1
|
Karger CP, Elter A, Dorsch S, Mann P, Pappas E, Oldham M. Validation of complex radiotherapy techniques using polymer gel dosimetry. Phys Med Biol 2024; 69:06TR01. [PMID: 38330494 DOI: 10.1088/1361-6560/ad278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Alina Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
| | - Stefan Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Philipp Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Evangelos Pappas
- Radiology & Radiotherapy Sector, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
2
|
De Deene Y. Radiation Dosimetry by Use of Radiosensitive Hydrogels and Polymers: Mechanisms, State-of-the-Art and Perspective from 3D to 4D. Gels 2022; 8:599. [PMID: 36135311 PMCID: PMC9498652 DOI: 10.3390/gels8090599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 12/22/2022] Open
Abstract
Gel dosimetry was developed in the 1990s in response to a growing need for methods to validate the radiation dose distribution delivered to cancer patients receiving high-precision radiotherapy. Three different classes of gel dosimeters were developed and extensively studied. The first class of gel dosimeters is the Fricke gel dosimeters, which consist of a hydrogel with dissolved ferrous ions that oxidize upon exposure to ionizing radiation. The oxidation results in a change in the nuclear magnetic resonance (NMR) relaxation, which makes it possible to read out Fricke gel dosimeters by use of quantitative magnetic resonance imaging (MRI). The radiation-induced oxidation in Fricke gel dosimeters can also be visualized by adding an indicator such as xylenol orange. The second class of gel dosimeters is the radiochromic gel dosimeters, which also exhibit a color change upon irradiation but do not use a metal ion. These radiochromic gel dosimeters do not demonstrate a significant radiation-induced change in NMR properties. The third class is the polymer gel dosimeters, which contain vinyl monomers that polymerize upon irradiation. Polymer gel dosimeters are predominantly read out by quantitative MRI or X-ray CT. The accuracy of the dosimeters depends on both the physico-chemical properties of the gel dosimeters and on the readout technique. Many different gel formulations have been proposed and discussed in the scientific literature in the last three decades, and scanning methods have been optimized to achieve an acceptable accuracy for clinical dosimetry. More recently, with the introduction of the MR-Linac, which combines an MRI-scanner and a clinical linear accelerator in one, it was shown possible to acquire dose maps during radiation, but new challenges arise.
Collapse
Affiliation(s)
- Yves De Deene
- Liverpool & Macarthur Cancer Therapy Centres, Liverpool, NSW 1871, Australia; or
- Ingham Institute, Liverpool, NSW 2170, Australia
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
3
|
Development and Application of MAGIC-f Gel in Cancer Research and Medical Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Much of the complex medical physics work requires radiation dose delivery, which requires dosimeters to accurately measure complex three-dimensional dose distribution with good spatial resolution. MAGIC-f polymer gel is one of the emerging new dosimeters widely used in medical physics research. The purpose of this study was to present an overview of polymer gel dosimetry, using MAGIC-f gel, including its composition, manufacture, imaging, calibration, and application to medical physics research. In this review, the history of polymer gel development is presented, along with the applications so far. Moreover, the most important experiments/applications of MAGIC-f polymer gel are discussed to illustrate the behavior of gel on different conditions of irradiation, imaging, and manufacturing techniques. Finally, various future works are suggested based on the past and present works on MAGIC-f gel and polymer gel in general, with the hope that these bits of knowledge can provide important clues for future research on MAGIC-f gel as a dosimeter.
Collapse
|
4
|
Sanchez-Parcerisa D, Sanz-García I, Ibáñez P, España S, Espinosa A, Gutiérrez-Neira C, López A, Vera JA, Mazal A, Fraile LM, Udías JM. Radiochromic film dosimetry for protons up to 10 MeV with EBT2, EBT3 and unlaminated EBT3 films. Phys Med Biol 2021; 66. [PMID: 33910190 DOI: 10.1088/1361-6560/abfc8d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022]
Abstract
Passive dosimetry with radiochromic films is widely used in proton radiotherapy, both in clinical and scientific environments, thanks to its simplicity, high spatial resolution and dose-rate independence. However, film under-response for low-energy protons, the so-called linear-energy transfer (LET) quenching, must be accounted and corrected for. We perform a meta-analysis on existing film under-response data with EBT, EBT2 and EBT3 GAFchromic™ films and provide a common framework to integrate it, based on the calculation of dose-averaged LET in the active layer of the films. We also report on direct measurements with the 10 MeV proton beam at the Center for Microanalysis of Materials (CMAM) for EBT2, EBT3 and unlaminated EBT3 films, focusing on the 20-80 keVμm-1LET range, where previous data was scarce. Measured film relative efficiency (RE) values are in agreement with previously reported data from the literature. A model on film RE constructed with combined literature and own experimental values in the 5-80 keVμm-1LET range is presented, supporting the hypothesis of a linear decrease of RE with LET, with no remarkable differences between the three types of films analyzed.
Collapse
Affiliation(s)
- Daniel Sanchez-Parcerisa
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Sedecal Molecular Imaging, Algete, Madrid, Spain
| | - Irene Sanz-García
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain
| | - Paula Ibáñez
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Samuel España
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Andrea Espinosa
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carolina Gutiérrez-Neira
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Spain.,ALBA Synchrotron Light Source (CELLS-ALBA), Cerdanyola del Vallès, Barcelona, Spain
| | - Alfonso López
- Dept. de Radiofísica y Protección Radiológica, Hospital de Fuenlabrada, Madrid, Spain
| | - Juan Antonio Vera
- Centro de Protonterapia de Quirónsalud, Pozuelo de Alarcón, Madrid, Spain
| | - Alejandro Mazal
- Centro de Protonterapia de Quirónsalud, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Mario Fraile
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
5
|
Valdetaro LB, Høye EM, Skyt PS, Petersen JBB, Balling P, Muren LP. Empirical quenching correction in radiochromic silicone-based three-dimensional dosimetry of spot-scanning proton therapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 18:11-18. [PMID: 34258402 PMCID: PMC8254200 DOI: 10.1016/j.phro.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/24/2022]
Abstract
Background and purpose Three-dimensional dosimetry of proton therapy (PT) with chemical dosimeters is challenged by signal quenching, which is a lower dose-response in regions with high ionization density due to high linear-energy-transfer (LET) and dose-rate. This study aimed to assess the viability of an empirical correction model for 3D radiochromic silicone-based dosimeters irradiated with spot-scanning PT, by parametrizing its LET and dose-rate dependency. Materials and methods Ten cylindrical radiochromic dosimeters (Ø50 and Ø75 mm) were produced in-house, and irradiated with different spot-scanning proton beam configurations and machine-set dose rates ranging from 56 to 145 Gy/min. Beams with incident energies of 75, 95 and 120 MeV, a spread-out Bragg peak and a plan optimized to an irregular target volume were included. Five of the dosimeters, irradiated with 120 MeV beams, were used to estimate the quenching correction factors. Monte Carlo simulations were used to obtain dose and dose-averaged-LET (LETd) maps. Additionally, a local dose-rate map was estimated, using the simulated dose maps and the machine-set dose-rate information retrieved from the irradiation log-files. Finally, the correction factor was estimated as a function of LETd and local dose-rate and tested on the different fields. Results Gamma-pass-rates of the corrected measurements were >94% using a 3%-3 mm gamma analysis and >88% using 2%-2 mm, with a dose deviation of <5.6 ± 1.8%. Larger dosimeters showed a 20% systematic increase in dose-response, but the same quenching in signal when compared to the smaller dosimeters. Conclusion The quenching correction model was valid for different dosimeter sizes to obtain relative dosimetric maps of complex dose distributions in PT.
Collapse
Affiliation(s)
- Lia Barbosa Valdetaro
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Ellen Marie Høye
- Department of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Peter Sandegaard Skyt
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | | | - Peter Balling
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Ludvig Paul Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.,Medical Physics, Department of Oncology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
6
|
Khajeali A, Khodadadi R, Kasesaz Y, Horsfield M, Farajollahi AR. Measurement of dose distribution from treatment of shallow brain tumors in BNCT by NIPAM polymer gel. PROGRESS IN NUCLEAR ENERGY 2017. [DOI: 10.1016/j.pnucene.2017.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Bradley D, Siti Shafiqah A, Siti Rozaila Z, Sabtu SN, Abdul Sani S, Alanazi AH, Jafari S, Amouzad Mahdiraji G, Mahamd Adikan F, Maah M, Nisbet A, Tamchek N, Abdul Rashid H, Alkhorayef M, Alzimami K. Developments in production of silica-based thermoluminescence dosimeters. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Tanaka K, Sakurai Y, Hayashi SI, Kajimoto T, Uchida R, Tanaka H, Takata T, Bengua G, Endo S. Computational investigation of suitable polymer gel composition for the QA of the beam components of a BNCT irradiation field. Appl Radiat Isot 2017; 127:253-259. [PMID: 28683330 DOI: 10.1016/j.apradiso.2017.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/26/2017] [Accepted: 06/13/2017] [Indexed: 11/26/2022]
Abstract
This study investigated the optimum composition of the MAGAT polymer gel which is to be used in the quality assurance measurement of the thermal neutron, fast neutron and gamma ray components in the irradiation field used for boron neutron capture therapy at the Kyoto University Reactor. Simulations using the PHITS code showed that when combined with the gel, 6Li concentrations of 0, 10 and 100ppm were found to be potentially usable.
Collapse
Affiliation(s)
- Kenichi Tanaka
- Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Japan.
| | | | - Shin-Ichiro Hayashi
- Faculty of Health Sciences, Hiroshima International University, Higashi-Hiroshima, Japan
| | - Tsuyoshi Kajimoto
- Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ryohei Uchida
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroki Tanaka
- Research Reactor Institute, Kyoto University, Kumatori, Japan
| | - Takushi Takata
- Research Reactor Institute, Kyoto University, Kumatori, Japan
| | - Gerard Bengua
- Auckland City Hospital, Park Rd, Grafton, Auckland, New Zealand
| | - Satoru Endo
- Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
9
|
Høye EM, Skyt PS, Balling P, Muren LP, Taasti VT, Swakoń J, Mierzwińska G, Rydygier M, Bassler N, Petersen JBB. Chemically tuned linear energy transfer dependent quenching in a deformable, radiochromic 3D dosimeter. Phys Med Biol 2017; 62:N73-N89. [PMID: 28134130 DOI: 10.1088/1361-6560/aa512a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most solid-state detectors, including 3D dosimeters, show lower signal in the Bragg peak than expected, a process termed quenching. The purpose of this study was to investigate how variation in chemical composition of a recently developed radiochromic, silicone-based 3D dosimeter influences the observed quenching in proton beams. The dependency of dose response on linear energy transfer, as calculated through Monte Carlo simulations of the dosimeter, was investigated in 60 MeV proton beams. We found that the amount of quenching varied with the chemical composition: peak-to-plateau ratios (1 cm into the plateau) ranged from 2.2 to 3.4, compared to 4.3 using an ionization chamber. The dose response, and thereby the quenching, was predominantly influenced by the curing agent concentration, which determined the dosimeter's deformation properties. The dose response was found to be linear at all depths. All chemical compositions of the dosimeter showed dose-rate dependency; however this was not dependent on the linear energy transfer. Track-structure theory was used to explain the observed quenching effects. In conclusion, this study shows that the silicone-based dosimeter has potential for use in measuring 3D-dose-distributions from proton beams.
Collapse
Affiliation(s)
- Ellen Marie Høye
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Khajeali A, Reza Farajollahi A, Kasesaz Y, Khodadadi R, Khalili A, Naseri A. Capability of NIPAM polymer gel in recording dose from the interaction of (10)B and thermal neutron in BNCT. Appl Radiat Isot 2015; 105:257-263. [PMID: 26356043 DOI: 10.1016/j.apradiso.2015.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/10/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of (10)B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without (10)B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of (10)B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to (10)B and thermal neutron reaction in BNCT.
Collapse
Affiliation(s)
- Azim Khajeali
- Faculty of Medicine, Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Farajollahi
- Medical Education Research Center, Tabriz, Iran; Faculty of Medicine, Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran; Imam Reza Educational Hospital, Radiotherapy Department, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yaser Kasesaz
- Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Roghayeh Khodadadi
- Faculty of Medicine, Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Assef Khalili
- Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Naseri
- Imam Reza Educational Hospital, Radiotherapy Department, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Role of gel dosimeters in boron neutron capture therapy. Appl Radiat Isot 2015; 103:72-81. [PMID: 26070173 DOI: 10.1016/j.apradiso.2015.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/10/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022]
Abstract
Gel dosimeters have acquired a unique status in radiotherapy, especially with the advent of the new techniques in which there is a need for three-dimensional dose measurement with high spatial resolution. One of the techniques in which the use of gel dosimeters has drawn the attention of the researchers is the boron neutron capture therapy. Exploring the history of gel dosimeters, this paper sets out to study their role in the boron neutron capture therapy dosimetric process.
Collapse
|
12
|
Reinhardt S, Würl M, Greubel C, Humble N, Wilkens JJ, Hillbrand M, Mairani A, Assmann W, Parodi K. Investigation of EBT2 and EBT3 films for proton dosimetry in the 4-20 MeV energy range. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:71-79. [PMID: 25572031 DOI: 10.1007/s00411-014-0581-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Radiochromic films such as Gafchromic EBT2 or EBT3 films are widely used for dose determination in radiation therapy because they offer a superior spatial resolution compared to any other digital dosimetric 2D detector array. The possibility to detect steep dose gradients is not only attractive for intensity-modulated radiation therapy with photons but also for intensity-modulated proton therapy. Their characteristic dose rate-independent response makes radiochromic films also attractive for dose determination in cell irradiation experiments using laser-driven ion accelerators, which are currently being investigated as future medical ion accelerators. However, when using these films in ion beams, the energy-dependent dose response in the vicinity of the Bragg peak has to be considered. In this work, the response of these films for low-energy protons is investigated. To allow for reproducible and background-free irradiation conditions, the films were exposed to mono-energetic protons from an electrostatic accelerator, in the 4-20 MeV energy range. For comparison, irradiation with clinical photons was also performed. It turned out that in general, EBT2 and EBT3 films show a comparable performance. For example, dose-response curves for photons and protons with energies as low as 11 MeV show almost no differences. However, corrections are required for proton energies below 11 MeV. Care has to be taken when correction factors are related to an average LET from depth-dose measurements, because only the dose-averaged LET yields similar results as obtained in mono-energetic measurements.
Collapse
Affiliation(s)
- S Reinhardt
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians Universität München, 85748, Garching, Germany.
| | - M Würl
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians Universität München, 85748, Garching, Germany
| | - C Greubel
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, 85779, Neubiberg, Germany
| | - N Humble
- Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - J J Wilkens
- Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - M Hillbrand
- Rinecker Proton Therapy Center, Munich, Germany
| | - A Mairani
- Medical Physics Unit CNAO Foundation, Pavia, Italy
| | - W Assmann
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians Universität München, 85748, Garching, Germany
| | - K Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians Universität München, 85748, Garching, Germany
| |
Collapse
|
13
|
Doran S, Gorjiara T, Kacperek A, Adamovics J, Kuncic Z, Baldock C. Issues involved in the quantitative 3D imaging of proton doses using optical CT and chemical dosimeters. Phys Med Biol 2015; 60:709-26. [PMID: 25555069 PMCID: PMC5390951 DOI: 10.1088/0031-9155/60/2/709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/17/2014] [Accepted: 10/29/2014] [Indexed: 11/12/2022]
Abstract
Dosimetry of proton beams using 3D imaging of chemical dosimeters is complicated by a variation with proton linear energy transfer (LET) of the dose-response (the so-called 'quenching effect'). Simple theoretical arguments lead to the conclusion that the total absorbed dose from multiple irradiations with different LETs cannot be uniquely determined from post-irradiation imaging measurements on the dosimeter. Thus, a direct inversion of the imaging data is not possible and the proposition is made to use a forward model based on appropriate output from a planning system to predict the 3D response of the dosimeter. In addition to the quenching effect, it is well known that chemical dosimeters have a non-linear response at high doses. To the best of our knowledge it has not yet been determined how this phenomenon is affected by LET. The implications for dosimetry of a number of potential scenarios are examined.Dosimeter response as a function of depth (and hence LET) was measured for four samples of the radiochromic plastic PRESAGE(®), using an optical computed tomography readout and entrance doses of 2.0 Gy, 4.0 Gy, 7.8 Gy and 14.7 Gy, respectively. The dosimeter response was separated into two components, a single-exponential low-LET response and a LET-dependent quenching. For the particular formulation of PRESAGE(®) used, deviations from linearity of the dosimeter response became significant for doses above approximately 16 Gy. In a second experiment, three samples were each irradiated with two separate beams of 4 Gy in various different configurations. On the basis of the previous characterizations, two different models were tested for the calculation of the combined quenching effect from two contributions with different LETs. It was concluded that a linear superposition model with separate calculation of the quenching for each irradiation did not match the measured result where two beams overlapped. A second model, which used the concept of an 'effective dose' matched the experimental results more closely. An attempt was made to measure directly the quench function for two proton beams as a function of all four variables of interest (two physical doses and two LET values). However, this approach was not successful because of limitations in the response of the scanner.
Collapse
Affiliation(s)
- Simon Doran
- CRUK Cancer Imaging Centre, Institute of Cancer Research, London, UK
- Department of Physics, University of Surrey, Guildford, Surrey, UK
| | - Tina Gorjiara
- Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | | | - John Adamovics
- Department of Chemistry and Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - Zdenka Kuncic
- Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006, Australia
| | - Clive Baldock
- Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Seco J, Clasie B, Partridge M. Review on the characteristics of radiation detectors for dosimetry and imaging. Phys Med Biol 2014; 59:R303-47. [PMID: 25229250 DOI: 10.1088/0031-9155/59/20/r303] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general discussion of the application of detectors for x-ray nuclear medicine and ion beam imaging and dosimetry is presented.
Collapse
Affiliation(s)
- Joao Seco
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
15
|
Fiorini F, Kirby D, Thompson J, Green S, Parker D, Jones B, Hill M. Under-response correction for EBT3 films in the presence of proton spread out Bragg peaks. Phys Med 2014; 30:454-61. [DOI: 10.1016/j.ejmp.2013.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/24/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022] Open
|
16
|
|
17
|
Herrmann R, Jäkel O, Palmans H, Sharpe P, Bassler N. Dose response of alanine detectors irradiated with carbon ion beams. Med Phys 2011; 38:1859-66. [DOI: 10.1118/1.3560459] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
Yoshioka M, Tominaga T, Usui S, Hayashi S, Haneda K, Tsunei Y, Katahira K, Suga D, Hishikawa Y, Teshima T. Examination of fundamental characteristics of a polymer gel detector in a proton beam irradiation. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2010.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Nowais SA, Kacperek A, Brunt JNH, Adamovics J, Nisbet A, Doran SJ. An investigation of the response of the radiochromic dosimeter PRESAGETMto irradiation by 62 MeV protons. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/250/1/012034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ. Polymer gel dosimetry. Phys Med Biol 2010. [PMID: 20150687 DOI: 10.1088/0031‐9155/55/5/r01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.
Collapse
Affiliation(s)
- C Baldock
- Institute of Medical Physics, School of Physics, University of Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ. Polymer gel dosimetry. Phys Med Biol 2010; 55:R1-63. [PMID: 20150687 DOI: 10.1088/0031-9155/55/5/r01] [Citation(s) in RCA: 450] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.
Collapse
Affiliation(s)
- C Baldock
- Institute of Medical Physics, School of Physics, University of Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sellakumar P, James Jebaseelan Samuel E. Study on energy dependence of PAGAT polymer gel dosimeter evaluated using X-Ray CT. RADIAT MEAS 2010. [DOI: 10.1016/j.radmeas.2009.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Kirby D, Green S, Palmans H, Hugtenburg R, Wojnecki C, Parker D. LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry. Phys Med Biol 2009; 55:417-33. [DOI: 10.1088/0031-9155/55/2/006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Baldock C. Historical overview of the development of gel dosimetry: Another personal perspective. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1742-6596/164/1/012002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Tominaga T, Yoshioka M, Usui S, Hayashi S, Haneda K, Suga D, Katahira K, Tsunei Y. The examination of fundamental characteristics of polymer gel detectors in the irradiation of 210MeV protons. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1742-6596/164/1/012012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Abstract
This study reports on the effects of x-ray CT dose in CT imaged normoxic polyacrylamide (nPAG) gel dosimeters. The investigation is partitioned into three sections. First, the CT dose absorbed in nPAG is quantified under a range of typical gel CT imaging protocols. It is found that the maximum absorbed CT dose occurs for volumetric imaging and is in the range of 4.6 +/- 0.2 cGy/image. This does scales linearly with image averaging. Second, using Raman spectroscopy, the response of nPAG to CT imaging photon energies (i.e., 120-140 kVp) is established and compared to the well known dose response of nPAG exposed to 6 MV photons. It is found that nPAG exhibits a weaker response (per unit dose) to 140-kVp incident photons as compared to 6 MV incident photons (slopes m6 mv = -0.0374 +/- 0.0006 Gy(-1) and m140 kVp = -0.016 +/- 0.001 Gy(-1)). Finally, using the above data, an induced change in CT number (deltaN(CT)) is calculated for nPAG imaged using a range of gel imaging protocols. It is found that under typical imaging protocols (120-140 kVp, 200 mAs, approximately 16-32 image averages) a deltaN(CT) < 0.2 H is induced in active nPAG dosimeters. This deltaN(CT) is below the current limit of detectability of CT nPAG polymer gel dosimetry. Under expanded imaging protocols (e.g., very high number of image averages) an induced deltaN(CT) of approximately 0.5 H is possible. In these situations the additional polymerization occurring in nPAG due to the imaging process may need to be accounted for.
Collapse
Affiliation(s)
- P Baxter
- Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada
| | | | | |
Collapse
|
27
|
Uusi-Simola J, Heikkinen S, Kotiluoto P, Serén T, Seppälä T, Auterinen I, Savolainen S. MAGIC polymer gel for dosimetric verification in boron neutron capture therapy. J Appl Clin Med Phys 2007; 8:114-23. [PMID: 17592463 PMCID: PMC5722414 DOI: 10.1120/jacmp.v8i2.2409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 02/06/2007] [Accepted: 12/31/1969] [Indexed: 11/23/2022] Open
Abstract
Radiation sensitive polymer gels are among the most promising three-dimensional dose verification tools developed to date. Polymer gel dosimeter known by the acronym MAGIC has been tested for evaluation of its use in boron neutron capture (BNCT) dosimetry. We irradiated a large (diameter 10 cm, length 20 cm) cylindrical gel phantom in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. Gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator to compare dose response in the two different types of beams. Irradiated gel phantoms were imaged using MRI to determine their relaxation rate R2 maps. The measured and normalized dose distribution in the epithermal neutron beam was compared to the dose distribution calculated by computer simulation. The results support the feasibility MAGIC gel in BNCT dosimetry.
Collapse
Affiliation(s)
- Jouni Uusi-Simola
- HUS, Medical Imaging Centre, Helsinki University Central Hospital, Finland.
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
|
30
|
Doran S, Al-Nowais S, Krstajić N, Adamovics J, Kacperek A, Brunt J. True-3D scans using PRESAGETMand Optical-CT: A case study in proton therapy. ACTA ACUST UNITED AC 2007. [DOI: 10.1088/1742-6596/56/1/036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
MacDougall ND, Miquel ME, Wilson DJ, Keevil SF, Smith MA. Evaluation of the dosimetric performance of BANG3® polymer gel. Phys Med Biol 2005; 50:1717-26. [PMID: 15815092 DOI: 10.1088/0031-9155/50/8/007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
New radiotherapy techniques call for three-dimensional dosimetric methods with high spatial resolution. Radiation sensitive gels read out using MRI T(2) mapping provide an extremely promising option, and commercially available BANG polymer gels provide a convenient route into gel dosimetry. Gel dosimetry is dependent on the ability to calibrate gel response against radiation dose. This in turn is dependent on the reproducibility of response both between gels irradiated to the same dose and for a single gel sample over time. This study aims to evaluate the performance of a commercially available BANG gel. Our experimental arrangement gave excellent precision of radiation delivery (<0.2%) and reproducibility of T(2) measurement (<0.5%). Seven groups of 10 test tubes containing BANG3 gel were irradiated in 0.5 Gy steps between 0 and 3 Gy. A further four groups of four samples were irradiated in 2 Gy steps between 4 and 10 Gy. The gel samples were identical and derived from the same manufacturing batch. MR imaging was carried out four days after irradiation and then at weekly intervals for four weeks. Short-term variation in gel response can readily be corrected using reference samples. Longer term systematic drift of the gel calibration curve was observed relative to reference samples prepared in-house for quality assurance purposes. This implies that read-out of the calibration gels and dosimetry phantom must be performed at the same time after irradiation, or errors of up to 25% may be incurred. Precision of gel response did not change significantly over time. The observation of significantly different T(2) values both prior to irradiation and following irradiation to the same dose (variation up to 15%) illustrates the current difficulties associated with BANG3 gel calibration and constrains the practical utility of these commercially available gels for clinical radiation dosimetry.
Collapse
Affiliation(s)
- N D MacDougall
- Department of Medical Physics, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | | |
Collapse
|
32
|
Baldock C. X-ray computer tomography, ultrasound and vibrational spectroscopic evaluation techniques of polymer gel dosimeters. ACTA ACUST UNITED AC 2004. [DOI: 10.1088/1742-6596/3/1/012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Gustavsson H, Bäck SAJ, Medin J, Grusell E, Olsson LE. Linear energy transfer dependence of a normoxic polymer gel dosimeter investigated using proton beam absorbed dose measurements. Phys Med Biol 2004; 49:3847-55. [PMID: 15470909 DOI: 10.1088/0031-9155/49/17/002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three-dimensional dosimetry with good spatial resolution can be performed using polymer gel dosimetry, which has been investigated for dosimetry of different types of particles. However, there are only sparse data concerning the influence of the linear energy transfer (LET) properties of the radiation on the gel absorbed dose response. The purpose of this study was to investigate possible LET dependence for a polymer gel dosimeter using proton beam absorbed dose measurements. Polymer gel containing the antioxidant tetrakis(hydroxymethyl)phosphonium (THP) was irradiated with 133 MeV monoenergetic protons, and the gel absorbed dose response was evaluated using MRI. The LET distribution for a monoenergetic proton beam was calculated as a function of depth using the Monte Carlo code PETRA. There was a steep increase in the Monte Carlo calculated LET starting at the depth corresponding to the front edge of the Bragg peak. This increase was closely followed by a decrease in the relative detector sensitivity (Srel = Dgel/Ddiode), indicating that the response of the polymer gel detector was dependent on LET. The relative sensitivity was 0.8 at the Bragg peak, and reached its minimum value at the end of the proton range. No significant effects in the detector response were observed for LET < 4.9 keV microm(-1), thus indicating that the behaviour of the polymer gel dosimeter would not be altered for the range of LET values expected in the case of photons or electrons in a clinical range of energies.
Collapse
Affiliation(s)
- Helen Gustavsson
- Department of Medical Radiation Physics, Lund University, Malmö University Hospital, SE-205 02, Malmö, Sweden.
| | | | | | | | | |
Collapse
|
34
|
Uusi-Simola J, Savolainen S, Kangasmäki A, Heikkinen S, Perkiö J, Abo Ramadan U, Seppälä T, Karila J, Serén T, Kotiluoto P, Sorvari P, Auterinen I. Study of the relative dose-response of BANG-3 polymer gel dosimeters in epithermal neutron irradiation. Phys Med Biol 2003; 48:2895-906. [PMID: 14516107 DOI: 10.1088/0031-9155/48/17/310] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polymer gels have been reported as a new, potential tool for dosimetry in mixed neutron-gamma radiation fields. In this work, BANG-3 (MGS Research Inc.) gel vials from three production batches were irradiated with 6 MV photons of a Varian Clinac 2100 C linear accelerator and with the epithermal neutron beam of the Finnish boron neutron capture therapy (BNCT) facility at the FiR 1 nuclear reactor. The gel is tissue equivalent in main elemental composition and density and its T2 relaxation time is dependent on the absorbed dose. The T2 relaxation time map of the irradiated gel vials was measured with a 1.5 T magnetic resonance (MR) scanner using spin echo sequence. The absorbed doses of neutron irradiation were calculated using DORT computer code, and the accuracy of the calculational model was verified by measuring gamma ray dose rate with thermoluminescent dosimeters and 55Mn(n,gamma) activation reaction rate with activation detectors. The response of the BANG-3 gel dosimeter for total absorbed dose in the neutron irradiation was linear, and the magnitude of the response relative to the response in the photon irradiation was observed to vary between different gel batches. The results support the potential of polymer gels in BNCT dosimetry, especially for the verification of two- or three-dimensional dose distributions.
Collapse
Affiliation(s)
- J Uusi-Simola
- Department of Radiology, Helsinki University Central Hospital, FIN-00029 HUS, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Heufelder J, Stiefel S, Pfaender M, Lüdemann L, Grebe G, Heese J. Use of BANG polymer gel for dose measurements in a 68 MeV proton beam. Med Phys 2003; 30:1235-40. [PMID: 12852548 DOI: 10.1118/1.1575557] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BANG polymer gel dosimetry using magnetic resonance imaging (MRI) was applied to an ophthalmologic 68 MeV proton beam. The object was to examine the use of BANG gel for the verification of proton fields in eye tumor therapy and to explore the applicability of polymer gel dosimetry in proton therapy under practical aspects. The gel phantoms were irradiated with monoenergetic and modulated proton beams. MRI analysis was carried out at clinical 1.5 and 3 T MR scanners. At constant LET, results show a linear relationship between spin-spin relaxation rates and dose. However, depth dose curves in BANG gel reveal a quenching of the Bragg maximum due to LET effects. The dose response of the gel for monoenergetic protons and spread-out depth dose distributions can be calculated based on ionization chamber measurements. Experiment and calculations show good agreement and indicate that BANG polymer gels might become a valuable tool in proton therapy quality assurance.
Collapse
Affiliation(s)
- J Heufelder
- Hahn-Meitner Institut, Augentumortherapie, Glienicker Strasse 100, D-14109 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Mather ML, De Deene Y, Whittaker AK, Simon GP, Rutgers R, Baldock C. Investigation of ultrasonic properties of PAG and MAGIC polymer gel dosimeters. Phys Med Biol 2002; 47:4397-409. [PMID: 12539980 DOI: 10.1088/0031-9155/47/24/307] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrasonic speed of propagation and attenuation were investigated as a function of absorbed radiation dose in PAG and MAGIC polymer gel dosimeters. Both PAG and MAGIC gel dosimeters displayed a dependence of ultrasonic parameters on absorbed dose with attenuation displaying significant changes in the dose range investigated. The ultrasonic attenuation dose sensitivity at 4 MHz in MAGIC gels was determined to be 4.7 +/- 0.3 dB m(-1) Gy(-1) and for PAG 3.9 +/- 0.3 dB m(-1) Gy(-1). Ultrasonic speed dose sensitivities were 0.178 +/- 0.006 m s(-1) Gy(-1) for MAGIC gel and -0.44 +/- 0.02 m s(-1) Gy(-1) for PAG. Density and compressional elastic modulus were investigated to explain the different sensitivities of ultrasonic speed to radiation for PAG and MAGIC gels. The different sensitivities were found to be due to differences in the compressional elastic modulus as a function of dose for the two formulations. To understand the physical phenomena underlying the increase in ultrasonic attenuation with dose, the viscoelastic properties of the gels were studied. Results suggest that at ultrasonic frequencies, attenuation in polymer gel dosimeters is primarily due to volume viscosity. It is concluded that ultrasonic attenuation significantly increases with absorbed dose. Also, the ultrasonic speed in polymer gel dosimeters is affected by changes in dosimeter elastic modulus that are likely to be a result of polymerization. It is suggested that ultrasound is a sufficiently sensitive technique for polymer gel dosimetry.
Collapse
Affiliation(s)
- Melissa L Mather
- Centre for Medical, Health and Environmental Physics, Queensland University of Technology, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|