields improved performance in high-resolution extremity CBCT compared to a-Si:H FPDs, particularly when coupled with a custom 0.4 mm thick scintillator. The results indicate that adoption of a CMOS detector in extremity CBCT can benefit applications in quantitative imaging of trabecular microstructure in humans.
Collapse
Affiliation(s)
- Qian Cao
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| | - Alejandro Sisniega
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| | - Michael Brehler
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| | - J. Webster Stayman
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| | | | - Jeffrey H. Siewerdsen
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
- Russell H Morgan Department of RadiologyJohns Hopkins UniversityBaltimore21205USA
| | - Wojciech Zbijewski
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21205USA
| |
Collapse
|
4
|
Contijoch F, Stayman JW, McVeigh ER. The impact of small motion on the visualization of coronary vessels and lesions in cardiac CT: A simulation study. Med Phys 2017; 44:3512-3524. [PMID: 28432820 DOI: 10.1002/mp.12295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 02/27/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Coronary x-ray computed tomography angiography (CCTA) is used to non-invasively assess coronary artery geometry and has, combined with computational modeling, demonstrated the potential to identify physiologically significant lesions. These measurements require robust and accurate coronary imaging and delineation of vessels despite the presence of small motion. This simulation study characterizes the impact of small, uncorrected vessel drifts during data acquisition on the assessment of vessel intensity, diameter, and shape. METHODS We developed a digital phantom and simulated projection data for a clinical scanner geometry for a range of vessel drifts that can occur during relative vessel stasis (0 to 2 mm per 360° gantry rotation) for vessels between 0.2 and 3.0 mm in diameter (covering 0% through 93% stenosis of a 3 mm vessel). In addition to the impact of vessel drift, we evaluated the performance of half-scan acquisitions (relative to full-scans) over a range of gantry positions. The performance of FDK reconstructions was compared to an iterative technique and potential improvement in sampling from focal spot deflection and quarter detector offset was compared. RESULTS At rest, vessel intensity and diameter were accurately obtained in vessels greater than 1.5 mm with all vessels appearing circular in shape (major-to-minor axis ratio ~1). Vessels between 1.5 and 0.2 mm in diameter demonstrated a rapid decrease in signal intensity with full width half maximum (FWHM) vessel diameters remaining above 0.75 mm as true vessel diameter decreased. Uncorrected vessel motion resulted in decreased vessel intensity, increased vessel diameter, and distortion of vessel shape. The extent of these changes depended on both the position of the gantry as well as the reconstruction approach (half- vs. full-scan). FDK reconstruction results depended on choice of filter with Ram-Lak results yielding comparable performance to an unconstrained iterative reconstruction. Focal spot deflection and quarter detector offset did not result in large changes in performance, likely due to the high sampling density near the isocenter. CONCLUSIONS Despite improvement in gantry speed and acquisition of coronary images during cardiac phases that have relatively stationary vessels, small coronary drifts (0-2 mm per 360° rotation) have been reported and if uncorrected, can present challenges to visual grading and computational modeling of stenoses because vessels will appear dimmer, larger, and more ellipsoidal in shape. The impact of a particular motion depends on the gantry position, the use of half vs. full-scan acquisitions, and the reconstruction technique.
Collapse
Affiliation(s)
- Francisco Contijoch
- Department of Medicine, Division of Cardiology, UC San Diego School of Medicine, La Jolla, CA, 92123, USA
| | - J Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Elliot R McVeigh
- Department of Medicine, Division of Cardiology, UC San Diego School of Medicine, La Jolla, CA, 92123, USA.,Department of Bioengineering, UC San Diego School of Engineering, La Jolla, CA, 92037-0412, USA.,Department of Radiology, UC San Diego School of Medicine, La Jolla, CA, 92123, USA
| |
Collapse
|
5
|
Sisniega A, Stayman JW, Yorkston J, Siewerdsen JH, Zbijewski W. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion. Phys Med Biol 2017; 62:3712-3734. [PMID: 28327471 PMCID: PMC5478238 DOI: 10.1088/1361-6560/aa6869] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cone-beam CT (CBCT) for musculoskeletal imaging would benefit from a method to reduce the effects of involuntary patient motion. In particular, the continuing improvement in spatial resolution of CBCT may enable tasks such as quantitative assessment of bone microarchitecture (0.1 mm-0.2 mm detail size), where even subtle, sub-mm motion blur might be detrimental. We propose a purely image based motion compensation method that requires no fiducials, tracking hardware or prior images. A statistical optimization algorithm (CMA-ES) is used to estimate a motion trajectory that optimizes an objective function consisting of an image sharpness criterion augmented by a regularization term that encourages smooth motion trajectories. The objective function is evaluated using a volume of interest (VOI, e.g. a single bone and surrounding area) where the motion can be assumed to be rigid. More complex motions can be addressed by using multiple VOIs. Gradient variance was found to be a suitable sharpness metric for this application. The performance of the compensation algorithm was evaluated in simulated and experimental CBCT data, and in a clinical dataset. Motion-induced artifacts and blurring were significantly reduced across a broad range of motion amplitudes, from 0.5 mm to 10 mm. Structure similarity index (SSIM) against a static volume was used in the simulation studies to quantify the performance of the motion compensation. In studies with translational motion, the SSIM improved from 0.86 before compensation to 0.97 after compensation for 0.5 mm motion, from 0.8 to 0.94 for 2 mm motion and from 0.52 to 0.87 for 10 mm motion (~70% increase). Similar reduction of artifacts was observed in a benchtop experiment with controlled translational motion of an anthropomorphic hand phantom, where SSIM (against a reconstruction of a static phantom) improved from 0.3 to 0.8 for 10 mm motion. Application to a clinical dataset of a lower extremity showed dramatic reduction of streaks and improvement in delineation of tissue boundaries and trabecular structures throughout the whole volume. The proposed method will support new applications of extremity CBCT in areas where patient motion may not be sufficiently managed by immobilization, such as imaging under load and quantitative assessment of subchondral bone architecture.
Collapse
Affiliation(s)
- A. Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA 21205
| | - J. W. Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA 21205
| | | | - J. H. Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA 21205
- Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore MD USA 21205
| | - W. Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA 21205
| |
Collapse
|
6
|
Xu J, Sisniega A, Zbijewski W, Dang H, Stayman JW, Mow M, Wang X, Foos DH, Koliatsos VE, Aygun N, Siewerdsen JH. Technical assessment of a prototype cone-beam CT system for imaging of acute intracranial hemorrhage. Med Phys 2017; 43:5745. [PMID: 27782694 DOI: 10.1118/1.4963220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE A cone-beam CT scanner has been developed for detection and monitoring of traumatic brain injury and acute intracranial hemorrhage (ICH) at the point of care. This work presents a technical assessment of imaging performance and dose for the scanner in phantom and cadaver studies as a prerequisite to clinical translation. METHODS The scanner incorporates a compact, rotating-anode x-ray source and a flat-panel detector (43 × 43 cm2) on a mobile U-arm gantry with source-axis distance = 550 mm and source-detector distance = 1000 mm. Central and peripheral doses were measured in 16 cm diameter CTDI phantoms using a 0.6 cm3 Farmer ionization chamber for various scan techniques and as a function of longitudinal position, including out of field. Spatial resolution, contrast, noise, and image uniformity were assessed in quantitative and anthropomorphic head phantoms. Two reconstruction protocols were evaluated, including filtered backprojection (FBP) for high-resolution bone imaging and penalized weighted least squares (PWLS) reconstruction for low-contrast soft tissue (ICH) visualization. A fresh cadaver was imaged with and without simulated ICH using the scanner as well as a diagnostic multidetector CT (MDCT) scanner using a standard head protocol. Images were interpreted by a fellowship-trained neuroradiologist for imaging tasks of ICH detection, gray-white-CSF differentiation, detection of midline shift, and fracture detection. RESULTS The nominal scan protocol involved 720 projections acquired over a 360° orbit at 100 kV and 216 mAs, giving a dose (weighted CTDI) of 22.8 mGy (∼1.2 mSv effective dose). Out-of-field dose decreased to <10% within 6 cm of the field edge (approximate to the thyroid position). Image uniformity demonstrated <1% variation between the edge of the field (near the cranium) and center of the image. The high-resolution FBP reconstruction protocol showed ∼0.9 mm point spread function (PSF) full-width at half-maximum (FWHM). The smooth PWLS reconstruction protocol yielded ∼1.2 mm PSF FWHM and contrast-to-noise ratio exceeding 5.7 in ∼50 HU spherical ICH, resulting in conspicuous depiction of ICH down to ∼2 mm (the smallest diameter investigated). Cadaver images demonstrated good differentiation of brain and CSF (sufficient, but inferior to MDCT, recognizing that the CBCT dose was one-third that of MDCT), excellent visualization of cranial sutures and fracture (potentially superior to MDCT), clear detection of midline shift, and conspicuous detection of ICH. CONCLUSIONS Technical assessment of the prototype demonstrates dose characteristics and imaging performance consistent with point-of-care detection and monitoring of head injury-most notably, conspicuous detection of ICH-and supports translation of the system to clinical studies.
Collapse
Affiliation(s)
- Jennifer Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Alejandro Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Wojciech Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Hao Dang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - J Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Michael Mow
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | | | | | | | - Nafi Aygun
- Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205; Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205; Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21205; Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland 21205; and Armstrong Institute for Patient Safety and Quality, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
7
|
Cao Q, Brehler M, Sisniega A, Stayman JW, Yorkston J, Siewerdsen JH, Zbijewski W. High-resolution extremity cone-beam CT with a CMOS detector: Task-based optimization of scintillator thickness. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10132:1013210. [PMID: 28989220 PMCID: PMC5630149 DOI: 10.1117/12.2255695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE CMOS x-ray detectors offer small pixel sizes and low electronic noise that may support the development of novel high-resolution imaging applications of cone-beam CT (CBCT). We investigate the effects of CsI scintillator thickness on the performance of CMOS detectors in high resolution imaging tasks, in particular in quantitative imaging of bone microstructure in extremity CBCT. METHODS A scintillator thickness-dependent cascaded systems model of CMOS x-ray detectors was developed. Detectability in low-, high- and ultra-high resolution imaging tasks (Gaussian with FWHM of ~250 μm, ~80 μm and ~40 μm, respectively) was studied as a function of scintillator thickness using the theoretical model. Experimental studies were performed on a CBCT test bench equipped with DALSA Xineos3030 CMOS detectors (99 μm pixels) with CsI scintillator thicknesses of 400 μm and 700 μm, and a 0.3 FS compact rotating anode x-ray source. The evaluation involved a radiographic resolution gauge (0.6-5.0 lp/mm), a 127 μm tungsten wire for assessment of 3D resolution, a contrast phantom with tissue-mimicking inserts, and an excised fragment of human tibia for visual assessment of fine trabecular detail. RESULTS Experimental studies show ~35% improvement in the frequency of 50% MTF modulation when using the 400 μm scintillator compared to the standard nominal CsI thickness of 700 μm. Even though the high-frequency DQE of the two detectors is comparable, theoretical studies show a 14% to 28% increase in detectability index (d'2) of high- and ultrahigh resolution tasks, respectively, for the detector with 400 μm CsI compared to 700 μm CsI. Experiments confirm the theoretical findings, showing improvements with the adoption of 400 μm panel in the visibility of the radiographic pattern (2× improvement in peak-to-through distance at 4.6 lp/mm) and a 12.5% decrease in the FWHM of the tungsten wire. Reconstructions of the tibial plateau reveal enhanced visibility of trabecular structures with the CMOS detector with 400 μm scinitllator. CONCLUSION Applications on CMOS detectors in high resolution CBCT imaging of trabecular bone will benefit from using a thinner scintillator than the current standard in general radiography. The results support the translation of the CMOS sensor with 400 μm CsI onto the clinical prototype of CMOS-based extremity CBCT.
Collapse
Affiliation(s)
- Q Cao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| | - M Brehler
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| | - A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| | - J W Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| | | | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
- Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, MD USA 21287
| | - W Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| |
Collapse
|
8
|
Zhang X, Tilley S, Xu S, Mathews A, McVeigh ER, Stayman JW. Deformable Known Component Model-Based Reconstruction for Coronary CT Angiography. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10132. [PMID: 34188348 DOI: 10.1117/12.2255303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Purpose Atherosclerosis detection remains challenging in coronary CT angiography for patients with cardiac implants. Pacing electrodes of a pacemaker or lead components of a defibrillator can create substantial blooming and streak artifacts in the heart region, severely hindering the visualization of a plaque of interest. We present a novel reconstruction method that incorporates a deformable model for metal leads to eliminate metal artifacts and improve anatomy visualization even near the boundary of the component. Methods The proposed reconstruction method, referred as STF-dKCR, includes a novel parameterization of the component that integrates deformation, a 3D-2D preregistration process that estimates component shape and position, and a polyenergetic forward model for x-ray propagation through the component where the spectral properties are jointly estimated. The methodology was tested on physical data of a cardiac phantom acquired on a CBCT testbench. The phantom included a simulated vessel, a metal wire emulating a pacing lead, and a small Teflon sphere attached to the vessel wall, mimicking a calcified plaque. The proposed method was also compared to the traditional FBP reconstruction and an interpolation-based metal correction method (FBP-MAR). Results Metal artifacts presented in standard FBP reconstruction were significantly reduced in both FBP-MAR and STF-dKCR, yet only the STF-dKCR approach significantly improved the visibility of the small Teflon target (within 2 mm of the metal wire). The attenuation of the Teflon bead improved to 0.0481 mm-1 with STF-dKCR from 0.0166 mm-1 with FBP and from 0.0301 mm-1 with FBP-MAR - much closer to the expected 0.0414 mm-1. Conclusion The proposed method has the potential to improve plaque visualization in coronary CT angiography in the presence of wire-shaped metal components.
Collapse
Affiliation(s)
- X Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| | - S Tilley
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| | - S Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| | - A Mathews
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| | - E R McVeigh
- Department of Bioengineering, Medicine, Radiology, UC San Diego, La Jolla, CA USA 92093
| | - J W Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| |
Collapse
|