1
|
Zaglam N, Cheriet F, Jouvet P. Computer-Aided Diagnosis for Chest Radiographs in Intensive Care. J Pediatr Intensive Care 2016; 5:113-121. [PMID: 31110895 DOI: 10.1055/s-0035-1569995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022] Open
Abstract
The chest radiograph is an essential tool for the diagnosis of several lung diseases in intensive care units (ICU). However, several factors make the interpretation of the chest radiograph difficult including the number of X-rays done daily in ICU, the quality of the chest radiograph, and the lack of a standardized interpretation. To overcome these limitations in the interpretation of chest radiographs, researchers have developed computer-aided diagnosis (CAD) systems. In this review, the authors report the methodology used to develop CAD systems including identification of the region of interest, analysis of these regions, and classification. Currently, only a few CAD systems for chest X-ray interpretation are commercially available. Some promising research is ongoing, but the involvement of the pediatric research community is needed for the development and validation of such CAD systems dedicated to pediatric intensive care.
Collapse
Affiliation(s)
- Nesrine Zaglam
- Department of Computer Engineering, École Polytechnique, Montréal, Quebec, Canada.,Research Center, Sainte Justine University Hospital, Montreal, Quebec, Canada
| | - Farida Cheriet
- Department of Computer Engineering, École Polytechnique, Montréal, Quebec, Canada.,Research Center, Sainte Justine University Hospital, Montreal, Quebec, Canada
| | - Philippe Jouvet
- Research Center, Sainte Justine University Hospital, Montreal, Quebec, Canada.,Pediatric Intensive Care Unit, Sainte Justine University Hospital, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Uchiyama Y, Abe A, Muramatsu C, Hara T, Shiraishi J, Fujita H. Eigenspace template matching for detection of lacunar infarcts on MR images. J Digit Imaging 2015; 28:116-22. [PMID: 24942983 DOI: 10.1007/s10278-014-9711-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Detection of lacunar infarcts is important because their presence indicates an increased risk of severe cerebral infarction. However, accurate identification is often hindered by the difficulty in distinguishing between lacunar infarcts and enlarged Virchow-Robin spaces. Therefore, we developed a computer-aided detection (CAD) scheme for the detection of lacunar infarcts. Although our previous CAD method indicated a sensitivity of 96.8% with 0.71 false positives (FPs) per slice, further reduction of FPs remained an issue for the clinical application. Thus, the purpose of this study is to improve our CAD scheme by using template matching in the eigenspace. Conventional template matching is useful for the reduction of FPs, but it has the following two pitfalls: (1) It needs to maintain a large number of templates to improve the detection performance, and (2) calculation of the cross-correlation coefficient with these templates is time consuming. To solve these problems, we used template matching in the lower dimension space made by a principal component analysis. Our database comprised 1,143 T1- and T2-weighted images obtained from 132 patients. The proposed method was evaluated by using twofold cross-validation. By using this method, 34.1% of FPs was eliminated compared with our previous method. The final performance indicated that the sensitivity of the detection of lacunar infarcts was 96.8% with 0.47 FPs per slice. Therefore, the modified CAD scheme could improve FP rate without a significant reduction in the true positive rate.
Collapse
Affiliation(s)
- Yoshikazu Uchiyama
- Department of Medical Physics, Faculty of Life Science, Kumamoto University, 4-24-1 Kuhonji, Kumamoto, Kumamoto, 862-0976, Japan,
| | | | | | | | | | | |
Collapse
|
3
|
A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:789485. [PMID: 26089976 PMCID: PMC4450299 DOI: 10.1155/2015/789485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 11/28/2022]
Abstract
In order to get the extracted lung region from CT images more accurately, a model that contains lung
region extraction and edge boundary correction is proposed. Firstly, a new edge detection function is presented with
the help of the classic structure tensor theory. Secondly, the initial lung mask is automatically extracted by an improved
active contour model which combines the global intensity information, local intensity information, the new edge
information, and an adaptive weight. It is worth noting that the objective function of the improved model is converted
to a convex model, which makes the proposed model get the global minimum. Then, the central airway was excluded
according to the spatial context messages and the position relationship between every segmented region and the
rib. Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds the juxtapleural nodule.
Finally, the geometric active contour model is employed to correct the detected boundary and reinclude juxtapleural
nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with
their popular counterparts. Efficient computing capability and robustness property prove that our model can correct
the lung boundary reliably and reproducibly.
Collapse
|
4
|
Murakawa S, Tanigawa A, Uchiyama Y, Muramatsu C, Hara T, Fujita H. Kernel eigenspace template matching for detection of lacunar infarcts on MR images. Nihon Hoshasen Gijutsu Gakkai Zasshi 2015; 71:85-91. [PMID: 25748008 DOI: 10.6009/jjrt.2015_jsrt_71.2.85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Detection of lacunar infarcts is important because their presence indicates an increased risk of severe cerebral infarction and dementia. However, accurate identification of lacunar infarcts is often difficult for radiologists. Our previous computer-aided detection (CAD) scheme achieved a sensitivity of 96.8% with 0.76 false positives (FPs) per slice. However, further reduction of FPs remained an issue for the clinical application. The purpose of this study is to improve our CAD scheme by using kernel eigenspace template matching. First, we selected the regions of interest (ROIs) around the candidate regions detected in our previous method. A kernel eigenspace was then made by using kernel principal component analysis of the training data set. A test ROI was projected onto the same kernel eigenspace as the training data set. The cross-correlation coefficients between the test ROI and all the training ROIs were calculated on the kernel eigenspace. By comparing the two maxima of coefficients with a lacunar ROI and an FP ROI, the test ROI was classified. By using the proposed method, the quantity of the templates became 1.9% of that in template matching on the real space and 31. 9% of FPs could be eliminated while keeping the same sensitivity; nevertheless 30.3% of FPs were eliminated when we employed the eigenspace template matching under the same condition. Therefore, kernel eigenspace template matching could improve FP rate without a significant reduction in the true positive rate.
Collapse
Affiliation(s)
- Saki Murakawa
- Graduate School of Health Sciences, Kumamoto University
| | | | | | | | | | | |
Collapse
|
5
|
Smartphone sensors for stone lithography authentication. SENSORS 2014; 14:8217-34. [PMID: 24811077 PMCID: PMC4063060 DOI: 10.3390/s140508217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/24/2014] [Accepted: 05/04/2014] [Indexed: 11/16/2022]
Abstract
Nowadays mobile phones include quality photo and video cameras, access to wireless networks and the internet, GPS assistance and other innovative systems. These facilities open them to innovative uses, other than the classical telephonic communication one. Smartphones are a more sophisticated version of classic mobile phones, which have advanced computing power, memory and connectivity. Because fake lithographs are flooding the art market, in this work, we propose a smartphone as simple, robust and efficient sensor for lithograph authentication. When we buy an artwork object, the seller issues a certificate of authenticity, which contains specific details about the artwork itself. Unscrupulous sellers can duplicate the classic certificates of authenticity, and then use them to "authenticate" non-genuine works of art. In this way, the buyer will have a copy of an original certificate to attest that the "not original artwork" is an original one. A solution for this problem would be to insert a system that links together the certificate and the related specific artwork. To do this it is necessary, for a single artwork, to find unique, unrepeatable, and unchangeable characteristics. In this article we propose an innovative method for the authentication of stone lithographs. We use the color spots distribution captured by means of a smartphone camera as a non-cloneable texture of the specific artworks and an information management system for verifying it in mobility stone lithography.
Collapse
|
6
|
Cascio D, Magro R, Fauci F, Iacomi M, Raso G. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Comput Biol Med 2012; 42:1098-109. [PMID: 23020972 DOI: 10.1016/j.compbiomed.2012.09.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/26/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022]
Abstract
We propose a computer-aided detection (CAD) system which can detect small-sized (from 3mm) pulmonary nodules in spiral CT scans. A pulmonary nodule is a small lesion in the lungs, round-shaped (parenchymal nodule) or worm-shaped (juxtapleural nodule). Both kinds of lesions have a radio-density greater than lung parenchyma, thus appearing white on the images. Lung nodules might indicate a lung cancer and their early stage detection arguably improves the patient survival rate. CT is considered to be the most accurate imaging modality for nodule detection. However, the large amount of data per examination makes the full analysis difficult, leading to omission of nodules by the radiologist. We developed an advanced computerized method for the automatic detection of internal and juxtapleural nodules on low-dose and thin-slice lung CT scan. This method consists of an initial selection of nodule candidates list, the segmentation of each candidate nodule and the classification of the features computed for each segmented nodule candidate.The presented CAD system is aimed to reduce the number of omissions and to decrease the radiologist scan examination time. Our system locates with the same scheme both internal and juxtapleural nodules. For a correct volume segmentation of the lung parenchyma, the system uses a Region Growing (RG) algorithm and an opening process for including the juxtapleural nodules. The segmentation and the extraction of the suspected nodular lesions from CT images by a lung CAD system constitutes a hard task. In order to solve this key problem, we use a new Stable 3D Mass-Spring Model (MSM) combined with a spline curves reconstruction process. Our model represents concurrently the characteristic gray value range, the directed contour information as well as shape knowledge, which leads to a much more robust and efficient segmentation process. For distinguishing the real nodules among nodule candidates, an additional classification step is applied; furthermore, a neural network is applied to reduce the false positives (FPs) after a double-threshold cut. The system performance was tested on a set of 84 scans made available by the Lung Image Database Consortium (LIDC) annotated by four expert radiologists. The detection rate of the system is 97% with 6.1 FPs/CT. A reduction to 2.5 FPs/CT is achieved at 88% sensitivity. We presented a new 3D segmentation technique for lung nodules in CT datasets, using deformable MSMs. The result is a efficient segmentation process able to converge, identifying the shape of the generic ROI, after a few iterations. Our suitable results show that the use of the 3D AC model and the feature analysis based FPs reduction process constitutes an accurate approach to the segmentation and the classification of lung nodules.
Collapse
Affiliation(s)
- D Cascio
- Dipartimento di Fisica, Università degli Studi di Palermo, Italy.
| | | | | | | | | |
Collapse
|
7
|
Lee N, Laine AF, Márquez G, Levsky JM, Gohagan JK. Potential of computer-aided diagnosis to improve CT lung cancer screening. IEEE Rev Biomed Eng 2012; 2:136-46. [PMID: 22275043 DOI: 10.1109/rbme.2009.2034022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The development of low-dose spiral computed tomography (CT) has rekindled hope that effective lung cancer screening might yet be found. Screening is justified when there is evidence that it will extend lives at reasonable cost and acceptable levels of risk. A screening test should detect all extant cancers while avoiding unnecessary workups. Thus optimal screening modalities have both high sensitivity and specificity. Due to the present state of technology, radiologists must opt to increase sensitivity and rely on follow-up diagnostic procedures to rule out the incurred false positives. There is evidence in published reports that computer-aided diagnosis technology may help radiologists alter the benefit-cost calculus of CT sensitivity and specificity in lung cancer screening protocols. This review will provide insight into the current discussion of the effectiveness of lung cancer screening and assesses the potential of state-of-the-art computer-aided design developments.
Collapse
Affiliation(s)
- Noah Lee
- Heffner Biomedical Imaging Lab, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | | | |
Collapse
|
8
|
Farjam R, Parmar HA, Noll DC, Tsien CI, Cao Y. An approach for computer-aided detection of brain metastases in post-Gd T1-W MRI. Magn Reson Imaging 2012; 30:824-36. [PMID: 22521993 DOI: 10.1016/j.mri.2012.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/20/2012] [Accepted: 02/17/2012] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop an approach for computer-aided detection (CAD) of small brain metastases in post-Gd T1-weighted magnetic resonance imaging (MRI). METHOD A set of unevenly spaced 3D spherical shell templates was optimized to localize brain metastatic lesions by cross-correlation analysis with MRI. Theoretical and simulation analyses of effects of lesion size and shape heterogeneity were performed to optimize the number and size of the templates and the cross-correlation thresholds. Also, effects of image factors of noise and intensity variation on the performance of the CAD system were investigated. A nodule enhancement strategy to improve sensitivity of the system and a set of criteria based upon the size, shape and brightness of lesions were used to reduce false positives. An optimal set of parameters from the FROC curves was selected from a training dataset, and then the system was evaluated on a testing dataset including 186 lesions from 2753 MRI slices. Reading results from two radiologists are also included. RESULTS Overall, a 93.5% sensitivity with 0.024 of intra-cranial false positive rate (IC-FPR) was achieved in the testing dataset. Our investigation indicated that nodule enhancement was very effective in improving both sensitivity and specificity. The size and shape criteria reduced the IC-FPR from 0.075 to 0.021, and the brightness criterion decreases the extra-cranial FPR from 0.477 to 0.083 in the training dataset. Readings from the two radiologists had sensitivities of 60% and 67% in the training dataset and 70% and 80% in the testing dataset for the metastatic lesions <5 mm in diameter. CONCLUSION Our proposed CAD system has high sensitivity and fairly low FPR for detection of the small brain metastatic lesions in MRI compared to the previous work and readings of neuroradiologists. The potential of this method for assisting clinical decision- making warrants further evaluation and improvements.
Collapse
Affiliation(s)
- Reza Farjam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | | | | | | | | |
Collapse
|
9
|
Guo W, Li Q, Boyce SJ, McAdams HP, Shiraishi J, Doi K, Samei E. A computerized scheme for lung nodule detection in multiprojection chest radiography. Med Phys 2012; 39:2001-12. [PMID: 22482621 DOI: 10.1118/1.3694096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Our previous study indicated that multiprojection chest radiography could significantly improve radiologists' performance for lung nodule detection in clinical practice. In this study, the authors further verify that multiprojection chest radiography can greatly improve the performance of a computer-aided diagnostic (CAD) scheme. METHODS Our database consisted of 59 subjects, including 43 subjects with 45 nodules and 16 subjects without nodules. The 45 nodules included 7 real and 38 simulated ones. The authors developed a conventional CAD scheme and a new fusion CAD scheme to detect lung nodules. The conventional CAD scheme consisted of four steps for (1) identification of initial nodule candidates inside lungs, (2) nodule candidate segmentation based on dynamic programming, (3) extraction of 33 features from nodule candidates, and (4) false positive reduction using a piecewise linear classifier. The conventional CAD scheme processed each of the three projection images of a subject independently and discarded the correlation information between the three images. The fusion CAD scheme included the four steps in the conventional CAD scheme and two additional steps for (5) registration of all candidates in the three images of a subject, and (6) integration of correlation information between the registered candidates in the three images. The integration step retained all candidates detected at least twice in the three images of a subject and removed those detected only once in the three images as false positives. A leave-one-subject-out testing method was used for evaluation of the performance levels of the two CAD schemes. RESULTS At the sensitivities of 70%, 65%, and 60%, our conventional CAD scheme reported 14.7, 11.3, and 8.6 false positives per image, respectively, whereas our fusion CAD scheme reported 3.9, 1.9, and 1.2 false positives per image, and 5.5, 2.8, and 1.7 false positives per patient, respectively. The low performance of the conventional CAD scheme may be attributed to the high noise level in chest radiography, and the small size and low contrast of most nodules. CONCLUSIONS This study indicated that the fusion of correlation information in multiprojection chest radiography can markedly improve the performance of CAD scheme for lung nodule detection.
Collapse
Affiliation(s)
- Wei Guo
- Department of Radiology, Duke University Medical Center, Durham, NC 27705, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Kao EF, Lin WC, Hsu JS, Chou MC, Jaw TS, Liu GC. A computerized method for automated identification of erect posteroanterior and supine anteroposterior chest radiographs. Phys Med Biol 2011; 56:7737-53. [PMID: 22094308 DOI: 10.1088/0031-9155/56/24/004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A computerized scheme was developed for automated identification of erect posteroanterior (PA) and supine anteroposterior (AP) chest radiographs. The method was based on three features, the tilt angle of the scapula superior border, the tilt angle of the clavicle and the extent of radiolucence in lung fields, to identify the view of a chest radiograph. The three indices A(scapula), A(clavicle) and C(lung) were determined from a chest image for the three features. Linear discriminant analysis was used to classify PA and AP chest images based on the three indices. The performance of the method was evaluated by receiver operating characteristic analysis. The proposed method was evaluated using a database of 600 PA and 600 AP chest radiographs. The discriminant performances Az of A(scapula), A(clavicle) and C(lung) were 0.878 ± 0.010, 0.683 ± 0.015 and 0.962 ± 0.006, respectively. The combination of the three indices obtained an Az value of 0.979 ± 0.004. The results indicate that the combination of the three indices could yield high discriminant performance. The proposed method could provide radiologists with information about the view of chest radiographs for interpretation or could be used as a preprocessing step for analyzing chest images.
Collapse
Affiliation(s)
- E-Fong Kao
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|
11
|
Chen S, Suzuki K, MacMahon H. Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification. Med Phys 2011; 38:1844-58. [PMID: 21626918 DOI: 10.1118/1.3561504] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To develop a computer-aided detection (CADe) scheme for nodules in chest radiographs (CXRs) with a high sensitivity and a low false-positive (FP) rate. METHODS The authors developed a CADe scheme consisting of five major steps, which were developed for improving the overall performance of CADe schemes. First, to segment the lung fields accurately, the authors developed a multisegment active shape model. Then, a two-stage nodule-enhancement technique was developed for improving the conspicuity of nodules. Initial nodule candidates were detected and segmented by using the clustering watershed algorithm. Thirty-one shape-, gray-level-, surface-, and gradient-based features were extracted from each segmented candidate for determining the feature space, including one of the new features based on the Canny edge detector to eliminate a major FP source caused by rib crossings. Finally, a nonlinear support vector machine (SVM) with a Gaussian kernel was employed for classification of the nodule candidates. RESULTS To evaluate and compare the scheme to other published CADe schemes, the authors used a publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs. The CADe scheme based on the SVM classifier achieved sensitivities of 78.6% (110/140) and 71.4% (100/140) with averages of 5.0 (1165/233) FPs/image and 2.0 (466/233) FPs/image, respectively, in a leave-one-out cross-validation test, whereas the CADe scheme based on a linear discriminant analysis classifier had a sensitivity of 60.7% (85/140) at an FP rate of 5.0 FPs/image. For nodules classified as "very subtle" and "extremely subtle," a sensitivity of 57.1% (24/42) was achieved at an FP rate of 5.0 FPs/image. When the authors used a database developed at the University of Chicago, the sensitivities was 83.3% (40/48) and 77.1% (37/48) at an FP rate of 5.0 (240/48) FPs/image and 2.0 (96/48) FPs/image, respectively. CONCLUSIONS These results compare favorably to those described for other commercial and non-commercial CADe nodule detection systems.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
12
|
Sánchez CI, Niemeijer M, Išgum I, Dumitrescu A, Suttorp-Schulten MSA, Abràmoff MD, van Ginneken B. Contextual computer-aided detection: improving bright lesion detection in retinal images and coronary calcification identification in CT scans. Med Image Anal 2011; 16:50-62. [PMID: 21689964 DOI: 10.1016/j.media.2011.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 03/15/2011] [Accepted: 05/04/2011] [Indexed: 02/02/2023]
Abstract
Contextual information plays an important role in medical image understanding. Medical experts make use of context to detect and differentiate pathologies in medical images, especially when interpreting difficult cases. The majority of computer-aided diagnosis (CAD) systems, however, employ only local information to classify candidates, without taking into account global image information or the relation of a candidate with neighboring structures. In this paper, we present a generic system for including contextual information in a CAD system. Context is described by means of high-level features based on the spatial relation between lesion candidates and surrounding anatomical landmarks and lesions of different classes (static contextual features) and lesions of the same type (dynamic contextual features). We demonstrate the added value of contextual CAD for two real-world CAD tasks: the identification of exudates and drusen in 2D retinal images and coronary calcifications in 3D computed tomography scans. Results show that in both applications contextual CAD is superior to a local CAD approach with a significant increase of the figure of merit of the Free Receiver Operating Characteristic curve from 0.84 to 0.92 and from 0.88 to 0.98 for exudates and drusen, respectively, and from 0.87 to 0.93 for coronary calcifications.
Collapse
Affiliation(s)
- Clara I Sánchez
- Image Sciences Institute, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Pu J, Zheng B, Leader JK, Fuhrman C, Knollmann F, Klym A, Gur D. Pulmonary lobe segmentation in CT examinations using implicit surface fitting. IEEE TRANSACTIONS ON MEDICAL IMAGING 2009; 28:1986-96. [PMID: 19628453 PMCID: PMC2839920 DOI: 10.1109/tmi.2009.2027117] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lobe identification in computed tomography (CT) examinations is often an important consideration during the diagnostic process as well as during treatment planning because of their relative independence of each other in terms of anatomy and function. In this paper, we present a new automated scheme for segmenting lung lobes depicted on 3-D CT examinations. The unique characteristic of this scheme is the representation of fissures in the form of implicit functions using Radial Basis Functions (RBFs), capable of seamlessly interpolating "holes" in the detected fissures and smoothly extrapolating the fissure surfaces to the lung boundaries resulting in a "natural" segmentation of lung lobes. A previously developed statistically based approach is used to detect pulmonary fissures and the constraint points for implicit surface fitting are selected from detected fissure surfaces in a greedy manner to improve fitting efficiency. In a preliminary assessment study, lobe segmentation results of 65 chest CT examinations, five of which were reconstructed with three section thicknesses of 0.625 mm, 1.25 mm, and 2.5 mm, were subjectively and independently evaluated by two experienced chest radiologists using a five category rating scale (i.e., excellent, good, fair, poor, and unacceptable). Thirty-three of 65 examinations (50.8%) with a section thickness of 0.625 mm were rated as either "excellent" or "good" by both radiologists and only one case (1.5%) was rated by both radiologists as "poor" or "unacceptable." Comparable performance was obtained with a slice thickness of 1.25 mm, but substantial performance deterioration occurred in examinations with a section thickness of 2.5 mm. The advantages of this scheme are its full automation, relative insensitivity to fissure completeness, and ease of implementation.
Collapse
Affiliation(s)
- Jiantao Pu
- Imaging Research Division, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Pu J, Leader JK, Zheng B, Knollmann F, Fuhrman C, Sciurba FC, Gur D. A Computational geometry approach to automated pulmonary fissure segmentation in CT examinations. IEEE TRANSACTIONS ON MEDICAL IMAGING 2009; 28:710-9. [PMID: 19272987 PMCID: PMC2839918 DOI: 10.1109/tmi.2008.2010441] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Identification of pulmonary fissures, which form the boundaries between the lobes in the lungs, may be useful during clinical interpretation of computed tomography (CT) examinations to assess the early presence and characterization of manifestation of several lung diseases. Motivated by the unique nature of the surface shape of pulmonary fissures in 3-D space, we developed a new automated scheme using computational geometry methods to detect and segment fissures depicted on CT images. After a geometric modeling of the lung volume using the marching cubes algorithm, Laplacian smoothing is applied iteratively to enhance pulmonary fissures by depressing nonfissure structures while smoothing the surfaces of lung fissures. Next, an extended Gaussian image based procedure is used to locate the fissures in a statistical manner that approximates the fissures using a set of plane "patches." This approach has several advantages such as independence of anatomic knowledge of the lung structure except the surface shape of fissures, limited sensitivity to other lung structures, and ease of implementation. The scheme performance was evaluated by two experienced thoracic radiologists using a set of 100 images (slices) randomly selected from 10 screening CT examinations. In this preliminary evaluation 98.7% and 94.9% of scheme segmented fissure voxels are within 2 mm of the fissures marked independently by two radiologists in the testing image dataset. Using the scheme detected fissures as reference, 89.4% and 90.1% of manually marked fissure points have distance </= 2 mm to the reference suggesting a possible under-segmentation of the scheme. The case-based root mean square (rms) distances ("errors") between our scheme and the radiologist ranged from 1.48 +/-0.92 to 2.04 +/-3.88 mm. The discrepancy of fissure detection results between the automated scheme and either radiologist is smaller in this dataset than the interreader variability.
Collapse
Affiliation(s)
- Jiantao Pu
- Imaging Research Division, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Pu J, Zheng B, Leader JK, Wang XH, Gur D. An automated CT based lung nodule detection scheme using geometric analysis of signed distance field. Med Phys 2008; 35:3453-61. [PMID: 18777905 DOI: 10.1118/1.2948349] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The authors present a new computerized scheme to automatically detect lung nodules depicted on computed tomography (CT) images. The procedure is performed in the signed distance field of the CT images. To obtain an accurate signed distance field, CT images are first interpolated linearly along the axial direction to form an isotropic data set. Then a lung segmentation strategy is applied to smooth the lung border aiming to include as many juxtapleural nodules as possible while minimizing over segmentations of the lung regions. Potential nodule regions are then detected by locating local maximas of signed distances in each subvolume with values and the sizes larger than the smallest nodule of interest in the three-dimensional space. Finally, all detected candidates are scored by computing the similarity distance of their medial axis-like shapes obtained through a progressive clustering strategy combined with a marching cube algorithm from a sphere based shape. A free-response receiver operating characteristics curve is computed to assess the scheme performance. A performance test on 52 low-dose CT screening examinations that depict 184 verified lung nodules showed that during the initial stage the scheme achieved an asymptotic maximum sensitivity of 95.1% (175/184) with an average of 1200 suspicious voxels per CT examination. The nine missed nodules included two small solid nodules (with a diameter < or =3.1 mm) and seven nonsolid nodules. The final performance level after the similarity scoring stage was an absolute sensitivity level, namely, including the nine missed during the initial stage, of 81.5% (150/184) with 6.5 false-positive identifications per CT examination. This preliminary study demonstrates the feasibility of applying a simple and robust geometric model using the signed distance field to identify suspicious lung nodules. In the authors' data set the sensitivity of this scheme is not affected by nodule size. In addition to potentially being a stand alone approach, the signed distance field based method can be easily implemented as an initial filtering step in other computer-aided detection schemes.
Collapse
Affiliation(s)
- Jiantao Pu
- Imaging Research Center, Department of Radiology University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|
16
|
Pu J, Roos J, Yi CA, Napel S, Rubin GD, Paik DS. Adaptive border marching algorithm: automatic lung segmentation on chest CT images. Comput Med Imaging Graph 2008; 32:452-62. [PMID: 18515044 DOI: 10.1016/j.compmedimag.2008.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/17/2008] [Accepted: 04/21/2008] [Indexed: 11/17/2022]
Abstract
Segmentation of the lungs in chest-computed tomography (CT) is often performed as a preprocessing step in lung imaging. This task is complicated especially in presence of disease. This paper presents a lung segmentation algorithm called adaptive border marching (ABM). Its novelty lies in the fact that it smoothes the lung border in a geometric way and can be used to reliably include juxtapleural nodules while minimizing oversegmentation of adjacent regions such as the abdomen and mediastinum. Our experiments using 20 datasets demonstrate that this computational geometry algorithm can re-include all juxtapleural nodules and achieve an average oversegmentation ratio of 0.43% and an average under-segmentation ratio of 1.63% relative to an expert determined reference standard. The segmentation time of a typical case is under 1min on a typical PC. As compared to other available methods, ABM is more robust, more efficient and more straightforward to implement, and once the chest CT images are input, there is no further interaction needed from users. The clinical impact of this method is in potentially avoiding false negative CAD findings due to juxtapleural nodules and improving volumetry and doubling time accuracy.
Collapse
Affiliation(s)
- Jiantao Pu
- Department of Radiology, Stanford University, United States
| | | | | | | | | | | |
Collapse
|
17
|
Hardie RC, Rogers SK, Wilson T, Rogers A. Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med Image Anal 2007; 12:240-58. [PMID: 18178123 DOI: 10.1016/j.media.2007.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/09/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
A new computer aided detection (CAD) system is presented for the detection of pulmonary nodules on chest radiographs. Here, we present the details of the proposed algorithm and provide a performance analysis using a publicly available database to serve as a benchmark for future research efforts. All aspects of algorithm training were done using an independent dataset containing 167 chest radiographs with a total of 181 lung nodules. The publicly available test set was created by the Standard Digital Image Database Project Team of the Scientific Committee of the Japanese Society of Radiological Technology (JRST). The JRST dataset used here is comprised of 154 chest radiographs containing one radiologist confirmed nodule each (100 malignant cases, 54 benign cases). The CAD system uses an active shape model for anatomical segmentation. This is followed by a new weighted-multiscale convergence-index nodule candidate detector. A novel candidate segmentation algorithm is proposed that uses an adaptive distance-based threshold. A set of 114 features is computed for each candidate. A Fisher linear discriminant (FLD) classifier is used on a subset of 46 features to produce the final detections. Our results indicate that the system is able to detect 78.1% of the nodules in the JRST test set with and average of 4.0 false positives per image (excluding 14 cases containing lung nodules in retrocardiac and subdiaphragmatic regions of the lung).
Collapse
Affiliation(s)
- Russell C Hardie
- Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469-0232, United States.
| | | | | | | |
Collapse
|
18
|
Cronin P. 2D or not 2D that is the question, but 3D is the answer. Acad Radiol 2007; 14:769-71. [PMID: 17574127 DOI: 10.1016/j.acra.2007.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 11/22/2022]
|
19
|
Tagashira H, Arakawa K, Yoshimoto M, Mochizuki T, Murase K, Yoshida H. Improvement of lung abnormality detection in computed radiography using multi-objective frequency processing: Evaluation by receiver operating characteristics (ROC) analysis. Eur J Radiol 2007; 65:473-7. [PMID: 17540526 DOI: 10.1016/j.ejrad.2007.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 02/27/2007] [Accepted: 04/17/2007] [Indexed: 11/17/2022]
Abstract
Computed radiography (CR) has been shown to have relatively low sensitivity for detection of pulmonary nodules. This poor sensitivity precludes its use as a screening modality despite the low cost, low dose and wide distribution of devices. The purpose of this study was to apply multi-objective frequency processing (MFP) to CR images and to evaluate its usefulness for diagnosing subtle lung abnormalities. Fifty CR images with simulated subtle lung abnormalities were obtained from 50 volunteers. Each image was processed with MFP. We cut chest images. The chest image was divided into two rights and left. A total of 200 half-chest images (100 MFP-processed images and 100 MFP-unprocessed images) were prepared. Five radiologists participated in this study. ROC analyses demonstrated that the detection rate of simulated subtle lung abnormalities on the CR images was significantly better with MFP (Az=0.8508) than without MFP (Az=0.7925). The CR images processed with MFP could be useful for diagnosing subtle lung abnormalities. In conclusion, MFP appears to be useful for increasing the sensitivity and specificity in the detection of pulmonary nodules, ground-glass opacity (GGO) and reticular shadow.
Collapse
Affiliation(s)
- Hiroyuki Tagashira
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
We have developed computer-aided diagnosis (CAD) schemes for the detection of lung nodules, interstitial lung diseases, interval changes, and asymmetric opacities, and also for the differential diagnosis of lung nodules and interstitial lung diseases on chest radiographs. Observer performance studies indicate clearly that radiologists' diagnostic accuracy was improved significantly when radiologists used a computer output in their interpretations of chest radiographs. In addition, the automated recognition methods for the patient and the projection view by use of chest radiographs were useful for integrating the chest CAD schemes into the picture-archiving and communication system (PACS).
Collapse
Affiliation(s)
- Shigehiko Katsuragawa
- Department of Radiological Technology, School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976, Japan.
| | | |
Collapse
|
21
|
Abstract
Computer-aided diagnosis (CAD) provides a computer output as a "second opinion" in order to assist radiologists in the diagnosis of various diseases on medical images. Currently, a significant research effort is being devoted to the detection and characterization of lung nodules in thin-section computed tomography (CT) images, which represents one of the newest directions of CAD development in thoracic imaging. We describe in this article the current status of the development and evaluation of CAD schemes for the detection and characterization of lung nodules in thin-section CT. We also review a number of observer performance studies in which it was attempted to assess the potential clinical usefulness of CAD schemes for nodule detection and characterization in thin-section CT. Whereas current CAD schemes for nodule characterization have achieved high performance levels and would be able to improve radiologists' performance in the characterization of nodules in thin-section CT, current schemes for nodule detection appear to report many false positives, and, therefore, significant efforts are needed in order further to improve the performance levels of current CAD schemes for nodule detection in thin-section CT.
Collapse
Affiliation(s)
- Qiang Li
- Department of Radiology, The University of Chicago, 5841 S. Maryland Avenue, MC2026, Chicago, IL 6063, USA.
| |
Collapse
|
22
|
Hara T, Hirose M, Zhou X, Fujita H, Kiryu T, Yokoyama R, Hoshi H. Nodule detection in 3D chest CT images using 2nd order autocorrelation features. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:6247-9. [PMID: 17281694 DOI: 10.1109/iembs.2005.1615924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have developed a new recognition approach using 2nd order autocorrelation and multi-regression analysis to detect a small (<7mm in diameter) lung nodules in chest 3D CT images. By combining our previous detection method of the template matching based on genetic algorithm, the detection performance was 94% true-positive rate at 2.05 false-positive marks per case using leave-one- out study.
Collapse
Affiliation(s)
- T Hara
- department of Intelligent Image Information, Graduate School of Medicine, Gifu University, Gifu, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Shiraishi J, Li Q, Suzuki K, Engelmann R, Doi K. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med Phys 2006; 33:2642-53. [PMID: 16898468 DOI: 10.1118/1.2208739] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We developed an advanced computer-aided diagnostic (CAD) scheme for the detection of various types of lung nodules on chest radiographs intended for implementation in clinical situations. We used 924 digitized chest images (992 noncalcified nodules) which had a 500 x 500 matrix size with a 1024 gray scale. The images were divided randomly into two sets which were used for training and testing of the computerized scheme. In this scheme, the lung field was first segmented by use of a ribcage detection technique, and then a large search area (448 x 448 matrix size) within the chest image was automatically determined by taking into account the locations of a midline and a top edge of the segmented ribcage. In order to detect lung nodule candidates based on a localized search method, we divided the entire search area into 7 x 7 regions of interest (ROIs: 64 x 64 matrix size). In the next step, each ROI was classified anatomically into apical, peripheral, hilar, and diaphragm/heart regions by use of its image features. Identification of lung nodule candidates and extraction of image features were applied for each localized region (128 x 128 matrix size), each having its central part (64 x 64 matrix size) located at a position corresponding to a ROI that was classified anatomically in the previous step. Initial candidates were identified by use of the nodule-enhanced image obtained with the average radial-gradient filtering technique, in which the filter size was varied adaptively depending on the location and the anatomical classification of the ROI. We extracted 57 image features from the original and nodule-enhanced images based on geometric, gray-level, background structure, and edge-gradient features. In addition, 14 image features were obtained from the corresponding locations in the contralateral subtraction image. A total of 71 image features were employed for three sequential artificial neural networks (ANNs) in order to reduce the number of false-positive candidates. All parameters for ANNs, i.e., the number of iterations, slope of sigmoid functions, learning rate, and threshold values for removing the false positives, were determined automatically by use of a bootstrap technique with training cases. We employed four different combinations of training and test image data sets which was selected randomly from the 924 cases. By use of our localized search method based on anatomical classification, the average sensitivity was increased to 92.5% with 59.3 false positives per image at the level of initial detection for four different sets of test cases, whereas our previous technique achieved an 82.8% of sensitivity with 56.8 false positives per image. The computer performance in the final step obtained from four different data sets indicated that the average sensitivity in detecting lung nodules was 70.1% with 5.0 false positives per image for testing cases and 70.4% sensitivity with 4.2 false positives per image for training cases. The advanced CAD scheme involving the localized search method with anatomical classification provided improved detection of pulmonary nodules on chest radiographs for 924 lung nodule cases.
Collapse
Affiliation(s)
- Junji Shiraishi
- Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, 5841 S. Maryland Avenue, MC 2026, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
24
|
Campadelli P, Casiraghi E, Artioli D. A fully automated method for lung nodule detection from postero-anterior chest radiographs. IEEE TRANSACTIONS ON MEDICAL IMAGING 2006; 25:1588-603. [PMID: 17167994 DOI: 10.1109/tmi.2006.884198] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the past decades, a great deal of research work has been devoted to the development of systems that could improve radiologists' accuracy in detecting lung nodules. Despite the great efforts, the problem is still open. In this paper, we present a fully automated system processing digital postero-anterior (PA) chest radiographs, that starts by producing an accurate segmentation of the lung field area. The segmented lung area includes even those parts of the lungs hidden behind the heart, the spine, and the diaphragm, which are usually excluded from the methods presented in the literature. This decision is motivated by the fact that lung nodules may be found also in these areas. The segmented area is processed with a simple multiscale method that enhances the visibility of the nodules, and an extraction scheme is then applied to select potential nodules. To reduce the high number of false positives extracted, cost-sensitive support vector machines (SVMs) are trained to recognize the true nodules. Different learning experiments were performed on two different data sets, created by means of feature selection, and employing Gaussian and polynomial SVMs trained with different parameters; the results are reported and compared. With the best SVM models, we obtain about 1.5 false positives per image (fp/image) when sensitivity is approximately equal to 0.71; this number increases to about 2.5 and 4 fp/image when sensitivity is = 0.78 and = 0.85, respectively. For the highest sensitivity (= 0.92 and 1.0), we get 7 or 8 fp/image.
Collapse
Affiliation(s)
- Paola Campadelli
- Department of Computer Science, Universita degli Studi di Milano, Milan 20135, Italy.
| | | | | |
Collapse
|
25
|
Kao EF, Lee C, Jaw TS, Hsu JS, Liu GC. Projection profile analysis for identifying different views of chest radiographs. Acad Radiol 2006; 13:518-25. [PMID: 16554233 DOI: 10.1016/j.acra.2006.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 01/09/2006] [Accepted: 01/12/2006] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVES For computerized analysis of chest images in the clinical environment, identification of frontal (posteroanterior/anteroposterior) and lateral chest radiographs is an important preprocessing step. In this study, we developed a method to distinguish frontal from lateral views of the chest radiographs based on an analysis of the projection profile. MATERIALS AND METHODS Projection profile is obtained by projecting a chest image on to the mediolateral axis. Two indices, body symmetry index and background percentage index, are computed from the projection profile. The combination of body symmetry index and background percentage index is used to determine the view of chest radiographs. The method is evaluated on a sample of 2000 frontal and 1000 lateral chest images. RESULTS The values of body symmetry index are found to be 1.18 +/- 0.23 and 3.07 +/- 1.42 for frontal and lateral chest images, respectively. The values of background percentage index are found to be 0.03 +/- 0.05 and 0.33 +/- 0.09 for frontal and lateral chest images, respectively. The discrimination is evaluated by linear discriminant analysis and receiver operating characteristic analysis. Area Az under the receiver operating characteristic curve with the combination of the two indices is 0.993. CONCLUSION The method can be used as a preprocessing step for further analysis in chest radiographs.
Collapse
Affiliation(s)
- E-Fong Kao
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
26
|
Kao EF, Lee C, Hsu JS, Jaw TS, Liu GC. Projection profile analysis for automated detection of abnormalities in chest radiographs. Med Phys 2005; 33:118-23. [PMID: 16485417 DOI: 10.1118/1.2146049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abnormalities in chest images often present as abnormal opacity or abnormal asymmetry. We have developed a novel method for automated detection of abnormalities in chest radiographs by use of these features. Our method is based on an analysis of the projection profile obtained by projecting the pixels data of a frontal chest image on to the mediolateral axis. Two indices, lung opacity index and lung symmetry index, are computed from the projection profile. Lung opacity index and lung symmetry index are then combined to detect gross abnormalities in chest radiographs. The values of lung opacity index are found to be 0.38 +/- 0.05 and 0.37 +/- 0.06 for normal right and left lung, respectively. The values of lung symmetry index are found to be 0.018 +/- 0.014 for normal chest images. The discrimination for the combination of the two indices is evaluated by linear discriminant analysis and receiver operating characteristic (ROC) analysis. Area Az under the ROC curve with the combination of the two indices in the classification of normal and abnormal chest images is 0.963.
Collapse
Affiliation(s)
- E Fong Kao
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.
| | | | | | | | | |
Collapse
|
27
|
Schilham AMR, van Ginneken B, Loog M. A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Med Image Anal 2005; 10:247-58. [PMID: 16293441 DOI: 10.1016/j.media.2005.09.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 02/21/2005] [Accepted: 09/15/2005] [Indexed: 11/30/2022]
Abstract
A computer algorithm for nodule detection in chest radiographs is presented. The algorithm consists of four main steps: (i) image preprocessing; (ii) nodule candidate detection; (iii) feature extraction; (iv) candidate classification. Two optional extensions to this scheme are tested: candidate selection and candidate segmentation. The output of step (ii) is a list of circles, which can be transformed into more detailed contours by the extra candidate segmentation step. In addition, the candidate selection step (which is a classification step using a small number of features) can be used to reduce the list of nodule candidates before step (iii). The algorithm uses multi-scale techniques in several stages of the scheme: Candidates are found by looking for local intensity maxima in Gaussian scale space; nodule boundaries are detected by tracing edge points found at large scales down to pixel scale; some of the features used for classification are taken from a multi-scale Gaussian filterbank. Experiments with this scheme (with and without the segmentation and selection steps) are carried out on a previously characterized, publicly available database, that contains a large number of very subtle nodules. For this database, counting as detections only those nodules that were indicated with a confidence level of 50% or more, radiologists previously detected 70% of the nodules. For our algorithm, it turns out that the selection step does have an added value for the system, while segmentation does not lead to a clear improvement. With the scheme with the best performance, accepting on average two false positives per image results in the identification of 51% of all nodules. For four false positives, this increases to 67%. This is close to the previously reported 70% detection rate of the radiologists.
Collapse
Affiliation(s)
- Arnold M R Schilham
- Image Sciences Institute, University Medical Center Utrecht, The Netherlands.
| | | | | |
Collapse
|
28
|
Bae KT, Kim JS, Na YH, Kim KG, Kim JH. Pulmonary nodules: automated detection on CT images with morphologic matching algorithm--preliminary results. Radiology 2005; 236:286-93. [PMID: 15955862 DOI: 10.1148/radiol.2361041286] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Institutional review board approval was obtained. Informed patient consent was not required for this retrospective study, which involved review of previously obtained image data. Patient confidentiality was protected; the study was compliant with the Health Insurance Portability and Accountability Act. An automated pulmonary nodule detection program that takes advantage of three-dimensional volumetric data was developed and tested with multi-detector row computed tomographic (CT) images from 20 patients (13 men, seven women; age range, 40-75 years) with pulmonary nodules. A total of 164 nodules 3 mm in diameter and larger were detected by two radiologists in consensus and were used as a reference standard to evaluate the computer-aided detection (CAD) program. The CAD algorithm was structured to process nodules that were categorized into three types: isolated, juxtapleural, and juxtavascular. Overall sensitivity for nodule detection with the CAD program was 95.1% (156 of 164 nodules). The sensitivity according to nodule size was 91.2% (52 of 57 nodules) for nodules 3 mm to less than 5 mm and 97.2% (104 of 107 nodules) for nodules 5 mm and larger. The number of false-positive detections per patient was 6.9 for false nodule structures 3 mm and larger and 4.0 for false nodule structures 5 mm and larger.
Collapse
Affiliation(s)
- Kyongtae T Bae
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
29
|
Baker JA, Rosen EL, Crockett MM, Lo JY. Accuracy of segmentation of a commercial computer-aided detection system for mammography. Radiology 2005; 235:385-90. [PMID: 15770043 DOI: 10.1148/radiol.2352040899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To assess the accuracy of segmentation in a commercially available computer-aided detection (CAD) system. MATERIALS AND METHODS Approval for this study was obtained from the authors' institutional review board. Informed consent was not required by the board for this review, as data were stripped of patient identifiers. Two thousand twenty mammograms from 507 women were analyzed with the hardware and software of a commercial CAD system. The accuracy of the segmentation process was determined semiquantitatively and categorized as near perfect if the skin line of the breast was accurately detected, acceptable if only subcutaneous fat was excluded, or unacceptable if any breast parenchyma was excluded from consideration. The accuracy of segmentation was compared for different breast densities and film sizes by using logistic regression (P < .05). RESULTS Overall, segmentation was near perfect or acceptable in almost 96.8% of images. However, segmentation defects were significantly more common in mammograms with heterogeneously dense breast tissue (8% unacceptable) than in those with fatty replaced (0% unacceptable), scattered (1.2% unacceptable), or extremely dense (1.8% unacceptable) breast parenchyma (P < .05). For images with unacceptable segmentation, the average percentage of breast parenchyma excluded was almost 25% (range, 5%-100%), with no significant differences among breast densities. CONCLUSION For one commercial CAD system, segmentation was usually near perfect or acceptable but was unacceptable more than five times more frequently for mammograms of breasts with heterogeneously dense parenchyma than for those with all other breast densities. On average, one-quarter of the breast parenchyma was excluded from CAD analysis for images with unacceptable segmentation.
Collapse
Affiliation(s)
- Jay A Baker
- Department of Radiology, Duke University Medical Center, Box 3800, Erwin Road, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
30
|
Abe H, Macmahon H, Shiraishi J, Li Q, Engelmann R, Doi K. Computer-aided diagnosis in chest radiology. Semin Ultrasound CT MR 2005; 25:432-7. [PMID: 15559126 DOI: 10.1053/j.sult.2004.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chest radiography is still a useful examination in various situations, although CT has become a modality of choice as a diagnostic examination in many cases. Current computer-aided diagnosis (CAD) schemes for chest radiographs include nodule detection, interstitial disease detection, temporal subtraction, differential diagnosis of interstitial disease, and distinction between benign and malignant pulmonary nodules. All of these schemes are demonstrated as providing potentially useful tools for radiologists when the output of these schemes is used as a "second opinion." There are some commercially available products for these schemes and more are expected to be available in the near future. The current status of CAD for CT is also discussed briefly in this article.
Collapse
Affiliation(s)
- Hiroyuki Abe
- Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol 2005; 12:191-201. [PMID: 15721596 DOI: 10.1016/j.acra.2004.11.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 11/11/2004] [Accepted: 11/17/2004] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVE We developed a technique that uses a multiple massive-training artificial neural network (multi-MTANN) to reduce the number of false-positive results in a computer-aided diagnostic (CAD) scheme for detecting nodules in chest radiographs. MATERIALS AND METHODS Our database consisted of 91 solitary pulmonary nodules, including 64 malignant nodules and 27 benign nodules, in 91 chest radiographs. With our current CAD scheme based on a difference-image technique and linear discriminant analysis, we achieved a sensitivity of 82.4%, with 4.5 false positives per image. We developed the multi-MTANN for further reduction of the false positive rate. An MTANN is a highly nonlinear filter that can be trained with input images and corresponding teaching images. To reduce the effects of background levels in chest radiographs, we applied a background-trend-correction technique, followed by contrast normalization, to the input images for the MTANN. For enhancement of nodules, the teaching image was designed to contain the distribution for a "likelihood of being a nodule." Six MTANNs in the multi-MTANN were trained by using typical nodules and six different types of non-nodules (false positives). RESULTS Use of the trained multi-MTANN eliminated 68.3% of false-positive findings with a reduction of one true-positive result. The false-positive rate of our original CAD scheme was improved from 4.5 to 1.4 false positives per image, at an overall sensitivity of 81.3%. CONCLUSION Use of a multi-MTANN substantially reduced the false-positive rate of our CAD scheme for lung nodule detection on chest radiographs, while maintaining a level of sensitivity.
Collapse
Affiliation(s)
- Kenji Suzuki
- Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
32
|
Boone JM, Hurlock GS, Seibert JA, Kennedy RL. Automated recognition of lateral from PA chest radiographs: saving seconds in a PACS environment. J Digit Imaging 2004; 16:345-9. [PMID: 14749967 PMCID: PMC3044068 DOI: 10.1007/s10278-003-1662-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Images acquired in a two-view digital chest examination are frequently not electronically distinguishable. As a result the lateral and posterioanterio (PA) images are often improperly positioned on a PACS work station. A series of 1998 chest radiographs (999 lateral, 999 PA or AP) were used to develop a neural network classifier. The images were down-sampled to 16 x 16 matrices, and a feed-forward neural network was trained and tested using the "leave-one-out" method. Using five nodes in the hidden layer, the neural network correctly identified 987 of the 999 test cases (98.8%) (average of six runs). The simple architecture and speed of this technique suggests that it would be a useful addition to PACS work station software. The accumulated time saved by correctly positioning the lateral and PA chest images on the work station monitors in accordance with each radiologist's hanging protocols was estimated to be about 1 week of radiologist time per year.
Collapse
Affiliation(s)
- John M Boone
- Department of Radiology, University of California-Davis Medical Center, Sacramento, CA 95817, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
RATIONALE AND OBJECTIVES This study was performed to evaluate an optical flow method for registering serial computed tomographic (CT) images of lung volumes to assist physicians in visualizing and assessing changes between CT scans. MATERIALS AND METHODS The optical flow method is a coarse-to-fine model-based motion estimation technique for estimating first a global parametric transformation and then local deformations. Five serial pairs of CT images of lung volumes that were misaligned because of patient positioning, respiration, and/or different fields of view were used to test the method. RESULTS Lung volumes depicted on the serial paired images initially were correlated at only 28%-68% because of misalignment. With use of the optical flow method, the serial images were aligned to at least 95% correlation. CONCLUSION The optical flow method enables a direct comparison of serial CT images of lung volumes for the assessment of nodules or functional changes in the lung.
Collapse
Affiliation(s)
- Lawrence Dougherty
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Silverstein, 3400 Spruce St, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
34
|
|