1
|
Brás M, Freitas H, Gonçalves P, Seco J. In vivo dosimetry for proton therapy: A Monte Carlo study of the Gadolinium spectral response throughout the course of treatment. Med Phys 2025. [PMID: 39838583 DOI: 10.1002/mp.17625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP. PURPOSE This study aims to explore the feasibility of utilizing gadolinium (Gd), a highly used contrast agent in MRI, as a surrogate for in vivo dosimetry during the course of scanning proton therapy, tracking the delivery of a TP and the impact of uncertainties intra- and inter-fraction in the course of treatment. METHODS Monte Carlo simulations (Geant4 11.1.1) were performed, where a Gd-filled volume was placed within a water phantom and underwent treatment with a scanning proton TP delivering 4 Gy. The secondary photons emitted upon proton-Gd interaction were recorded and assessed for various tumor displacements. The spectral response of Gd to each pencil beam irradiation is therefore used as a surrogate for dose measurements during treatment. RESULTS Results show that the deposited dose at the target volume can be tracked for each TP scanning point by correlating it with the recorded Gd signal. The analyzed Gd spectral line corresponded to the characteristic X-rayk α $\text{k}_\alpha$ line at 43 keV. Displacements from the planned geometry could be distinguished by observing changes in the Gd signal induced by each pencil beam. Moreover, the total 43 keV signal recorded subsequently to the full TP delivery reflected deviations from the planned integral dose to the target. CONCLUSIONS The study suggests that the spectral response of a Gd-based contrast agent can be used for in vivo dosimetry, providing insights into the TP delivery. The Gd 43 keV spectral line was correlated with the dose at the tumor, its volume, and its position. Other variables that can impact the method, such as the kinetic energy of the incident protons and Gd concentration in the target were also discussed.
Collapse
Affiliation(s)
- Mariana Brás
- German Cancer Research Centre, Heidelberg, Germany
- Laboratório de Intrumentação e Física Experimental de Partículas, Lisbon, Portugal
- Department of Physics, Instituto Superior Técnico University of Lisbon, Lisbon, Portugal
| | - Hugo Freitas
- German Cancer Research Centre, Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Patrícia Gonçalves
- Laboratório de Intrumentação e Física Experimental de Partículas, Lisbon, Portugal
- Department of Physics, Instituto Superior Técnico University of Lisbon, Lisbon, Portugal
| | - João Seco
- German Cancer Research Centre, Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Esmaelbeigi A, Kalinowski J, Tomic N, Rivard MJ, Vuong T, Devic S, Enger SA. E-Brachy: New dosimetry package for electronic brachytherapy sources. Med Phys 2025; 52:662-672. [PMID: 39460996 PMCID: PMC11700009 DOI: 10.1002/mp.17462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Large reported variability in the material composition and geometrical components of the Xoft electronic high dose rate brachytherapy causes inter-source discrepancy in the source output. This variability is due to the manual manufacturing and assembly of the sources. PURPOSE This study aimed to develop a dosimetry software tool called E-Brachy to characterize the Xoft source and quantify the discrepancies in its photon spectrum and dosimetric properties. METHODS E-Brachy is based on the Geant4 Monte Carlo toolkit and consists of two parts. In part one, the geometry and material composition for the source received in the computer-aided design format from the vendor were converted to the geometry description markup language format using the GUIMesh Python tool and integrated into the E-Brachy software. There was a large variation in material composition and thickness for some of the tube components. The simulation started from electrons and resulted in x-ray generations in the anode region. Multithreading, a track length estimation, and the uniform bremsstrahlung splitting variance reduction techniques were used to decrease the simulation time and increase the x-ray production. The photon energy, position, and momentum were saved into a phase space file as the photon exited the source, but before interacting with the external environment. The obtained x-ray energy spectrum was compared with measurements from the National Institute of Standards and Technology (NIST). In part two, by sampling from the generated photons, the dose rates and dosimetric parameters according to the TG-43 protocol were calculated for model S7500 and compared to the ones previously calculated for model S700 source, which were deemed identical by the manufacturer. RESULTS The material composition that resulted in the most similar spectrum as the measured NIST spectrum with Pearson's correlation coefficient of 0.99 and a calculated Euclidean difference of0.061 ± 0.001 $0.061\,\pm \,0.001$ keV was chosen for further dosimetric analysis of the model S7500 source. Characteristic peaks showed the presence of tungsten, yttrium, and silver in the source components. Differences in dose rates between the two source models surpassed 20% for polar anglesθ ≥ 150 ∘ $\theta \,\ge \,150^\circ$ , reaching a peak atr = 3 $r\,=\,3$ cm andθ = 175 ∘ $\theta \,=\,175^\circ$ . The differences in the radial dose function values were within 5%. The relative difference in percentage between the anisotropy function values of the two models was closer to 0 for smaller θ $\theta$ values, but at higher polar angles, they increased to 300%. CONCLUSIONS A software package called E-Brachy was successfully developed for the characterization and dosimetry of Xoft electronic brachytherapy sources. E-Brachy can be combined with spectral measurements to investigate the inter- and intra-source variability. The software package was tested by comparing the simulated spectra from the S7500 Xoft source model with NIST measurements and its TG-43 parameters with the S700 model. The TG-43 parameters between the two sources significantly exceed the recommendations of TG-56.
Collapse
Affiliation(s)
- Azin Esmaelbeigi
- Medical Physics Unit, Department of Oncology, Faculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Jonathan Kalinowski
- Medical Physics Unit, Department of Oncology, Faculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Nada Tomic
- Medical Physics Unit, Department of Oncology, Faculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Mark J. Rivard
- Department of Radiation OncologyAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Te Vuong
- Department of Radiation OncologyJewish General HospitalMontrealQuebecCanada
| | - Slobodan Devic
- Department of Radiation OncologyJewish General HospitalMontrealQuebecCanada
| | - Shirin A. Enger
- Medical Physics Unit, Department of Oncology, Faculty of MedicineMcGill UniversityMontrealQuebecCanada
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQuebecCanada
| |
Collapse
|
3
|
Rahbaran M, Kalinowski J, DeCunha JM, Croce KJ, Bergmark BA, Tsui JMG, Devlin PM, Enger SA. RapidBrachyIVBT: A dosimetry software for patient-specific intravascular brachytherapy dose calculations on optical coherence tomography images. Med Phys 2024. [PMID: 39561213 DOI: 10.1002/mp.17525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Coronary artery disease is the most common form of cardiovascular disease. It is caused by excess plaque along the arterial wall, blocking blood flow to the heart (stenosis). A percutaneous coronary intervention widens the arterial wall with the inflation of a balloon inside the lesion area and leaves behind a metal stent to prevent re-narrowing of the artery (restenosis). However, in-stent restenosis may occur due to damage to the arterial wall tissue, triggering neointimal hyperplasia, producing fibrotic and calcified plaques and narrowing the artery again. Drug-eluting stents, which slowly release medication to inhibit neointimal hyperplasia, are used to prevent in-stent restenosis but fail up to 20% of cases. Coronary intravascular brachytherapy (IVBT), which uses β $\beta$ -emitting radionuclides to prevent in-stent restenosis, is used in these failed cases to prevent in-stent restenosis. However, current clinical dosimetry for IVBT is water-based, and heterogeneities such as the guidewire of the IVBT device, fibrotic and calcified plaques and stents are not considered. PURPOSE This study aimed to develop a Monte Carlo-based dose calculation software, accounting for patient-specific geometry from Optical Coherence Tomography (OCT) images. METHODS RapidBrachyIVBT, a Monte Carlo dose calculation software based on the Geant4 toolkit v. 10.02.p02, was developed and integrated into RapidBrachyMCTPS, a treatment planning system for brachytherapy applications. The only commercially available IVBT delivery system, the Novoste Beta-Cath 3.5F, with a90 Sr 90 Y $^{90}{\rm Sr}^{90}{\rm Y}$ source train, was modeled with 30, 40, and 60 mm source train lengths. The software was validated with published TG-149 parameters compared to Monte Carlo simulations in water. The dose calculation engine was tested with OCT images from a patient undergoing coronary IVBT for recurrent in-stent restenosis at Brigham and Women's Hospital in Boston, Massachusetts. Considering the heterogeneities, the images were segmented and used to calculate the absorbed dose to water and the absorbed dose to medium. The prescribed dose was normalized to 23 Gy at 2.0 mm from the source center, which is the target volume in IVBT. RESULTS The dose rate values in water obtained using RapidBrachyIVBT aligned with TG-149 consensus values, showing agreement within a range of 0.03% to 1.7%. Considering the heterogeneities present in the patient's OCT images, the absorbed dose in the entire artery segment was up to 77.5% lower, while within the target volume, it was up to 56.6% lower, compared to the dose calculated in a homogeneous water phantom. CONCLUSION RapidBrachyIVBT, a Monte Carlo dose calculation software for IVBT, was developed and successfully integrated into RapidBrachyMCTPS, a treatment planning system for brachytherapy applications, where accurate attenuation of the absorbed dose by heterogeneities is considered.
Collapse
Affiliation(s)
- Maryam Rahbaran
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Jonathan Kalinowski
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Joseph M DeCunha
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Medical Physics Program, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kevin J Croce
- Department of Cardiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian A Bergmark
- Department of Cardiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James M G Tsui
- McGill University Health Centre, Montréal, Québec, Canada
| | - Phillip M Devlin
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
4
|
Harrison N, Charyyev S, Oancea C, Stanforth A, Gelover E, Zhou S, Dynan WS, Zhang T, Biegalski S, Lin L. Characterizing devices for validation of dose, dose rate, and LET in ultra high dose rate proton irradiations. Med Phys 2024; 51:8411-8422. [PMID: 39153223 DOI: 10.1002/mp.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Ultra high dose rate (UHDR) radiotherapy using ridge filter is a new treatment modality known as conformal FLASH that, when optimized for dose, dose rate (DR), and linear energy transfer (LET), has the potential to reduce damage to healthy tissue without sacrificing tumor killing efficacy via the FLASH effect. PURPOSE Clinical implementation of conformal FLASH proton therapy has been limited by quality assurance (QA) challenges, which include direct measurement of UHDR and LET. Voxel DR distributions and LET spectra at planning target margins are paramount to the DR/LET-related sparing of organs at risk. We hereby present a methodology to achieve experimental validation of these parameters. METHODS Dose, DR, and LET were measured for a conformal FLASH treatment plan involving a 250-MeV proton beam and a 3D-printed ridge filter designed to uniformly irradiate a spherical target. We measured dose and DR simultaneously using a 4D multi-layer strip ionization chamber (MLSIC) under UHDR conditions. Additionally, we developed an "under-sample and recover (USRe)" technique for a high-resolution pixelated semiconductor detector, Timepix3, to avoid event pile-up and to correct measured LET at high-proton-flux locations without undesirable beam modifications. Confirmation of these measurements was done using a MatriXX PT detector and by Monte Carlo (MC) simulations. RESULTS MC conformal FLASH computed doses had gamma passing rates of >95% (3 mm/3% criteria) when compared to MatriXX PT and MLSIC data. At the lateral margin, DR showed average agreement values within 0.3% of simulation at 100 Gy/s and fluctuations ∼10% at 15 Gy/s. LET spectra in the proximal, lateral, and distal margins had Bhattacharyya distances of <1.3%. CONCLUSION Our measurements with the MLSIC and Timepix3 detectors shown that the DR distributions for UHDR scenarios and LET spectra using USRe are in agreement with simulations. These results demonstrate that the methodology presented here can be used effectively for the experimental validation and QA of FLASH treatment plans.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuang Zhou
- Washington University of St. Louis, Saint Louis, Missouri, USA
| | | | - Tiezhi Zhang
- Washington University of St. Louis, Saint Louis, Missouri, USA
| | | | | |
Collapse
|
5
|
Ahn HSH, Carroll L, Hopewell R, Tsai IH, Jolly D, Massarweh G, Enger SA. Development of small, cost-efficient scintillating fiber detectors for automated synthesis of positron emission tomography radiopharmaceuticals. Med Phys 2024; 51:8454-8465. [PMID: 39302190 DOI: 10.1002/mp.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Radiolabeling is critical in complex chemical reactions involving positron emission tomography (PET) radiotracer production. The process is now automated within a synthesis module to enhance efficiency and reduce radiation exposure. The key to this automation is the use of radiation detectors to monitor radioactivity transfer and ensure the progression of reactions. However, the high cost of these detectors has motivated the need for a more affordable alternative. PURPOSE This study aimed to develop a compact and cost-efficient detector using scintillating fibers and silicon photomultipliers (SiPMs) to track radioactivity throughout PET radiotracer production. METHODS Monte Carlo simulations were performed with the Geant4-based M-TAG software for four detector geometries (single fiber, single fiber with bolus, 16-fiber bundle, and spiral) to optimize the detector construction for better detection efficiency. The simulations scored the energy deposited into the scintillating fibers per simulated particle, which was used to estimate the expected voltage pulse height from the SiPM considering the total light collection efficiency. Based on the simulation results, two detector configurations (16-fiber bundle and spiral fiber) were constructed using plastic scintillating fibers, optical fibers, a 6 mm × $\times$ 6 mm SiPM, and commonly available electronic components. The detectors were calibrated using a Fluorine-18 (18 F $^{18}{\rm F}$ ) source with typical activity levels used in radiotracer production. Detector performances were subsequently evaluated through linearity tests and measurement uncertainty assessments. Errors up to± 5 % $\pm 5\%$ were considered acceptable for troubleshooting purposes. RESULTS The calibration curves showed a linear response with changing activity for both detectors. The calibrated detectors offered real-time activity measurements ranging from 0.10 to 49.41 GBq, with a 3-s refresh rate. In the activity range above 0.145 GBq, the uncertainties were less than5 % $5\%$ for both the 16-fiber and spiral configurations. The spiral detector recorded a signal with a half-life of105.88 ± 0.40 $105.88 \pm 0.40$ min, closely aligning with the reference half-life of18 F $^{18}{\rm F}$ . CONCLUSIONS Cost-efficient plastic scintillation fiber detectors were developed to facilitate the troubleshooting of automated synthesis of PET radiotracers.
Collapse
Affiliation(s)
- Hailey Sae Hyun Ahn
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec, Canada
| | - Liam Carroll
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec, Canada
| | - Robert Hopewell
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - I-Huang Tsai
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Dean Jolly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shirin A Enger
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Radonic D, Xiao F, Wahl N, Voss L, Neishabouri A, Delopoulos N, Marschner S, Corradini S, Belka C, Dedes G, Kurz C, Landry G. Proton dose calculation with LSTM networks in presence of a magnetic field. Phys Med Biol 2024; 69:215019. [PMID: 39317232 DOI: 10.1088/1361-6560/ad7f1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Objective.To present a long short-term memory (LSTM) network-based dose calculation method for magnetic resonance (MR)-guided proton therapy.Approach.35 planning computed tomography (CT) images of prostate cancer patients were collected for Monte Carlo (MC) dose calculation under a perpendicular 1.5 T magnetic field. Proton pencil beams (PB) at three energies (150, 175, and 200 MeV) were simulated (7560 PBs at each energy). A 3D relative stopping power cuboid covering the extent of the PB dose was extracted and given as input to the LSTM model, yielding a 3D predicted PB dose. Three single-energy (SE) LSTM models were trained separately on the corresponding 150/175/200 MeV datasets and a multi-energy (ME) LSTM model with an energy embedding layer was trained on either the combined dataset with three energies or a continuous energy (CE) dataset with 1 MeV steps ranging from 125 to 200 MeV. For each model, training and validation involved 25 patients and 10 patients were for testing. Two single field uniform dose prostate treatment plans were optimized and recalculated with MC and the CE model.Results.Test results of all PBs from the three SE models showed a mean gamma passing rate (2%/2 mm, 10% dose cutoff) above 99.9% with an average center-of-mass (COM) discrepancy below 0.4 mm between predicted and simulated trajectories. The ME model showed a mean gamma passing rate exceeding 99.8% and a COM discrepancy of less than 0.5 mm at the three energies. Treatment plan recalculation by the CE model yielded gamma passing rates of 99.6% and 97.9%. The inference time of the models was 9-10 ms per PB.Significance.LSTM models for proton dose calculation in a magnetic field were developed and showed promising accuracy and efficiency for prostate cancer patients.
Collapse
Affiliation(s)
- Domagoj Radonic
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medical Physics, LMU Munich, Munich, Germany
| | - Fan Xiao
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Luke Voss
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Institute of Computer Science, Heidelberg, Germany
| | - Ahmad Neishabouri
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolaos Delopoulos
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Marschner
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - George Dedes
- Department of Medical Physics, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Mishra S, Selvam TP, Sahoo S, Saxena SK, Kumar Y, Sapra BK. Monte Carlo-based dosimetry of proposed bi-radionuclide ( 125I and 106Ru/ 106Rh) eye plaque: A feasibility study. Med Phys 2024; 51:7561-7573. [PMID: 38935327 DOI: 10.1002/mp.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Combining the sharp dose fall off feature of beta-emitting 106Ru/106Rh radionuclide with larger penetration depth feature of photon-emitting125I radionuclide in a bi-radionuclide plaque, prescribed dose to the tumor apex can be delivered while maintaining the tumor dose uniformity and sparing the organs at risk. The potential advantages of bi-radionuclide plaque could be of interest in context of ocular brachytherapy. PURPOSE The aim of the study is to evaluate the dosimetric advantages of a proposed bi-radionuclide plaque for two different designs, consisting of indigenous 125I seeds and 106Ru/106Rh plaque, using Monte Carlo technique. The study also explores the influence of other commercial 125I seed models and presence or absence of silastic/acrylic seed carrier on the calculated dose distributions. The study further included the calculation of depth dose distributions for the bi-radionuclide eye plaque for which experimental data are available. METHODS The proposed bi-radionuclide plaque consists of a 1.2-mm-thick silver (Ag) spherical shell with radius of curvature of 12.5 mm, 20 µm-thick-106Ru/106Rh encapsulated between 0.2 mm Ag disk, and a 0.1-mm-thick Ag window, and water-equivalent gel containing 12 symmetrically arranged 125I seeds. Two bi-radionuclide plaque models investigated in the present study are designated as Design I and Design II. In Design I, 125I seeds are placed on the top of the plaque, while in Design II 106Ru/106Rh source is positioned on the top of the plaque. In Monte Carlo calculations, the plaque is positioned in a spherical water phantom of 30 cm diameter. RESULTS The proposed bi-radionuclide eye plaque demonstrated superior dose distributions as compared to 125I or 106Ru plaque for tumor thicknesses ranges from 5 to 10 mm. Amongst the designs, dose at a given voxel for Design I is higher as compared to the corresponding voxel dose for Design II. This difference is attributed to the higher degree of attenuation of 125I photons in Ag as compared to beta particles. Influence of different 125I seed models on the normalized lateral dose profiles of Design I (in the absence of carrier) is negligible and within 5% on the central axis depth dose distribution as compared to the corresponding values of the plaque that has indigenous 125I seeds. In the presence of a silastic/acrylic seed carrier, the normalized central axis dose distributions of Design I are smaller by 3%-12% as compared to the corresponding values in the absence of a seed carrier. For the published bi-radionuclide plaque model, good agreement is observed between the Monte Carlo-calculated and published measured depth dose distributions for clinically relevant depths. CONCLUSION Regardless of the type of 125I seed model utilized and whether silastic/acrylic seed carrier is present or not, Design I bi-radionuclide plaque offers superior dose distributions in terms of tumor dose uniformity, rapid dose fall off and lesser dose to nearby critical organs at risk over the Design II plaque. This shows that Design I bi-radionuclide plaque could be a promising alternative to 125I plaque for treatment of tumor sizes in the range 5 to 10 mm.
Collapse
Affiliation(s)
- Subhalaxmi Mishra
- Radiological Physics and Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - T Palani Selvam
- Radiological Physics and Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Sridhar Sahoo
- Radiological Physics and Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sanjay Kumar Saxena
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Yogendra Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Balvinder K Sapra
- Radiological Physics and Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Chelminski K, Dimitriadis A, Abdulrahim R, Kazantsev P, Granizo-Roman E, Kalinowski J, Abbasi Enger S, Azangwe G, Carrara M, Swamidas J. Monte Carlo simulated correction factors for high dose rate brachytherapy postal dosimetry audit methodology. Phys Imaging Radiat Oncol 2024; 32:100657. [PMID: 39534277 PMCID: PMC11554633 DOI: 10.1016/j.phro.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Background and Purpose Full-scatter conditions in water are impractical for postal dosimetry audits in brachytherapy. This work presents a method to obtain correction factors that account for deviations from full-scatter water-equivalent conditions for a small plastic phantom. Material and Methods A 16 × 8 × 3 cm phantom (PMMA) with a radiophotoluminescent dosimeter (RPLD) at the centre and two catheters on either side was simulated using Monte Carlo (MC) to calculate correction factors accounting for the lack of scatter, non-water equivalence of the RPLD and phantom, source model and backscatter for HDR 60Co and 192Ir sources. Results The correction factors for non-water equivalence, lack of full scatter, and the use of PMMA were 1.062 ± 0.013, 1.059 ± 0.008 and 0.993 ± 0.009 for 192Ir and 1.129 ± 0.005, 1.009 ± 0.005 and 1.005 ± 0.005 for 60Co respectively. Water-equivalent backscatter thickness of 5 cm was found to be adequate and increasing thickness of backscatter did not have an influence on the RPLD dose. The mean photon energy in the RPLD for four HDR 192Ir sources was 279 ± 2 keV in full scatter conditions and 295 ± 1 keV in the audit conditions. For 60Co source the corresponding mean energies were 989 ± 1 keV and 1022 ± 1 keV respectively. Conclusions Correction factors were obtained through the MC simulations for conditions deviating from TG-43, including the amount of back scatter, and the optimum audit set up. Additionally, the influence of different source models on the correction factors was negligible and demonstrates their generic applicability.
Collapse
Affiliation(s)
- Krzysztof Chelminski
- International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Division of Human Health, Vienna, Austria
| | - Alexis Dimitriadis
- International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Division of Human Health, Vienna, Austria
| | - Roua Abdulrahim
- International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Division of Human Health, Vienna, Austria
| | - Pavel Kazantsev
- International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Division of Human Health, Vienna, Austria
| | - Evelyn Granizo-Roman
- International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Division of Human Health, Vienna, Austria
| | - Jonathan Kalinowski
- McGill University, Department of Oncology, Medical Physics Unit, Montreal, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Shirin Abbasi Enger
- McGill University, Department of Oncology, Medical Physics Unit, Montreal, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Godfrey Azangwe
- International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Division of Human Health, Vienna, Austria
| | - Mauro Carrara
- International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Division of Human Health, Vienna, Austria
| | - Jamema Swamidas
- International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Division of Human Health, Vienna, Austria
| |
Collapse
|
9
|
Robitaille M, Ménard C, Famulari G, Béliveau-Nadeau D, Enger SA. 169Yb-based high dose rate intensity modulated brachytherapy for focal treatment of prostate cancer. Brachytherapy 2024; 23:523-534. [PMID: 39038997 DOI: 10.1016/j.brachy.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE This study compares conventional 192Ir-based high dose rate brachytherapy (HDR-BT) with 169Yb-based HDR intensity modulated brachytherapy (IMBT) for focal prostate cancer treatment. Additionally, the study explores the potential to generate less invasive treatment plans with IMBT by reducing the number of catheters needed to achieve acceptable outcomes. METHODS AND MATERIALS A retrospective dosimetric study of ten prostate cancer patients initially treated with conventional 192Ir-based HDR-BT and 5-14 catheters was employed. RapidBrachyMCTPS, a Monte Carlo-based treatment planning system was used to calculate and optimize dose distributions. For 169Yb-based HDR IMBT, a custom 169Yb source combined with 0.8 mm thick platinum shields placed inside 6F catheters was used. Furthermore, dose distributions were investigated when iteratively removing catheters for less invasive treatments. RESULTS With IMBT, the urethra D10 and D0.1cc decreased on average by 15.89 and 15.65 percentage points (pp) and the rectum V75 and D2cc by 1.53 and 11.54 pp, respectively, compared to the conventional clinical plans. Similar trends were observed when the number of catheters decreased. On average, there was an observed increase in PTV V150 from 2.84 pp with IMBT when utilizing all catheters to 8.83 pp when four catheters were removed. PTV V200 increased from 0.42 to 2.96 pp on average. Hotspots in the body were however lower with IMBT compared to conventional clinical plans. CONCLUSIONS 169Yb-based HDR IMBT for focal treatment of prostate cancer has the potential to successfully deliver clinically acceptable, less invasive treatment with reduced dose to organs at risk.
Collapse
Affiliation(s)
- Maude Robitaille
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Cynthia Ménard
- Department of Radiation Oncology, CHUM, Montreal, Quebec, Canada
| | - Gabriel Famulari
- Department of Radiation Oncology, Jewish General Hospital, Montreal, Quebec, Canada; Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Shirin A Enger
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Diaz-Martinez VD, Cyr M, Devic S, Tomic N, Lewis DF, Enger SA. Investigation of dosimetric characteristics of radiochromic film in response to alpha particles emitted from Americium-241. Med Phys 2024; 51:6305-6316. [PMID: 38767310 DOI: 10.1002/mp.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND In radiotherapy, it is essential to deliver prescribed doses to tumors while minimizing damage to surrounding healthy tissue. Accurate measurements of absorbed dose are required for this purpose. Gafchromic® external beam therapy (EBT) radiochromic films have been widely used in radiotherapy. While the dosimetric characteristics of the EBT3 model film have been extensively studied for photon and charged particle beams (protons, electrons, and carbon ions), little research has been done on α $\alpha$ -particle dosimetry. α $\alpha$ -emitting radionuclides have gained popularity in cancer treatment due to their high linear energy transfer, short range in tissue, and ability to spare surrounding organs at risk, thereby delivering a more localized dose distribution to the tumor. Therefore, a dose-calibration film protocol for α $\alpha$ -particles is required. PURPOSE This study aimed to develop a dose-calibration protocol for the α $\alpha$ -particle emitting radionuclide 241Am, using Monte Carlo (MC) simulations and measurements with unlaminated EBT3 films. METHODS In this study, a MC-based user code was developed using the Geant4 simulation toolkit to model and simulate an 241Am source and an unlaminated EBT3 film. Two simulations were performed: one with voxelized geometries of the EBT3 active volume composition and the other using water. The dose rate was calculated within a region of interest in the voxelized geometries. Unlaminated EBT3 film pieces were irradiated with the 241Am source at various exposure times inside a black box. Film irradiations were compared to a 6-MV photon beam from a Varian TrueBeam machine. The simulated dose rate was used to convert the exposure times into absorbed doses to water, describing a radiochromic-film-based reference dosimetry protocol for α $\alpha$ -particles. The irradiated films were scanned and through an in-house Python script, the normalized pixel values from the green-color channel of scanned film images were analyzed. RESULTS The 241Am energy spectra obtained from the simulations were in good agreement with IAEA and NIST databases, having differences < $<$ 0.516% for the emitted γ $\gamma$ -rays and produced characteristic x-rays and < $<$ 0.006% for the α $\alpha$ -particles. Due to the short range of α $\alpha$ -particles, there was no energy deposition in the voxels outside the active 241Am source region projected onto the film surface. Thus, the total dose rate within the voxels covering the source was 0.847 ± $\pm$ 0.003 Gy/min within the sensitive layer of the film (LiPCDA) and 0.847 ± $\pm$ 0.004 Gy/min in water, indicating that the active volume can be considered water equivalent for the 241Am beam quality. A novel approach was employed in α $\alpha$ -film dosimetry using an exponential fit for the green channel, which showed promising results by reducing the uncertainty in dose estimation within 5%. Although the statistical analysis did not reveal significant differences between the 6-MV photon beam and the α $\alpha$ calibration curves, the dose-response curves exhibited the expected behavior. CONCLUSIONS The developed MC user code simulated the experimental setup for α $\alpha$ -dosimetry using radiochromic film with acceptable uncertainty. Unlaminated EBT3 film is suitable for the dosimetry of α $\alpha$ -radiation at low doses and can be used in conjunction with other unlaminated GafChromic® films for quality assurance and research purposes.
Collapse
Affiliation(s)
- Victor D Diaz-Martinez
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Mélodie Cyr
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Slobodan Devic
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Nada Tomic
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | | | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
11
|
Oliver PAK, Yip E, Tari SY, Wachowicz K, Reynolds M, Burke B, Warkentin B, Fallone BG. Skin dose investigations on a 0.5 T parallel rotating biplanar linac-MR using Monte Carlo simulations and measurements. Med Phys 2024; 51:6317-6331. [PMID: 38873942 DOI: 10.1002/mp.17246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The Alberta rotating biplanar linac-MR has a 0.5 T magnetic field parallel to the beamline. When developing a new linac-MR system, interactions of charged particles with the magnetic field necessitate careful consideration of skin dose and tissue interface effects. PURPOSE To investigate the effect of the magnetic field on skin dose using measurements and Monte Carlo (MC) simulations. METHODS We develop an MC model of our linac-MR, which we validate by comparison with ion chamber measurements in a water tank. Additionally, MC simulation results are compared with radiochromic film surface dose measurements on solid water. Variations in surface dose as a function of field size are measured using a parallel plate ion chamber in solid water. Using an anthropomorphic computational phantom with a 2 mm-thick skin layer, we investigate dose distributions resulting from three beam arrangements. Magnetic field on and off scenarios are considered for all measurements and simulations. RESULTS For a 20 × 20 cm2 field size,D 0.2 c c ${D_{0.2cc}}$ (the minimum dose to the hottest contiguous 0.2 cc volume) for the top 2 mm of a simple water phantom is 72% when the magnetic field is on, compared to 34% with magnetic field off (values are normalized to the central axis dose maximum). Parallel plate ion chamber measurements demonstrate that the relative increase in surface dose due to the magnetic field decreases with increasing field size. For the anthropomorphic phantom,D ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ (minimum skin dose in the hottest 1 × 1 × 1 cm3 cube) shows relative increases of 20%-28% when the magnetic field is on compared to when it is off. With magnetic field off, skinD ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ is 71%, 56%, and 21% for medial-lateral tangents, anterior-posterior beams, and a five-field arrangement, respectively. For magnetic field on, the corresponding skinD ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ values are 91%, 67%, and 25%. CONCLUSIONS Using a validated MC model of our linac-MR, surface doses are calculated in various scenarios. MC-calculated skin dose varies depending on field sizes, obliquity, and the number of beams. In general, the parallel linac-MR arrangement results in skin dose enhancement due to charged particles spiraling along magnetic field lines, which impedes lateral motion away from the central axis. Nonetheless, considering the results presented herein, treatment plans can be designed to minimize skin dose by, for example, avoiding oblique beams and using a larger number of fields.
Collapse
Affiliation(s)
- Patricia A K Oliver
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Dept. of Medical Physics, Nova Scotia Health and Dept. of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eugene Yip
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
| | - Shima Y Tari
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
| | - Keith Wachowicz
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Reynolds
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Ben Burke
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
| | - Brad Warkentin
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
| | - B Gino Fallone
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- MagnetTx Oncology Solutions, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Abuhaimed A, Mujammami H, AlEnazi K, Abanomy A, Alashban Y, Martin CJ. Estimation of organ and effective doses of CBCT scans of radiotherapy using size-specific field of view (FOV): a Monte Carlo study. Phys Eng Sci Med 2024; 47:895-906. [PMID: 38536632 DOI: 10.1007/s13246-024-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/04/2024] [Indexed: 09/18/2024]
Abstract
The kV cone beam computed tomography (CBCT) is one of the most common imaging modalities used for image-guided radiation therapy (IGRT) procedures. Additional doses are delivered to patients, thus assessment and optimization of the imaging doses should be taken into consideration. This study aimed to investigate the influence of using fixed and patient-specific FOVs on the patient dose. Monte Carlo simulations were performed to simulate kV beams of the imaging system integrated into Truebeam linear accelerator using BEAMnrc code. Organ and size-specific effective doses resulting from chest and pelvis scanning protocols were estimated with DOSXYZnrc code using a phantom library developed by the National Cancer Institute (NCI) of the US. The library contains 193 (100 male and 93 female) mesh-type computational human adult phantoms, and it covers a large ratio of patient sizes with heights and weights ranging from 150 to 190 cm and 40 to 125 kg. The imaging doses were assessed using variable FOV of three sizes, small (S), medium (M), and large (L) for each scan region. The results show that the FOV and the patient size played a major role in the scan dose. The average percentage differences (PDs) for doses of organs that were fully inside the different FOVs were relatively low, all within 11% for both protocols. However, doses to organs that were scanned partially or near the FOVs were affected significantly. For the chest protocol, the inclusion of the thyroid in the scan field could give a dose of 1-7 mGy/100 mAs to the thyroid, compared to 0.4-1 mGy/100 mAs when it was excluded. Similarly, on average, testes doses could be 6 mGy/100 mAs for the male pelvis protocol compared to 3 mGy/100 mAs when it did not lie in the field irradiated. These dose differences resulted in an average increase of up to 27% in the size-specific effective dose of the protocols. Since changing the field size is possible for CBCT scans, the results suggest that patient-specific scanning protocols could be applied for each scan area in a manner similar to that used for CT scans. Adjustment of the FOV size should be subject to the clinical needs, and assist in improving the treatment accuracy. The patient's height and weight might be considered as the main factors upon which, the selection of the appropriate patient-specific protocol is based. This approach should optimize the imaging doses used for IGRT procedures by minimizing doses of a large ratio of patients.
Collapse
Affiliation(s)
- Abdullah Abuhaimed
- King Abdulaziz City for Science and Technology (KACST), P.O Box 6086, 11442, Riyadh, Saudi Arabia.
| | - Huda Mujammami
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Khaled AlEnazi
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Ahmed Abanomy
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Yazeed Alashban
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, 4545, Riyadh, Saudi Arabia
| | - Colin J Martin
- Department of Clinical Physics and Bio-Engineering, Gartnavel Royal Hospital, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
13
|
Yan S, Qiu R, Wu Z, Luo X, Hu Z, Li J. Individualized dose calculation for internal exposure on radionuclide intake: GPU acceleration approach. Phys Med Biol 2024; 69:175002. [PMID: 39084645 DOI: 10.1088/1361-6560/ad69fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Objective. The rapid and accurate assessment of internal exposure dose is a crucial safeguard for personnel health and safety. This study aims to investigate a precise and efficient GPU Monte Carlo simulation approach for internal exposure dose calculation. It directly calculates doses from common radioactive nuclides intake, like60Co for occupational exposure, allowing personalized assessments.Approach. This study developed a GPU-accelerated Monte Carlo program for internal exposure on radionuclide intake, successfully realizing photoelectronic coupled transport, nuclide simulation, and optimized acceleration. The generation of internal irradiation sources and sampling methods were achieved, along with the establishment of a personalized phantom construction process. Three irradiation scenarios were simulated to assess computational accuracy and efficiency, and to investigate the influence of posture variations on internal dose estimations.Main results. Using the International Commission on Radiological Protection (ICRP) voxel-type phantom, the internal dose of radionuclides in individual organs was calculated, exhibiting relative deviation of less than 3% in comparison to organ dose results interpolated by Specific Absorbed Fractions in ICRP Publication 133. Employing the Chinese reference phantom for calculating internal irradiation dose from the intake of various radionuclides, the use of GPU Monte Carlo program significantly shortened the simulation time compared to using CPU programs, by a factor of 150-500. Internal dose estimation utilizing a seated Chinese phantom revealed up to a 75% maximum difference in organ dose compared to the same phantom in a standing posture.Significance. This study presents a rapid GPU-based simulation method for internal irradiation doses, capable of directly simulating dose outcomes from nuclide intake and accommodating individualized phantoms for more realistic and expeditious calculations tailored to specific internal irradiation scenarios. It provides an effective and feasible tool for precisely calculating internal irradiation doses in real-world scenarios.
Collapse
Affiliation(s)
- Shuchang Yan
- Department of Engineering Physics, Tsinghua University, Beijing , People's Republic of China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education , Beijing, People's Republic of China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing , People's Republic of China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education , Beijing, People's Republic of China
| | - Zhen Wu
- Department of Engineering Physics, Tsinghua University, Beijing , People's Republic of China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education , Beijing, People's Republic of China
- Nuctech Company Limited , Beijing, People's Republic of China
| | - Xiyu Luo
- Department of Engineering Physics, Tsinghua University, Beijing , People's Republic of China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education , Beijing, People's Republic of China
| | - Ziyi Hu
- Department of Engineering Physics, Tsinghua University, Beijing , People's Republic of China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education , Beijing, People's Republic of China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing , People's Republic of China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education , Beijing, People's Republic of China
| |
Collapse
|
14
|
Hartmann GH, Menzel HG. Note on uncertainty in Monte Carlo dose calculations and its relation to microdosimetry. Z Med Phys 2024; 34:468-476. [PMID: 36577627 PMCID: PMC11384070 DOI: 10.1016/j.zemedi.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The Type A standard uncertainty in Monte Carlo (MC) dose calculations is usually determined using the "history by history" method. Its applicability is based on the assumption that the central limit theorem (CLT) can be applied such that the dispersion of repeated calculations can be modeled by a Normal distribution. The justification for this assumption, however, is not obvious. The concept of stochastic quantities used in the field of microdosimetry offers an alternative approach to assess uncertainty. This leads to a new and simple expression. METHODS The value of the MC determined absorbed dose is considered a random variable which is comparable to the stochastic quantity specific energy, z. This quantity plays an important role in microdosimetry and in the definition of the quantity absorbed dose, D. One of the main features of z is that it is itself the product of two other random variables, specifically of the mean dose contribution in a 'single event' and of the mean number of such events. The term 'single event' signifies the sum of energies imparted by all correlated particles to the matter in a given volume. The similarity between the MC calculated absorbed dose and the specific energy is used to establish the 'event by event' method for the determination of the uncertainty. MC dose calculations were performed to test and compare both methods. RESULTS It is shown that the dispersion of values obtained by MC dose calculations indeed depend on the product of the mean absorbed dose per event, and the number of events. Applying methods to obtain the variance of a product of two random variables, a simple formula for the assessment of uncertainties is obtained which is slightly different from the 'history by history' method. Interestingly, both formulas yield indistinguishable results. This finding is attributed to the large number of histories used in MC simulations. Due to the fact that the values of a MC calculated absorbed dose are the product of two approximately Normal distributions it can be demonstrated that the resulting product is also approximately normally distributed. CONCLUSIONS The event by event approach appears to be more suitable than the history by history approach because it takes into account the randomness of the number of events involved in MC dose calculations. Under the condition of large numbers of histories, however, both approaches lead to the same simple expression for the determination of uncertainty in MC dose calculations. It is suggested to replace the formula currently used by the new expression. Finally, it turned out that the concept and ideas that were developed in the field of microdosimetry already 50 years ago can be usefully applied also in MC calculations.
Collapse
Affiliation(s)
| | - Hans G Menzel
- International Commission on Radiation Units and Measurements (ICRU), Germany
| |
Collapse
|
15
|
Failing T, Hensley FW, Keil B, Zink K. Investigations on the beam quality correction factor for ionization chambers in high-energy brachytherapy dosimetry. Phys Med Biol 2024; 69:165002. [PMID: 39009012 DOI: 10.1088/1361-6560/ad638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Objective. To enhance the investigations on MC calculated beam quality correction factors of thimble ionization chambers from high-energy brachytherapy sources and to develop reliable reference conditions in source and detector setups in water.Approach. The response of five different ionization chambers from PTW-Freiburg and Standard Imaging was investigated for irradiation by a high dose rate Ir-192 Flexisource in water. For a setup in a Beamscan water phantom, Monte Carlo simulations were performed to calculate correction factors for the chamber readings. After exact positioning of source and detector the absorbed dose rate at the TG-43 reference point at one centimeter nominal distance from the source was measured using these factors and compared to the specification of the calibration certificate. The Monte Carlo calculations were performed using the restricted cema formalism to gain further insight into the chamber response. Calculations were performed for the sensitive volume of the chambers, determined by the methods currently used in investigations of dosimetry in magnetic fields.Main results. Measured dose rates and values from the calibration certificate agreed within the combined uncertainty (k= 2) for all chambers except for one case in which the full air cavity was simulated. The chambers showed a distinct directional dependence. With the restricted cema formalism calculations it was possible to examine volume averaging and energy dependence of the perturbation factors contributing to the beam quality correction factor also differential in energy.Significance. This work determined beam quality correction factors to measure the absorbed dose rate from a brachytherapy source in terms of absorbed dose to water for a variety of ionization chambers. For the accurate dosimetry of brachytherapy sources with ionization chambers it is advisable to use correction factors based on the sensitive volume of the chambers and to take account for the directional dependence of chamber response.
Collapse
Affiliation(s)
- T Failing
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
| | - F W Hensley
- Department for Radiotherapy and Radiooncology, University Medical Center Heidelberg, Heidelberg, Germany
| | - B Keil
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
- Department for Diagnostic and Interventional Radiology, Philipps-University Marburg, Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - K Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
- Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany
- Marburg Iontherapy Center (MIT), Marburg, Germany
| |
Collapse
|
16
|
Massera RT, Dehairs M, Verhoeven H, Bosmans H, Marshall N. A comprehensive assessment of a prototype high ratio antiscatter grid in interventional cardiology using experimental measurements and Monte Carlo simulations. Phys Med Biol 2024; 69:135015. [PMID: 38862002 DOI: 10.1088/1361-6560/ad56f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective. To assess the performance of a new antiscatter grid design in interventional cardiology for image quality improvement and dose reduction using experimental measurements and Monte Carlo (MC) simulation.Approach.Experimental measurements were performed on an angiography system, using a multi-layered tissue simulating composite phantom made from of poly(methyl methacrylate), aluminium and expanded polystyrene (2/0.2/0.7 cm). The total phantom thickness ranged from 20.3 cm to 40.6 cm. Four conditions were compared; (A) 105 cm source-image receptor distance (SID) without grid, (Bi) 105 cm SID with grid ratio (r) and strip density (N) (r15N80), (Bii) 120 cm SID without grid, and (Biii) 120 cm SID with high ratio grid (r29N80). The system efficiency (η), defined by the signal-to-noise ratio, was compared from theBconditions against caseA. These conditions were also simulated with MC techniques, allowing additional phantom compositions to be explored. Weighted image quality improvement factor (ηw(u)) was studied experimentally at a specific spatial frequency due to the SID change. Images were simulated with an anthropomorphic chest phantom for the different conditions, and the system efficiency was compared for the different anatomical regions.Main results.Good agreement was found between theηandηw(u) methods using both measured and simulated data, with average relative differences between 2%-11%. CaseBiiiprovided higherηvalues compared toA, andBifor thicknesses larger than 20.3 cm. In addition, caseBiiialso provided higherηvalues for high attenuating areas in the anthropomorphic phantom, such as behind the spine.Significance.The new antiscatter grid design provided higher system efficiency compared to the standard grid for the parameters explored in this work.
Collapse
Affiliation(s)
- Rodrigo T Massera
- Medical Imaging Research Centre, Medical Physics and Quality Assessment, KU Leuven, 3000 Leuven, Belgium
| | - Michiel Dehairs
- Medical Imaging Research Centre, Medical Physics and Quality Assessment, KU Leuven, 3000 Leuven, Belgium
- Department of Medical Physics, Institute Jules Bordet Instituut, Rue Meylemeersch 90, Bruxelles 1070, Belgium
| | - Hannelore Verhoeven
- Competentiecentrum medische stralingsfysica, UZ Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Hilde Bosmans
- Medical Imaging Research Centre, Medical Physics and Quality Assessment, KU Leuven, 3000 Leuven, Belgium
- Competentiecentrum medische stralingsfysica, UZ Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Nicholas Marshall
- Medical Imaging Research Centre, Medical Physics and Quality Assessment, KU Leuven, 3000 Leuven, Belgium
- Competentiecentrum medische stralingsfysica, UZ Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Kim TP, Enger SA. Characterizing the voxel-based approaches in radioembolization dosimetry with reDoseMC. Med Phys 2024; 51:4007-4027. [PMID: 38703394 DOI: 10.1002/mp.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Yttrium-90 (90 Y $^{90}{\rm {Y}}$ ) represents the primary radioisotope used in radioembolization procedures, while holmium-166 (166 Ho $^{166}{\rm {Ho}}$ ) is hypothesized to serve as a viable substitute for90 Y $^{90}{\rm {Y}}$ due to its comparable therapeutic potential and improved quantitative imaging. Voxel-based dosimetry for these radioisotopes relies on activity images obtained through PET or SPECT and dosimetry methods, including the voxel S-value (VSV) and the local deposition method (LDM). However, the evaluation of the accuracy of absorbed dose calculations has been limited by the use of non-ideal reference standards and investigations restricted to the liver. The objective of this study was to expand upon these dosimetry characterizations by investigating the impact of image resolutions, voxel sizes, target volumes, and tissue materials on the accuracy of90 Y $^{90}{\rm {Y}}$ and166 Ho $^{166}{\rm {Ho}}$ dosimetry techniques. METHODS A specialized radiopharmaceutical dosimetry software called reDoseMC was developed using the Geant4 Monte Carlo toolkit and validated by benchmarking the generated90 Y $^{90}{\rm {Y}}$ kernels with published data. The decay spectra of both90 Y $^{90}{\rm {Y}}$ and166 Ho $^{166}{\rm {Ho}}$ were also compared. Multiple VSV kernels were generated for the liver, lungs, soft tissue, and bone for isotropic voxel sizes of 1 mm, 2 mm, and 4 mm. Three theoretical phantom setups were created with 20 or 40 mm activity and mass density inserts for the same three voxel sizes. To replicate the limited spatial resolutions present in PET and SPECT images, image resolutions were modeled using a 3D Gaussian kernel with a Full Width at Half Maximum (FWHM) ranging from 0 to 16 mm and with no added noise. The VSV and LDM dosimetry methods were evaluated by characterizing their respective kernels and analyzing their absorbed dose estimates calculated on theoretical phantoms. The ground truth for these estimations was calculated using reDoseMC. RESULTS The decay spectra obtained through reDoseMC showed less than a 1% difference when compared to previously published experimental data for energies below 1.9 MeV in the case of90 Y $^{90}{\rm {Y}}$ and less than 1% for energies below 1.5 MeV for166 Ho $^{166}{\rm {Ho}}$ . Additionally, the validation kernels for90 Y $^{90}{\rm {Y}}$ VSV exhibited results similar to those found in published Monte Carlo codes, with source dose depositions having less than a 3% error margin. Resolution thresholds (FWHM thresh s ${\rm {FWHM}}_\mathrm{thresh}{\rm {s}}$ ), defined as resolutions that resulted in similar dose estimates between the LDM and VSV methods, were observed for90 Y $^{90}{\rm {Y}}$ . They were 1.5 mm for bone, 2.5 mm for soft tissue and liver, and 8.5 mm for lungs. For166 Ho $^{166}{\rm {Ho}}$ , the accuracy of absorbed dose deposition was found to be dependent on the contributions of absorbed dose from photons. Volume errors due to variations in voxel size impacted the final dose estimates. Larger target volumes yielded more accurate mean doses than smaller volumes. For both radioisotopes, the radial dose profiles for the VSV and LDM approximated but never matched the reference standard. CONCLUSIONS reDoseMC was developed and validated for radiopharmaceutical dosimetry. The accuracy of voxel-based dosimetry was found to vary widely with changes in image resolutions, voxel sizes, chosen target volumes, and tissue material; hence, the standardization of dosimetry protocols was found to be of great importance for comparable dosimetry analysis.
Collapse
Affiliation(s)
- Taehyung Peter Kim
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
18
|
Ramos-Mendez J, Ortiz CR, Schuemann J, Paganetti H, Faddegon B. TOPAS simulation of photoneutrons in radiotherapy: accuracy and speed with variance reduction. Phys Med Biol 2024; 69:10.1088/1361-6560/ad4303. [PMID: 38657630 PMCID: PMC467037 DOI: 10.1088/1361-6560/ad4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Objective. We provide optimal particle split numbers for speeding up TOPAS Monte Carlo simulations of linear accelerator (linac) treatment heads while maintaining accuracy. In addition, we provide a new TOPAS physics module for simulating photoneutron production and transport.Approach.TOPAS simulation of a Siemens Oncor linac was used to determine the optimal number of splits for directional bremsstrahlung splitting as a function of the field size for 6 MV and 18 MV x-ray beams. The linac simulation was validated against published data of lateral dose profiles and percentage depth-dose curves (PDD) for the largest square field (40 cm side). In separate simulations, neutron particle split and the custom TOPAS physics module was used to generate and transport photoneutrons, called 'TsPhotoNeutron'. Verification of accuracy was performed by comparing simulations with published measurements of: (1) neutron yields as a function of beam energy for thick targets of Al, Cu, Ta, W, Pb and concrete; and (2) photoneutron energy spectrum at 40 cm laterally from the isocenter of the Oncor linac from an 18 MV beam with closed jaws and MLC.Main results.The optimal number of splits obtained for directional bremsstrahlung splitting enhanced the computational efficiency by two orders of magnitude. The efficiency decreased with increasing beam energy and field size. Calculated lateral profiles in the central region agreed within 1 mm/2% from measured data, PDD curves within 1 mm/1%. For the TOPAS physics module, at a split number of 146, the efficiency of computing photoneutron yields was enhanced by a factor of 27.6, whereas it improved the accuracy over existing Geant4 physics modules.Significance.This work provides simulation parameters and a new TOPAS physics module to improve the efficiency and accuracy of TOPAS simulations that involve photonuclear processes occurring in high-Zmaterials found in linac components, patient devices, and treatment rooms, as well as to explore new therapeutic modalities such as very-high energy electron therapy.
Collapse
Affiliation(s)
- J Ramos-Mendez
- Department of Radiation Oncology, University of California San Francisco, San Francisco CA, United States of America
| | - Catalan R Ortiz
- Department of Radiation Oncology, University of California San Francisco, San Francisco CA, United States of America
| | - J Schuemann
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital & Harvard Medical School, Boston MA, United States of America
| | - H Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital & Harvard Medical School, Boston MA, United States of America
| | - B Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco CA, United States of America
| |
Collapse
|
19
|
Kalinowski J, Enger SA. RapidBrachyTG43: A Geant4-based TG-43 parameter and dose calculation module for brachytherapy dosimetry. Med Phys 2024; 51:3746-3757. [PMID: 38252746 DOI: 10.1002/mp.16948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The AAPM TG-43U1 formalism remains the clinical standard for dosimetry of low- and high-energy γ $\gamma$ -emitting brachytherapy sources. TG-43U1 and related reports provide consensus datasets of TG-43 parameters derived from various published measured data and Monte Carlo simulations. These data are used to perform standardized and fast dose calculations for brachytherapy treatment planning. PURPOSE Monte Carlo TG-43 dosimetry parameters are commonly derived to characterize novel brachytherapy sources. RapidBrachyTG43 is a module of RapidBrachyMCTPS, a Monte Carlo-based treatment planning system, designed to automate this process, requiring minimal user input to prepare Geant4-based Monte Carlo simulations for a source. RapidBrachyTG43 may also perform a TG-43 dose to water-in-water calculation for a plan, substantially accelerating the same calculation performed using RapidBrachyMCTPS's Monte Carlo dose calculation engine. METHODS TG-43 parametersS K / A $S_K/A$ , Λ $\Lambda$ ,g L ( r ) $g_L(r)$ , andF ( r , θ ) $F(r,\theta)$ were calculated using three commercial source models, one each of125 $^{125}$ I,192 $^{192}$ Ir, and60 $^{60}$ Co, and were benchmarked to published data. TG-43 dose to water was calculated for a clinical breast brachytherapy plan and was compared to a Monte Carlo dose calculation with all patient tissues, air, and catheters set to water. RESULTS TG-43 parameters for the three simulated sources agreed with benchmark datasets within tolerances specified by the High Energy Brachytherapy Dosimetry working group. A gamma index comparison between the TG-43 and Monte Carlo dose-to-water calculations with a dose difference and difference to agreement criterion of 1%/1 mm yielded a 98.9% pass rate, with all relevant dose volume histogram metrics for the plan agreeing within 1%. Performing a TG-43-based dose calculation provided an acceleration of dose-to-water calculation by a factor of 165. CONCLUSIONS Determination of TG-43 parameter data for novel brachytherapy sources may now be facilitated by RapidBrachyMCTPS. These parameter datasets and existing consensus or published datasets may also be used to determine the TG-43 dose for a plan in RapidBrachyMCTPS.
Collapse
Affiliation(s)
- Jonathan Kalinowski
- Medical Physics Unit, Faculty of Medicine, Department of Oncology, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Shirin A Enger
- Medical Physics Unit, Faculty of Medicine, Department of Oncology, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
20
|
Quetin S, Bahoric B, Maleki F, Enger SA. Deep learning for high-resolution dose prediction in high dose rate brachytherapy for breast cancer treatment. Phys Med Biol 2024; 69:105011. [PMID: 38604185 DOI: 10.1088/1361-6560/ad3dbd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective.Monte Carlo (MC) simulations are the benchmark for accurate radiotherapy dose calculations, notably in patient-specific high dose rate brachytherapy (HDR BT), in cases where considering tissue heterogeneities is critical. However, the lengthy computational time limits the practical application of MC simulations. Prior research used deep learning (DL) for dose prediction as an alternative to MC simulations. While accurate dose predictions akin to MC were attained, graphics processing unit limitations constrained these predictions to large voxels of 3 mm × 3 mm × 3 mm. This study aimed to enable dose predictions as accurate as MC simulations in 1 mm × 1 mm × 1 mm voxels within a clinically acceptable timeframe.Approach.Computed tomography scans of 98 breast cancer patients treated with Iridium-192-based HDR BT were used: 70 for training, 14 for validation, and 14 for testing. A new cropping strategy based on the distance to the seed was devised to reduce the volume size, enabling efficient training of 3D DL models using 1 mm × 1 mm × 1 mm dose grids. Additionally, novel DL architecture with layer-level fusion were proposed to predict MC simulated dose to medium-in-medium (Dm,m). These architectures fuse information from TG-43 dose to water-in-water (Dw,w) with patient tissue composition at the layer-level. Different inputs describing patient body composition were investigated.Main results.The proposed approach demonstrated state-of-the-art performance, on par with the MCDm,mmaps, but 300 times faster. The mean absolute percent error for dosimetric indices between the MC and DL-predicted complete treatment plans was 0.17% ± 0.15% for the planning target volumeV100, 0.30% ± 0.32% for the skinD2cc, 0.82% ± 0.79% for the lungD2cc, 0.34% ± 0.29% for the chest wallD2ccand 1.08% ± 0.98% for the heartD2cc.Significance.Unlike the time-consuming MC simulations, the proposed novel strategy efficiently converts TG-43Dw,wmaps into preciseDm,mmaps at high resolution, enabling clinical integration.
Collapse
Affiliation(s)
- Sébastien Quetin
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
- Montreal Institute for Learning Algorithms, Mila, Montreal, QC, Canada
| | - Boris Bahoric
- Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Farhad Maleki
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
- Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada
- Department of Radiology, University of Florida, Gainesville, FL, United States of America
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
- Montreal Institute for Learning Algorithms, Mila, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
21
|
Berumen F, Ouellet S, Enger S, Beaulieu L. Aleatoric and epistemic uncertainty extraction of patient-specific deep learning-based dose predictions in LDR prostate brachytherapy. Phys Med Biol 2024; 69:085026. [PMID: 38484398 DOI: 10.1088/1361-6560/ad3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
Objective.In brachytherapy, deep learning (DL) algorithms have shown the capability of predicting 3D dose volumes. The reliability and accuracy of such methodologies remain under scrutiny for prospective clinical applications. This study aims to establish fast DL-based predictive dose algorithms for low-dose rate (LDR) prostate brachytherapy and to evaluate their uncertainty and stability.Approach.Data from 200 prostate patients, treated with125I sources, was collected. The Monte Carlo (MC) ground truth dose volumes were calculated with TOPAS considering the interseed effects and an organ-based material assignment. Two 3D convolutional neural networks, UNet and ResUNet TSE, were trained using the patient geometry and the seed positions as the input data. The dataset was randomly split into training (150), validation (25) and test (25) sets. The aleatoric (associated with the input data) and epistemic (associated with the model) uncertainties of the DL models were assessed.Main results.For the full test set, with respect to the MC reference, the predicted prostateD90metric had mean differences of -0.64% and 0.08% for the UNet and ResUNet TSE models, respectively. In voxel-by-voxel comparisons, the average global dose difference ratio in the [-1%, 1%] range included 91.0% and 93.0% of voxels for the UNet and the ResUNet TSE, respectively. One forward pass or prediction took 4 ms for a 3D dose volume of 2.56 M voxels (128 × 160 × 128). The ResUNet TSE model closely encoded the well-known physics of the problem as seen in a set of uncertainty maps. The ResUNet TSE rectum D2cchad the largest uncertainty metric of 0.0042.Significance.The proposed DL models serve as rapid dose predictors that consider the patient anatomy and interseed attenuation effects. The derived uncertainty is interpretable, highlighting areas where DL models may struggle to provide accurate estimations. The uncertainty analysis offers a comprehensive evaluation tool for dose predictor model assessment.
Collapse
Affiliation(s)
- Francisco Berumen
- Service de Physique Médicale et de Radioprotection, Centre Intégré de Cancérologie, CHU de Québec-Université Laval et Centre de recherche du CHU de Québec, Quebec, Quebec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, Quebec, Canada
| | - Samuel Ouellet
- Service de Physique Médicale et de Radioprotection, Centre Intégré de Cancérologie, CHU de Québec-Université Laval et Centre de recherche du CHU de Québec, Quebec, Quebec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, Quebec, Canada
| | - Shirin Enger
- Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Luc Beaulieu
- Service de Physique Médicale et de Radioprotection, Centre Intégré de Cancérologie, CHU de Québec-Université Laval et Centre de recherche du CHU de Québec, Quebec, Quebec, Canada
- Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
22
|
Mettivier G, Lai Y, Jia X, Russo P. Virtual dosimetry study with three cone-beam breast computed tomography scanners using a fast GPU-based Monte Carlo code. Phys Med Biol 2024; 69:045028. [PMID: 38237186 DOI: 10.1088/1361-6560/ad2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024]
Abstract
Objective. To compare the dosimetric performance of three cone-beam breast computed tomography (BCT) scanners, using real-time Monte Carlo-based dose estimates obtained with the virtual clinical trials (VCT)-BREAST graphical processing unit (GPU)-accelerated platform dedicated to VCT in breast imaging. Approach. A GPU-based Monte Carlo (MC) code was developed for replicatingin silicothe geometric, x-ray spectra and detector setups adopted, respectively, in two research scanners and one commercial BCT scanner, adopting 80 kV, 60 kV and 49 kV tube voltage, respectively. Our cohort of virtual breasts included 16 anthropomorphic voxelized breast phantoms from a publicly available dataset. For each virtual patient, we simulated exams on the three scanners, up to a nominal simulated mean glandular dose of 5 mGy (primary photons launched, in the order of 1011-1012per scan). Simulated 3D dose maps (recorded for skin, adipose and glandular tissues) were compared for the same phantom, on the three scanners. MC simulations were implemented on a single NVIDIA GeForce RTX 3090 graphics card.Main results.Using the spread of the dose distribution as a figure of merit, we showed that, in the investigated phantoms, the glandular dose is more uniform within less dense breasts, and it is more uniformly distributed for scans at 80 kV and 60 kV, than at 49 kV. A realistic virtual study of each breast phantom was completed in about 3.0 h with less than 1% statistical uncertainty, with 109primary photons processed in 3.6 s computing time.Significance. We reported the first dosimetric study of the VCT-BREAST platform, a fast MC simulation tool for real-time virtual dosimetry and imaging trials in BCT, investigating the dose delivery performance of three clinical BCT scanners. This tool can be adopted to investigate also the effects on the 3D dose distribution produced by changes in the geometrical and spectrum characteristics of a cone-beam BCT scanner.
Collapse
Affiliation(s)
- Giovanni Mettivier
- Dipartimento di Fisica 'Ettore Pancini', Università di Napoli Federico II, I-80126 Naples, Italy
- INFN Sezione di Napoli, I-80126 Naples, Italy
| | - Youfang Lai
- Innovative Technology of Radiotherapy Computation and Hardware (iTORCH) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 752878, United States of America
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21224, United States of America
| | - Paolo Russo
- Dipartimento di Fisica 'Ettore Pancini', Università di Napoli Federico II, I-80126 Naples, Italy
- INFN Sezione di Napoli, I-80126 Naples, Italy
| |
Collapse
|
23
|
Thiele M, Galonske K, Ernst I, Mack A. Development of a LINAC head model for the CyberKnife VSI-System using EGSnrc Monte Carlo system. J Appl Clin Med Phys 2023; 24:e14137. [PMID: 37712892 PMCID: PMC10691629 DOI: 10.1002/acm2.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION In order to understand the interaction processes of photons and electrons of the CyberKnife VSI-System, a modeling of the LINAC head must take place. Here, a Monte Carlo simulation can help. By comparing the measured data with the simulation data, the agreement can be checked. MATERIALS AND METHODS For the Monte Carlo simulations, the toolkit EGSnrc with the user codes BEAMnrc and DOSXZYnrc was used. The CyberKnife VSI-System has two collimation systems to define the field size of the beam. On the one hand, it has 12 circular collimators and, on the other, an IRIS-aperture. The average energy, final source width, dose profiles, and output factors in a voxel-based water phantom were determined and compared to the measured data. RESULTS The average kinetic energy of the electron beam for the CyberKnife VSI LINAC head is 6.9 MeV, with a final source width of 0.25 cm in x-direction and 0.23 cm in y-direction. All simulated dose profiles for both collimation systems were able to achieve a global gamma criterion of 1%/1 mm to the measured data. For the output factors, the deviation from simulated to measured data is < 1% from a field size of 12.5 mm for the circular collimators and from a field size of 10 mm for the IRIS-aperture. CONCLUSION The beam characteristics of the CyberKnife VSI LINAC head could be exactly simulated with Monte Carlo simulation. Thus, in the future, this model can be used as a basis for electronic patient-specific QA or to determine scattering processes of the LINAC head.
Collapse
Affiliation(s)
| | | | - Iris Ernst
- German Center for Stereotaxy and Precision IrradiationSoestGermany
| | - Andreas Mack
- Swiss Neuro Radiosurgery CenterZurichSwitzerland
| |
Collapse
|
24
|
Carroll L, Enger SA. M-TAG: A modular teaching-aid for Geant4. Heliyon 2023; 9:e20229. [PMID: 37810860 PMCID: PMC10556609 DOI: 10.1016/j.heliyon.2023.e20229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Geant4 is a versatile Monte Carlo radiation transport simulation toolkit with a steep learning curve. This work introduces a user-code called M-TAG (Modular Radiation Teaching-Aid for Geant4), built on top of Geant4. M-TAG is designed to help gradually introduce the Geant4 toolkit to new users. The goal of Geant4 is to record quantities from the simulated radiation as it is transported through geometries. M-TAG simplifies the inclusion of new geometric elements and detector components in the simulation by including new classes. M-TAG also provides basic validated examples for some common detector development tasks. Geant4 intercom modules, called messenger classes, manage these classes. To validate M-TAG, simulations were performed to calculate the range of positrons in water. One hundred million decays at the center of a water-filled sphere with a radius of 1 m were allowed for fluorine-18, carbon-11, oxygen-15 and gallium-68. These results were compared to literature values. An inexperienced Geant4 user was tasked with creating a simulation model for a plastic scintillator-based detector and conducting basic tests to assess the effectiveness of M-TAG as a teaching tool. The simulation involved calculating the dose to the detector's sensitive volume using a 2x2 cm planar monoenergetic photon source spanning energies from 20 to 100 keV. One billion particles were simulated twice: once with the actual detector geometry and once with the sensitive volume replaced by water. The validity of M-TAG was also verified by computing dose ratios and comparing them with mass-attenuation ratios obtained from NIST XCOM data sets. The mean positron travel distances were within the distribution of literature values. Simulated positron energy spectra means were within 1.8% of literature means. Simulated dose ratios agreed with literature values within uncertainties. We have developed and verified a modular Geant4 teaching aid called M-TAG. It was used to introduce a new user to Geant4, who used it to perform further validation simulations.
Collapse
Affiliation(s)
- Liam Carroll
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Shirin A. Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| |
Collapse
|
25
|
Martins JC, Maier J, Gianoli C, Neppl S, Dedes G, Alhazmi A, Veloza S, Reiner M, Belka C, Kachelrieß M, Parodi K. Towards real-time EPID-based 3D in vivo dosimetry for IMRT with Deep Neural Networks: A feasibility study. Phys Med 2023; 114:103148. [PMID: 37801811 DOI: 10.1016/j.ejmp.2023.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
We investigate the potential of the Deep Dose Estimate (DDE) neural network to predict 3D dose distributions inside patients with Monte Carlo (MC) accuracy, based on transmitted EPID signals and patient CTs. The network was trained using as input patient CTs and first-order dose approximations (FOD). Accurate dose distributions (ADD) simulated with MC were given as training targets. 83 pelvic CTs were used to simulate ADDs and respective EPID signals for subfields of prostate IMRT plans (gantry at 0∘). FODs were produced as backprojections from the EPID signals. 581 ADD-FOD sets were produced and divided into training and test sets. An additional dataset simulated with gantry at 90∘ (lateral set) was used for evaluating the performance of the DDE at different beam directions. The quality of the FODs and DDE-predicted dose distributions (DDEP) with respect to ADDs, from the test and lateral sets, was evaluated with gamma analysis (3%,2 mm). The passing rates between FODs and ADDs were as low as 46%, while for DDEPs the passing rates were above 97% for the test set. Meaningful improvements were also observed for the lateral set. The high passing rates for DDEPs indicate that the DDE is able to convert FODs into ADDs. Moreover, the trained DDE predicts the dose inside a patient CT within 0.6 s/subfield (GPU), in contrast to 14 h needed for MC (CPU-cluster). 3D in vivo dose distributions due to clinical patient irradiation can be obtained within seconds, with MC-like accuracy, potentially paving the way towards real-time EPID-based in vivo dosimetry.
Collapse
Affiliation(s)
- Juliana Cristina Martins
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Joscha Maier
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
| | - Chiara Gianoli
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Sebastian Neppl
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.
| | - George Dedes
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Abdulaziz Alhazmi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Stella Veloza
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.
| | - Marc Kachelrieß
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany; Heidelberg University, Grabengasse 1, Heidelberg, 69117, Germany.
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching b. München, 85748, Germany.
| |
Collapse
|
26
|
Mansour IR, Thomson RM. Haralick texture analysis for microdosimetry: characterization of Monte Carlo generated 3D specific energy distributions. Phys Med Biol 2023; 68:185003. [PMID: 37591252 DOI: 10.1088/1361-6560/acf183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Objective.Explore the application of Haralick textural analysis to 3D distributions of specific energy (energy imparted per unit mass) scored in cell-scale targets considering varying mean specific energy (absorbed dose), target volume, and incident spectrum.Approach.Monte Carlo simulations are used to generate specific energy distributions in cell-scale water voxels ((1μm)3-(15μm)3) irradiated by photon sources (mean energies: 0.02-2 MeV) to varying mean specific energies (10-400 mGy). Five Haralick features (homogeneity, contrast, entropy, correlation, local homogeneity) are calculated using an implementation of Haralick analysis designed to reduce sensitivity to grey level quantization and are interpreted using fundamental radiation physics.Main results.Haralick measures quantify differences in 3D specific energy distributions observed with varying voxel volume, absorbed dose magnitude, and source spectrum. For example, specific energy distributions in small (1-3μm) voxels with low magnitudes of absorbed dose (10 mGy) have relatively high measures of homogeneity and local homogeneity and relatively low measures of contrast and entropy (all relative to measures for larger voxels), reflecting the many voxels with zero specific energy in an otherwise sporadic distribution. With increasing target size, energy is shared across more target voxels, and trends in Haralick measures, such as decreasing homogeneity and increasing contrast and entropy, reflect characteristics of each 3D specific energy distribution. Specific energy distributions for sources of differing mean energy are characterized by Haralick measures, e.g. contrast generally decreases with increasing source energy, correlation and homogeneity are often (not always) higher for higher energy sources.Significance.Haralick texture analysis successfully quantifies spatial trends in 3D specific energy distributions characteristic of radiation source, target size, and absorbed dose magnitude, thus offering new avenues to quantify microdosimetric data beyond first order histogram features. Promising future directions include investigations of multiscale tissue models, targeted radiation therapy techniques, and biological response to radiation.
Collapse
Affiliation(s)
- Iymad R Mansour
- Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Dr, Ottawa, K1S 5B6, Ontario, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Dr, Ottawa, K1S 5B6, Ontario, Canada
| |
Collapse
|
27
|
Hoseini-Ghahfarokhi M, Kamio Y, Mondor J, Jabbari K, Carrier JF. Development of a stand-alone precalculated Monte Carlo code to calculate the dose by alpha and beta emitters from the Ra-224 decay chain. Med Phys 2023; 50:5176-5188. [PMID: 37161766 DOI: 10.1002/mp.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Recent developments in alpha and beta emitting radionuclide therapy highlight the importance of developing efficient methods for patient-specific dosimetry. Traditional tabulated methods such as Medical Internal Radiation Dose (MIRD) estimate the dose at the organ level while more recent numerical methods based on Monte Carlo (MC) simulations are able to calculate dose at the voxel level. A precalculated MC (PMC) approach was developed in this work as an alternative to time-consuming fully simulated MC. Once the spatial distribution of alpha and beta emitters is determined using imaging and/or numerical methods, the PMC code can be used to achieve an accurate voxelized 3D distribution of the deposited energy without relying on full MC calculations. PURPOSE To implement the PMC method to calculate energy deposited by alpha and beta particles emitted from the Ra-224 decay chain. METHODS The GEANT4 (version 10.7) MC toolkit was used to generate databases of precalculated tracks to be integrated in the PMC code as well as to benchmark its output. In this regard, energy spectra of alpha and beta particles emitted by the Ra-224 decay chain were generated using GAMOS (version 6.2.0) and imported into GEANT4 macro files. Either alpha or beta emitting sources were defined at the center of a homogeneous phantom filled with various materials such as soft tissue, bone, and lung where particles were emitted either mono-directionally (for database generation) or isotropically (for benchmarking). Two heterogeneous phantoms were used to demonstrate PMC code compatibility with boundary crossing events. Each precalculated database was generated step-by-step by storing particle track information from GEANT4 simulations followed by its integration in a PMC code developed in MATLAB. For a user-defined number of histories, one of the tracks in a given database was selected randomly and rotated randomly to reflect an isotropic emission. Afterward, deposited energy was divided between voxels based on step length in each voxel using a ray-tracing approach. The radial distribution of deposited energy was benchmarked against fully simulated MC calculations using GEANT4. The effect of the GEANT4 parameter StepMax on the accuracy and speed of the code was also investigated. RESULTS In the case of alpha decay, primary alpha particles show the highest contribution (>99%) in deposited energy compared to their secondary particles. In most cases, protons act as the main secondary particles in the deposition of energy. However, for a lung phantom, using a range cutoff parameter of 10 µm on primary alpha particles yields a higher contribution of secondary electrons than protons. Differences between deposited energy calculated by PMC and fully simulated MC are within 2% for all alpha and beta emitters in homogeneous and heterogeneous phantoms. Additionally, statistical uncertainties are less than 1% for voxels with doses higher than 5% of the maximum dose. Moreover, optimization of the parameter StepMax is necessary to achieve the best tradeoff between code accuracy and speed. CONCLUSIONS The PMC code shows good performance for dose calculations deposited by alpha and beta emitters. As a stand-alone algorithm, it is suitable to be integrated into clinical treatment planning systems.
Collapse
Affiliation(s)
- Mojtaba Hoseini-Ghahfarokhi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Département de Physique, Université de Montréal, Montréal, Quebec, Canada
| | - Yuji Kamio
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Julien Mondor
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Département de Physique, Université de Montréal, Montréal, Quebec, Canada
| | - Keyvan Jabbari
- Department of Radiation Oncology, Champlain Valley Physicians Hospital, Plattsburgh, New York, USA
| | - Jean-François Carrier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Département de Physique, Université de Montréal, Montréal, Quebec, Canada
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| |
Collapse
|
28
|
Carroll L, Enger SA. Simulation of a novel, non-invasive radiation detector to measure the arterial input function for dynamic positron emission tomography. Med Phys 2023; 50:1647-1659. [PMID: 36250522 DOI: 10.1002/mp.16055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dynamic positron emission tomography (dPET) is a nuclear medicine imaging technique providing functional images for organs of interest with applications in oncology, cardiology, and drug discovery. This technique requires the acquisition of the time-course arterial plasma activity concentration, called the arterial input function (AIF), which is conventionally acquired via arterial blood sampling. PURPOSE The aim of this study was to (A) optimize the geometry for a novel and cost efficient non-invasive detector called NID designed to measure the AIF for dPET scans through Monte Carlo simulations and (B) develop a clinical data analysis chain to successfully separate the arterial component of a simulated AIF signal from the venous component. METHODS The NID was optimized by using an in-house Geant4-based software package. The sensitive volume of the NID consists of a band of 10 cm long and 1 mm in diameter scintillating fibers placed over a wrist phantom. The phantom was simulated as a cylinder, 10 cm long and 6.413 cm in diameter comprised of polyethylene with two holes placed through it to simulate the patient's radial artery and vein. This phantom design was chosen to match the wrist phantom used in our previous proof of concept work. Two geometries were simulated with different arrangements of scintillating fibers. The first design used a single layer of 64 fibers. The second used two layers, an inner layer with 29 fibers and an outer layer with 30 fibers. Four positron emitting radioisotopes were simulated: 18 F, 11 C, 15 O, and 68 Ga with 100 million simulated decay events per run. The total and intrinsic efficiencies of both designs were calculated as well as the full width half maximum (FWHM) of the signal. In addition, contribution by the annihilation photons versus positrons to the signal was investigated. The results obtained from the two simulated detector models were compared. A clinical data analysis chain using an expectation maximization maximum likelihood algorithm was tested. This analysis chain will be used to separate arterial counts from the total signal. RESULTS The second NID design with two layers of scintillating fibers had a higher efficiency for all simulations with a maximum increase of 17% total efficiency for 11 C simulation. All simulations had a significant annihilation photon contribution. The signal for 18 F and 11 C was almost entirely due to photons. The clinical data analysis chain was within 1% of the true value for 434 out of 440 trials. Further experimental studies to validate these simulations will be required. CONCLUSIONS The design of the NID was optimized and its efficiency increased through Monte Carlo simulations. A clinical data analysis chain was successfully developed to separate the arterial component of an AIF signal from the venous component. The simulations show that the NID can be used to accurately measure the AIF non-invasively for dPET scans.
Collapse
Affiliation(s)
- Liam Carroll
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Abuhaimed A, Martin CJ. Assessment of organ and size-specific effective doses from cone beam CT (CBCT) in image-guided radiotherapy (IGRT) based on body mass index (BMI). Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
30
|
Mueller S, Guyer G, Volken W, Frei D, Torelli N, Aebersold DM, Manser P, Fix MK. Efficiency enhancements of a Monte Carlo beamlet based treatment planning process: implementation and parameter study. Phys Med Biol 2023; 68. [PMID: 36655485 DOI: 10.1088/1361-6560/acb480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Objective.The computational effort to perform beamlet calculation, plan optimization and final dose calculation of a treatment planning process (TPP) generating intensity modulated treatment plans is enormous, especially if Monte Carlo (MC) simulations are used for dose calculation. The goal of this work is to improve the computational efficiency of a fully MC based TPP for static and dynamic photon, electron and mixed photon-electron treatment techniques by implementing multiple methods and studying the influence of their parameters.Approach.A framework is implemented calculating MC beamlets efficiently in parallel on each available CPU core. The user can specify the desired statistical uncertainty of the beamlets, a fractional sparse dose threshold to save beamlets in a sparse format and minimal distances to the PTV surface from which 2 × 2 × 2 = 8 (medium) or even 4 × 4 × 4 = 64 (large) voxels are merged. The compromise between final plan quality and computational efficiency of beamlet calculation and optimization is studied for several parameter values to find a reasonable trade-off. For this purpose, four clinical and one academic case are considered with different treatment techniques.Main results.Setting the statistical uncertainty to 5% (photon beamlets) and 15% (electron beamlets), the fractional sparse dose threshold relative to the maximal beamlet dose to 0.1% and minimal distances for medium and large voxels to the PTV to 1 cm and 2 cm, respectively, does not lead to substantial degradation in final plan quality compared to using 2.5% (photon beamlets) and 5% (electron beamlets) statistical uncertainty and no sparse format nor voxel merging. Only OAR sparing is slightly degraded. Furthermore, computation times are reduced by about 58% (photon beamlets), 88% (electron beamlets) and 96% (optimization).Significance.Several methods are implemented improving computational efficiency of beamlet calculation and plan optimization of a fully MC based TPP without substantial degradation in final plan quality.
Collapse
Affiliation(s)
- S Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - G Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - D Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - N Torelli
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - D M Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| |
Collapse
|
31
|
Andersson P, Swanpalmer J, Palm Å, Båth M, Chakarova R. Cylindrical ionization chamber response in static and dynamic 6 and 15 MV photon beams. Biomed Phys Eng Express 2023; 9. [PMID: 36689763 DOI: 10.1088/2057-1976/acb553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Purpose.To investigate the response of the CC13 ionization chamber under non-reference photon beam conditions, focusing on penumbra and build-up regions of static fields and on dynamic intensity-modulated beams.Methods. Measurements were performed in 6 MV 100 × 100, 20 × 100, and 20 × 20 mm2static fields. Monte Carlo calculations were performed for the static fields and for 6 and 15 MV dynamic beam sequences using a Varian multi-leaf collimator. The chamber was modelled using EGSnrc egs_chamber software. Conversion factors were calculated by relating the absorbed dose to air in the chamber air cavity to the absorbed dose to water. Correction and point-dose correction factors were calculated to quantify the conversion factor variations.Results. The correction factors for positions on the beam central axis and at the penumbra centre were 0.98-1.02 for all static fields and depths investigated. The largest corrections were obtained for chamber positions beyond penumbra centre in the off-axis direction. Point-dose correction factors were 0.54-0.71 at 100 mm depth and their magnitude increased with decreasing field size and measurement depth. Factors of 0.99-1.03 were obtained inside and near the integrated penumbra of the dynamic field at 100 mm depth, and of 0.92-0.94 beyond the integrated penumbra centre. The variations in the ionization chamber response across the integrated dynamic penumbra qualitatively followed the behaviour across penumbra of static fields.Conclusions. Without corrections, the CC13 chamber was of limited usefulness for profile measurements in 20-mm-wide fields. However, measurements in dynamic small irregular beam openings resembling the conditions of pre-treatment patient quality assurance were feasible. Uncorrected ionization chamber response could be applied for dose verification at 100 mm depth inside and close to large gradients of dynamically accumulating high- and low-dose regions assuming 3% tolerance between measured and calculated doses.
Collapse
Affiliation(s)
- P Andersson
- Sahlgrenska Academy, Institute of Clinical Sciences, Department of Medical Radiation Sciences, University of Gothenburg, Gothenburg, Sweden.,RISE Research Institutes of Sweden, Materials and Production, Gothenburg, Sweden
| | - J Swanpalmer
- Sahlgrenska Academy, Institute of Clinical Sciences, Department of Medical Radiation Sciences, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Å Palm
- Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M Båth
- Sahlgrenska Academy, Institute of Clinical Sciences, Department of Medical Radiation Sciences, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - R Chakarova
- Sahlgrenska Academy, Institute of Clinical Sciences, Department of Medical Radiation Sciences, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
32
|
Abdul Hadi MFR, Abdullah AN, Hashikin NAA, Ying CK, Yeong CH, Yoon TL, Ng KH, Ng KH. Utilizing 3D Slicer to incorporate tomographic images into GATE Monte Carlo simulation for personalized dosimetry in yttrium-90 radioembolization. Med Phys 2022; 49:7742-7753. [PMID: 36098271 DOI: 10.1002/mp.15980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Monte Carlo (MC) simulation is an important technique that can help design advanced and challenging experimental setups. GATE (Geant4 application for tomographic emission) is a useful simulation toolkit for applications in nuclear medicine. Transarterial radioembolization is a treatment for liver cancer, where microspheres embedded with yttrium-90 (90 Y) are administered intra-arterially to the tumor. Personalized dosimetry for this treatment may provide higher dosimetry accuracy compared to the conventional partition model (PM) calculation. However, incorporation of three-dimensional tomographic input data into MC simulation is an intricate process. In this article, 3D Slicer, free and open-source software, was utilized for the incorporation of patient tomographic images into GATE to demonstrate the feasibility of personalized dosimetry in hepatic radioembolization with 90 Y. METHODS In this article, the steps involved in importing, segmenting, and registering tomographic images using 3D Slicer were thoroughly described, before importing them into GATE for MC simulation. The absorbed doses estimated using GATE were then compared with that of PM. SlicerRT, a 3D Slicer extension, was then used to visualize the isodose from the MC simulation. RESULTS A workflow diagram consisting of all the steps taken in the utilization of 3D Slicer for personalized dosimetry in 90 Y radioembolization has been presented in this article. In comparison to the MC simulation, the absorbed doses to the tumor and normal liver were overestimated by PM by 105.55% and 20.23%, respectively, whereas for lungs, the absorbed dose estimated by PM was underestimated by 25.32%. These values were supported by the isodose distribution obtained via SlicerRT, suggesting the presence of beta particles outside the volumes of interest. These findings demonstrate the importance of personalized dosimetry for a more accurate absorbed dose estimation compared to PM. CONCLUSION The methodology provided in this study can assist users (especially students or researchers who are new to MC simulation) in navigating intricate steps required in the importation of tomographic data for MC simulation. These steps can also be utilized for other radiation therapy related applications, not necessarily limited to internal dosimetry.
Collapse
Affiliation(s)
| | | | | | - Chee Keat Ying
- Oncological & Radiological Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, 13200, Malaysia
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Tiem Leong Yoon
- School of Physics, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory of Kuala Lumpur, 50603, Malaysia.,Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, 71010, Malaysia
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Faculty of Medicine and Health Sciences, UCSI University. 71010 Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
33
|
Lee H, Shin J, Verburg JM, Bobić M, Winey B, Schuemann J, Paganetti H. MOQUI: an open-source GPU-based Monte Carlo code for proton dose calculation with efficient data structure. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8716. [PMID: 35926482 PMCID: PMC9513828 DOI: 10.1088/1361-6560/ac8716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
Objective.Monte Carlo (MC) codes are increasingly used for accurate radiotherapy dose calculation. In proton therapy, the accuracy of the dose calculation algorithm is expected to have a more significant impact than in photon therapy due to the depth-dose characteristics of proton beams. However, MC simulations come at a considerable computational cost to achieve statistically sufficient accuracy. There have been efforts to improve computational efficiency while maintaining sufficient accuracy. Among those, parallelizing particle transportation using graphic processing units (GPU) achieved significant improvements. Contrary to the central processing unit, a GPU has limited memory capacity and is not expandable. It is therefore challenging to score quantities with large dimensions requiring extensive memory. The objective of this study is to develop an open-source GPU-based MC package capable of scoring those quantities.Approach.We employed a hash-table, one of the key-value pair data structures, to efficiently utilize the limited memory of the GPU and score the quantities requiring a large amount of memory. With the hash table, only voxels interacting with particles will occupy memory, and we can search the data efficiently to determine their address. The hash-table was integrated with a novel GPU-based MC code, moqui.Main results.The developed code was validated against an MC code widely used in proton therapy, TOPAS, with homogeneous and heterogeneous phantoms. We also compared the dose calculation results of clinical treatment plans. The developed code agreed with TOPAS within 2%, except for the fall-off and regions, and the gamma pass rates of the results were >99% for all cases with a 2 mm/2% criteria.Significance.We can score dose-influence matrix and dose-rate on a GPU for a 3-field H&N case with 10 GB of memory using moqui, which would require more than 100 GB of memory with the conventionally used array data structure.
Collapse
Affiliation(s)
- Hoyeon Lee
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Jungwook Shin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, United States of America
| | - Joost M Verburg
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Mislav Bobić
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
- Department of Physics, ETH, Zürich 8092, Switzerland
| | - Brian Winey
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Jan Schuemann
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Harald Paganetti
- Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
34
|
Mishra S, Mishra B, Selvam TP, Deshpande S, Pathan MS, Kumar R. Monte Carlo Study on Dose Distributions Around 192Ir, 169Yb, and 125I Brachytherapy Sources Using EGSnrc-based egs_brachy User-code. J Med Phys 2022; 47:270-278. [PMID: 36684701 PMCID: PMC9847004 DOI: 10.4103/jmp.jmp_16_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction As per the recommendations of the American Association of Physicists in Medicine Task Group 43, Monte Carlo (MC) investigators should reproduce previously published dose distributions whenever new features of the code are explored. The purpose of the present study is to benchmark the TG-43 dosimetric parameters calculated using the new MC user-code egs_brachy of EGSnrc code system for three different radionuclides 192Ir, 169Yb, and 125I which represent high-, intermediate-, and low-energy sources, respectively. Materials and Methods Brachytherapy sources investigated in this study are high-dose rate (HDR) 192Ir VariSource (Model VS2000), 169Yb HDR (Model 4140), and 125I -low-dose-rate (LDR) (Model OcuProsta). The TG-43 dosimetric parameters such as air-kerma strength, S k, dose rate constant, Λ, radial dose function, g(r) and anisotropy function, F(r,θ) and two-dimensional (2D) absorbed dose rate data (along-away table) are calculated in a cylindrical water phantom of mass density 0.998 g/cm3 using the MC code egs_brachy. Dimensions of phantom considered for 192Ir VS2000 and 169Yb sources are 80 cm diameter ×80 cm height, whereas for 125I OcuProsta source, 30 cm diameter ×30 cm height cylindrical water phantom is considered for MC calculations. Results The dosimetric parameters calculated using egs_brachy are compared against the values published in the literature. The calculated values of dose rate constants from this study agree with the published values within statistical uncertainties for all investigated sources. Good agreement is found between the egs_brachy calculated radial dose functions, g(r), anisotropy functions, and 2D dose rate data with the published values (within 2%) for the same phantom dimensions. For 192Ir VS2000 source, difference of about 28% is observed in g(r) value at 18 cm from the source which is due to differences in the phantom dimensions. Conclusion The study validates TG-43 dose parameters calculated using egs_brachy for 192Ir, 169Yb, and 125I brachytherapy sources with the values published in the literature.
Collapse
Affiliation(s)
- Subhalaxmi Mishra
- Division of Radiological Physics and Advisory, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Bibekananda Mishra
- Division of Radiological Safety, Atomic Energy Regulatory Board, Mumbai, Maharashtra, India
| | - T. Palani Selvam
- Division of Radiological Physics and Advisory, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sudesh Deshpande
- Department of Radiation Oncology, P. D. Hinduja National Hospital and MRC, Mumbai, Maharashtra, India
| | - Munir Shabbir Pathan
- Division of Radiological Physics and Advisory, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Rajesh Kumar
- Division of Radiological Physics and Advisory, Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
35
|
Investigation of the effects of the step size of Geant4 electromagnetic physics on the depth dose simulation of a small field proton beam. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Failing T, Hartmann GH, Hensley FW, Keil B, Zink K. Enhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles. Z Med Phys 2022; 32:417-427. [PMID: 35643800 PMCID: PMC9948836 DOI: 10.1016/j.zemedi.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Simulation of absorbed dose deposition in a detector is one of the key tasks of Monte Carlo (MC) dosimetry methodology. Recent publications (Hartmann and Zink, 2018; Hartmann and Zink, 2019; Hartmann et al., 2021) have shown that knowledge of the charged particle fluence differential in energy contributing to absorbed dose is useful to provide enhanced insight on how response depends on detector properties. While some EGSnrc MC codes provide output of charged particle spectra, they are often restricted in setup options or limited in calculation efficiency. For detector simulations, a promising approach is to upgrade the EGSnrc code egs_chamber which so far does not offer charged particle calculations. METHODS Since the user code cavity offers charged particle fluence calculation, the underlying algorithm was embedded in egs_chamber. The modified code was tested against two EGSnrc applications and DOSXYZnrc which was modified accordingly by one of the authors. Furthermore, the gain in efficiency achieved by photon cross section enhancement was determined quantitatively. RESULTS Electron and positron fluence spectra and restricted cema calculated by egs_chamber agreed well with the compared applications thus demonstrating the feasibility of the new code. Additionally, variance reduction techniques are now applicable also for fluence calculations. Depending on the simulation setup, considerable gains in efficiency were obtained by photon cross section enhancement. CONCLUSION The enhanced egs_chamber code represents a valuable tool to investigate the response of detectors with respect to absorbed dose and fluence distribution and the perturbation caused by the detector in a reasonable computation time. By using intermediate phase space scoring, egs_chamber offers parallel calculation of charged particle fluence spectra for different detector configurations in one single run.
Collapse
Affiliation(s)
- Thomas Failing
- Department for Radiotherapy and Radiooncology, University Medical Center Göttingen, Göttingen 37075, Germany; Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen 35390, Germany.
| | | | - Frank W Hensley
- Department for Radiotherapy and Radiooncology, University Medical Center Heidelberg, Heidelberg 69120, Germany
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen 35390, Germany; Diagnostic and Interventional Radiology, Philipps-University Marburg, Marburg 35043, Germany
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen 35390, Germany; Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg 35043, Germany; Marburg Iontherapy Center (MIT), Marburg 35043, Germany
| |
Collapse
|
37
|
Peng Z, Lu Y, Xu Y, Li Y, Cheng B, Ni M, Chen Z, Pei X, Xie Q, Wang S, Xu XG. Development of a GPU-accelerated Monte Carlo dose calculation module for nuclear medicine, ARCHER-NM: demonstration for a PET/CT imaging procedure. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac58dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/25/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. This paper describes the development and validation of a GPU-accelerated Monte Carlo (MC) dose computing module dedicated to organ dose calculations of individual patients undergoing nuclear medicine (NM) internal radiation exposures involving PET/CT examination. Approach. This new module extends the more-than-10-years-long ARCHER project that developed a GPU-accelerated MC dose engine by adding dedicated NM source-definition features. To validate the code, we compared dose distributions from the point ion source, including 18F, 11C, 15O, and 68Ga, calculated for a water phantom against a well-tested MC code, GATE. To demonstrate the clinical utility and advantage of ARCHER-NM, one set of 18F-FDG PET/CT data for an adult male NM patient is calculated using the new code. Radiosensitive organs in the CT dataset are segmented using a CNN-based tool called DeepViewer. The PET image intensity maps are converted to radioactivity distributions to allow for MC radiation transport dose calculations at the voxel level. The dose rate maps and corresponding statistical uncertainties were calculated at the acquisition time of PET image. Main results. The water-phantom results show excellent agreement, suggesting that the radiation physics module in the new NM code is adequate. The dose rate results of the 18F-FDG PET imaging patient show that ARCHER-NM’s results agree very well with those of the GATE within −2.45% to 2.58% (for a total of 28 organs considered in this study). Most impressively, ARCHER-NM obtains such results in 22 s while it takes GATE about 180 min for the same number of 5 × 108 simulated decay events. Significance. This is the first study presenting GPU-accelerated patient-specific MC internal radiation dose rate calculations for clinically realistic 18F-FDG PET/CT imaging case involving autosegmentation of whole-body PET/CT images. This study suggests that the proposed computing tools—ARCHER-NM— are accurate and fast enough for routine internal dosimetry in NM clinics.
Collapse
|
38
|
Didi S, Bahhous K, Zerfaoui M, Aboulbanine Z, Ouhadda H, Halimi A. Experimental validation of a linac head Geant4 model under a grid computing environment. Biomed Phys Eng Express 2022; 8. [DOI: 10.1088/2057-1976/ac4dd2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/21/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Background and purpose: This work aims to present the strategy to simulate a clinical linear accelerator based on the geometry provided by the manufacturer and summarize the corresponding experimental validation. Simulations were performed with the Geant4 Monte Carlo code under a grid computing environment. The objective of this contribution is reproducing therapeutic dose distributions in a water phantom with an accuracy less than 2%. Materials and methods: A Geant4 Monte Carlo model of an Elekta Synergy linear accelerator has been established, the simulations were launched in a large grid computing platform. Dose distributions are calculated for a 6 MV photon beam with treatment fields ranging from 5 × 5 cm2 to 20 × 20 cm 2 at a source - surface distance of 100 cm. Results: A high degree of agreement is achieved between the simulation results and the measured data, with dose differences of about 1.03% and 1.96% for the percentage depth dose curves and lateral dose profiles, respectively. This agreement is evaluated by the gamma index comparisons. Over 98% of the points for all simulations meet the restrictive acceptability criteria of 2%/2 mm. Conclusion: We have demonstrated the possibility to establish an accurate linac head Monte Carlo model for dose distribution simulations and quality assurance. Percentage depth dose curves and beam quality indices are in perfect agreement with the measured data with an accuracy of better than 2%.
Collapse
|
39
|
Su S, Atwal P, Lobo J, Duzenli C, Popescu IA. A new DOSXYZnrc method for Monte Carlo simulations of 4D dose distributions. Phys Med Biol 2021; 66. [PMID: 34787104 DOI: 10.1088/1361-6560/ac3a24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/16/2021] [Indexed: 11/12/2022]
Abstract
The purpose of this study is to present a novel method for generating Monte Carlo 4D dose distributions in a single DOSXYZnrc simulation. During a standard simulation, individual energy deposition events are summed up to generate a 3D dose distribution and their associated temporal information is discarded. This means that in order to determine dose distributions as a function of time, separate simulations would have to be run for each interval of interest. Consequently, it has not been clinically feasible until now to routinely perform Monte Carlo simulations of dose rate, time-resolved dose accumulation, or electronic portal imaging devices (EPID) cine-mode images for volumetric modulated arc therapy (VMAT) plans. To overcome this limitation, we modified DOSXYZnrc and defined new input and output variables that allow a time-like parameter associated with each particle history to be binned in a user-defined manner. Under the new code version, computation times are the same as for a standard simulation, and the time-integrated 4D dose is identical to the standard 3D dose. We present a comparison of scintillator measurements and Monte Carlo simulations for dose rate during a VMAT beam delivery, a study of dose rate in a VMAT total body irradiation plan, and simulations of transit (through-patient) EPID cine-mode images.
Collapse
Affiliation(s)
- S Su
- BC Cancer, Vancouver, Canada
| | - P Atwal
- BC Cancer, Abbotsford, Canada
| | - J Lobo
- University of British Columbia, Vancouver, Canada
| | - C Duzenli
- BC Cancer, Vancouver, Canada.,University of British Columbia, Vancouver, Canada
| | - I A Popescu
- BC Cancer, Vancouver, Canada.,University of British Columbia, Vancouver, Canada
| |
Collapse
|
40
|
Massera RT, Thomson RM, Tomal A. Technical note: MC-GPU breast dosimetry validations with other Monte Carlo codes and phase space file implementation. Med Phys 2021; 49:244-253. [PMID: 34778988 DOI: 10.1002/mp.15342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To validate the MC-GPU Monte Carlo (MC) code for dosimetric studies in X-ray breast imaging modalities: mammography, digital breast tomosynthesis, contrast enhanced digital mammography, and breast-CT. Moreover, to implement and validate a phase space file generation routine. METHODS The MC-GPU code (v. 1.5 DBT) was modified in order to generate phase space files and to be compatible with PENELOPE v. 2018 derived cross-section database. Simulations were performed with homogeneous and anthropomorphic breast phantoms for different breast imaging techniques. The glandular dose was computed for each case and compared with results from the PENELOPE (v. 2014) + penEasy (v. 2015) and egs _ brachy (EGSnrc) MC codes. Afterward, several phase space files were generated with MC-GPU and the scored photon spectra were compared between the codes. The phase space files generated in MC-GPU were used in PENELOPE and EGSnrc to calculate the glandular dose, and compared with the original dose scored in MC-GPU. RESULTS MC-GPU showed good agreement with the other codes when calculating the glandular dose distribution for mammography, mean glandular dose for digital breast tomosynthesis, and normalized glandular dose for breast-CT. The latter case showed average/maximum relative differences of 2.3%/27%, respectively, compared to other literature works, with the larger differences observed at low energies (around 10 keV). The recorded photon spectra entering a voxel were similar (within statistical uncertainties) between the three MC codes. Finally, the reconstructed glandular dose in a voxel from a phase space file differs by less than 0.65%, with an average of 0.18%-0.22% between the different MC codes, agreement within approximately 2 σ statistical uncertainties. In some scenarios, the simulations performed in MC-GPU were from 20 up to 40 times faster than those performed by PENELOPE. CONCLUSIONS The results indicate that MC-GPU code is suitable for breast dosimetric studies for different X-ray breast imaging modalities, with the advantage of a high performance derived from GPUs. The phase space file implementation was validated and is compatible with the IAEA standard, allowing multiscale MC simulations with a combination of CPU and GPU codes.
Collapse
Affiliation(s)
- Rodrigo T Massera
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Alessandra Tomal
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
41
|
Georgiou G, Kumar S, Würfel JU, Gilmore M, Underwood TSA, Rowbottom CG, Fenwick JD. The PTW microSilicon diode: Performance in small 6 and 15 MV photon fields and utility of density compensation. Med Phys 2021; 48:8062-8074. [PMID: 34725831 DOI: 10.1002/mp.15329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE We have experimentally and computationally characterized the PTW microSilicon 60023-type diode's performance in 6 and 15 MV photon fields ≥5 × 5 mm2 projected to isocenter. We tested the detector on- and off-axis at 5 and 15 cm depths in water, and investigated whether its response could be improved by including within it a thin airgap. METHODS Experimentally, detector readings were taken in fields generated by a Varian TrueBeam linac and compared with doses-to-water measured using Gafchromic film and ionization chambers. An unmodified 60023-type diode was tested along with detectors modified to include 0.6, 0.8, and 1.0 mm thick airgaps. Computationally, doses absorbed by water and detectors' sensitive volumes were calculated using the EGSnrc/BEAMnrc Monte Carlo radiation transport code. Detector response was characterized using k Q c l i n , 4 cm f c l i n , 4 cm , a factor that corrects for differences in the ratio of dose-to-water to detector reading between small fields and the reference condition, in this study 5 cm deep on-axis in a 4 × 4 cm2 field. RESULTS The greatest errors in measurements of small field doses made using uncorrected readings from the unmodified 60023-type detector were over-responses of 2.6% ± 0.5% and 5.3% ± 2.0% determined computationally and experimentally, relative to the reading-per-dose in the reference field. Corresponding largest errors for the earlier 60017-type detector were 11.9% ± 0.6% and 11.7% ± 1.4% over-responses. Adding even the thinnest, 0.6 mm, airgap to the 60023-type detector over-corrected it, leading to under-responses of up to 4.8% ± 0.6% and 5.0% ± 1.8% determined computationally and experimentally. Further, Monte Carlo calculations indicate that a detector with a 0.3 mm airgap would read correctly to within 1.3% on-axis. The ratio of doses at 15 and 5 cm depths in water in a 6 MV 4 × 4 cm2 field was measured more accurately using the unmodified 60023-type detector than using the 60017-type detector, and was within 0.3% of the ratio measured using an ion chamber. The 60023-type diode's sensitivity also varied negligibly as dose-rate was reduced from 13 to 4 Gy min-1 by decreasing the linac pulse repetition frequency, whereas the sensitivity of the 60017-type detector fell by 1.5%. CONCLUSIONS The 60023-type detector performed well in small fields across a wide range of beam energies, field sizes, depths, and off-axis positions. Its response can potentially be further improved by adding a thin, 0.3 mm, airgap.
Collapse
Affiliation(s)
- Georgios Georgiou
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Physics, Clatterbridge Cancer Centre, Wirral, UK.,Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
| | - Sudhir Kumar
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Martyn Gilmore
- Department of Physics, Clatterbridge Cancer Centre, Wirral, UK
| | - Tracy S A Underwood
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Carl G Rowbottom
- Department of Physics, Clatterbridge Cancer Centre, Wirral, UK.,Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
| | - John D Fenwick
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Physics, Clatterbridge Cancer Centre, Wirral, UK
| |
Collapse
|
42
|
Valdes-Cortez C, Mansour I, Rivard MJ, Ballester F, Mainegra-Hing E, Thomson RM, Vijande J. A study of Type B uncertainties associated with the photoelectric effect in low-energy Monte Carlo simulations. Phys Med Biol 2021; 66. [PMID: 33662945 DOI: 10.1088/1361-6560/abebfd] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/04/2021] [Indexed: 01/30/2023]
Abstract
Purpose.To estimate Type B uncertainties in absorbed-dose calculations arising from the different implementations in current state-of-the-art Monte Carlo (MC) codes of low-energy photon cross-sections (<200 keV).Methods.MC simulations are carried out using three codes widely used in the low-energy domain: PENELOPE-2018, EGSnrc, and MCNP. Three dosimetry-relevant quantities are considered: mass energy-absorption coefficients for water, air, graphite, and their respective ratios; absorbed dose; and photon-fluence spectra. The absorbed dose and the photon-fluence spectra are scored in a spherical water phantom of 15 cm radius. Benchmark simulations using similar cross-sections have been performed. The differences observed between these quantities when different cross-sections are considered are taken to be a good estimator for the corresponding Type B uncertainties.Results.A conservative Type B uncertainty for the absorbed dose (k = 2) of 1.2%-1.7% (<50 keV), 0.6%-1.2% (50-100 keV), and 0.3% (100-200 keV) is estimated. The photon-fluence spectrum does not present clinically relevant differences that merit considering additional Type B uncertainties except for energies below 25 keV, where a Type B uncertainty of 0.5% is obtained. Below 30 keV, mass energy-absorption coefficients show Type B uncertainties (k = 2) of about 1.5% (water and air), and 2% (graphite), diminishing in all materials for larger energies and reaching values about 1% (40-50 keV) and 0.5% (50-75 keV). With respect to their ratios, the only significant Type B uncertainties are observed in the case of the water-to-graphite ratio for energies below 30 keV, being about 0.7% (k = 2).Conclusions.In contrast with the intermediate (about 500 keV) or high (about 1 MeV) energy domains, Type B uncertainties due to the different cross-sections implementation cannot be considered subdominant with respect to Type A uncertainties or even to other sources of Type B uncertainties (tally volume averaging, manufacturing tolerances, etc). Therefore, the values reported here should be accommodated within the uncertainty budget in low-energy photon dosimetry studies.
Collapse
Affiliation(s)
- Christian Valdes-Cortez
- Departamento de Física Atómica, Molecular y Nuclear, Universitat de Valencia (UV), Burjassot, Spain.,Nuclear Medicine Department, Hospital Regional de Antofagasta, Chile
| | - Iymad Mansour
- Department of Physics, Carleton Laboratory for Radiotherapy Physics, Carleton University, Ottawa, Canada
| | - Mark J Rivard
- Department of Radiation Oncology, Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Facundo Ballester
- Departamento de Física Atómica, Molecular y Nuclear, Universitat de Valencia (UV), Burjassot, Spain.,Unidad Mixta de Investigación en Radiofísica e Instrumentación Nuclear en Medicina (IRIMED), Instituto de Investigación Sanitaria La Fe (IIS-La Fe)-Universitat de Valencia (UV), Valencia, Spain
| | | | - Rowan M Thomson
- Department of Physics, Carleton Laboratory for Radiotherapy Physics, Carleton University, Ottawa, Canada
| | - Javier Vijande
- Departamento de Física Atómica, Molecular y Nuclear, Universitat de Valencia (UV), Burjassot, Spain.,Unidad Mixta de Investigación en Radiofísica e Instrumentación Nuclear en Medicina (IRIMED), Instituto de Investigación Sanitaria La Fe (IIS-La Fe)-Universitat de Valencia (UV), Valencia, Spain.,Instituto de Física Corpuscular, IFIC (UV-CSIC), Burjassot, Spain
| |
Collapse
|
43
|
Ding GX, Osmundson EC, Shinohara E, Newman NB, Price M, Kirschner AN. Monte Carlo study on dose distributions from total skin electron irradiation therapy (TSET). Phys Med Biol 2021; 66. [PMID: 33706289 DOI: 10.1088/1361-6560/abedd7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/11/2021] [Indexed: 11/11/2022]
Abstract
Total skin electron therapy (TSET) has been used to treat mycosis fungoides since the 1950s. Practitioners of TSET rely on relatively crude, phantom-based point measurements for commissioning and treatment plan dosimetry. Using Monte Carlo simulation techniques, this study presents whole-body dosimetry for a patient receiving rotational, dual-field TSET. The Monte Carlo codes, BEAMnrc/DOSXYZnrc, were used to simulate 6 MeV electron beams to calculate skin dose from TSET. Simulations were validated with experimental measurements. The rotational dual-field technique uses extended source-to-surface distance with an acrylic beam degrader between the patient and incident beams. Simulations incorporated patient positioning: standing on a platform that rotates during radiation delivery. Resultant patient doses were analyzed as a function of skin depth-dose coverage and evaluated using dose-volume-histograms (DVH). Good agreement was obtained between simulations and measurements. For a cylinder with a 30 cm diameter, the depths that dose fell to 50% of the surface dose was 0.66 cm, 1.15 cm and 1.42 cm for thicknesses of 9 mm, 3 mm and without an acrylic scatter plate, respectively. The results are insensitive to cylinder diameter. Relatively uniform skin surface dose was obtained for skin in the torso area although large dose variations (>25%) were found in other areas resulting from partial beam shielding of the extremities. To achieve 95% mean dose to the first 5 mm of skin depth, the mean dose to skin depth of 5-10 mm and depth of 10-15 mm from the skin surface was 74% (57%) and 50% (25%) of the prescribed dose when using a 3mm (9 mm) thickness scatter plate, respectively. As a result of this investigation on patient skin dose distributions we changed our patient treatments to use a 3 mm instead of a 9 mm thickness Acrylic scatter plate for clinically preferred skin depth dose coverage.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| | - Evan C Osmundson
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| | - Eric Shinohara
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| | - Neil B Newman
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| | - Michael Price
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| | - Austin N Kirschner
- Department of Radiation Oncology , Vanderbilt University School of Medicine, Nashville, Tennessee, UNITED STATES
| |
Collapse
|
44
|
Cui Z, Sha S, Bai Y. A structural analytic method on the phase space data of Linac 4 MV photons based on the real world. Phys Med 2021; 82:109-113. [PMID: 33610005 DOI: 10.1016/j.ejmp.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE It was given that the characteristics of the fluence distribution and the energy spectrum structure of 4MV photons on the Phase Space (PhSp) plane and a method to analyzing the characteristics. METHODS After the PhSp file of 4 MV photons was acquired by the method of Monte Carlo (MC) calculation, the photons recorded by PhSp file were grouped based on the energy bin, and it was analyzed that the spatial distribution and energy spectrum structure of the photons. The photons in each energy group were continually grouped to sub-files according to momentum bin, and the primary and scattered photons could be separated according to the character of the fluence distribution of the photons in the sub-files. RESULTS The energy of 4 MV beam is a continuous spectrum. The energy constituent on a pixel at different distances from the center point is different, and the average energy on the center axis of the field is the highest; The photons with 0-1.0 MeV had 42.6% of all; that with energy more than 3.0 MeV had 11.7%; greater than 4 MeV, just 1.5%. The primary and scattered photons were easy collected according to the distribution characteristics of sub-groups. CONCLUSIONS The work to acquire and analyze the PhSp file of the 4 MV beam is significant. 4 MV, 6 MV, 8 MV, 10 MV and 15 MV energy beams basically cover the beams of radiotherapy, and a database of the energy beams could be built for the MC related research of other scholars.
Collapse
Affiliation(s)
- Zhenguo Cui
- Department of Radiation Physics, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang Province, PR China
| | - Songlin Sha
- Department of Radiation Physics, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang Province, PR China
| | - Yanling Bai
- Department of Radiation Physics, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
45
|
Day LRJ, Donzelli M, Pellicioli P, Smyth LML, Barnes M, Bartzsch S, Crosbie JC. A commercial treatment planning system with a hybrid dose calculation algorithm for synchrotron radiotherapy trials. Phys Med Biol 2021; 66:055016. [PMID: 33373979 DOI: 10.1088/1361-6560/abd737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synchrotron Radiotherapy (SyncRT) is a preclinical radiation treatment which delivers synchrotron x-rays to cancer targets. SyncRT allows for novel treatments such as Microbeam Radiotherapy, which has been shown to have exceptional healthy tissue sparing capabilities while maintaining good tumour control. Veterinary trials in SyncRT are anticipated to take place in the near future at the Australian Synchrotron's Imaging and Medical Beamline (IMBL). However, before veterinary trials can commence, a computerised treatment planning system (TPS) is required, which can quickly and accurately calculate the synchrotron x-ray dose through patient CT images. Furthermore, SyncRT TPS's must be familiar and intuitive to radiotherapy planners in order to alleviate necessary training and reduce user error. We have paired an accurate and fast Monte Carlo (MC) based SyncRT dose calculation algorithm with EclipseTM, the most widely implemented commercial TPS in the clinic. Using EclipseTM, we have performed preliminary SyncRT trials on dog cadavers at the IMBL, and verified calculated doses against dosimetric measurement to within 5% for heterogeneous tissue-equivalent phantoms. We have also performed a validation of the TPS against a full MC simulation for constructed heterogeneous phantoms in EclipseTM, and showed good agreement for a range of water-like tissues to within 5%-8%. Our custom EclipseTM TPS for SyncRT is ready to perform live veterinary trials at the IMBL.
Collapse
Affiliation(s)
- L R J Day
- School of Science, RMIT University, Melbourne, Australia
| | - M Donzelli
- The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France.,Institute of Cancer Research, London, United Kingdom
| | - P Pellicioli
- The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France.,Inserm UA7 STROBE, Grenoble Alps University, Grenoble, France.,Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - L M L Smyth
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Melbourne, Australia
| | - M Barnes
- School of Science, RMIT University, Melbourne, Australia.,Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Australian Synchrotron, Imaging and Medical Beamline, Melbourne, Australia
| | - S Bartzsch
- Institute of Cancer Research, London, United Kingdom.,Technical University of Munich, Munich, Germany
| | - J C Crosbie
- School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|
46
|
Kueng R, Mueller S, Loebner HA, Frei D, Volken W, Aebersold DM, Stampanoni MFM, Fix MK, Manser P. TriB-RT: Simultaneous optimization of photon, electron and proton beams. Phys Med Biol 2021; 66:045006. [PMID: 32413883 DOI: 10.1088/1361-6560/ab936f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a novel treatment planning process (TPP) with simultaneous optimization of modulated photon, electron and proton beams for improved treatment plan quality in radiotherapy. METHODS A framework for fluence map optimization of Monte Carlo (MC) calculated beamlet dose distributions is developed to generate treatment plans consisting of photon, electron and spot scanning proton fields. Initially, in-house intensity modulated proton therapy (IMPT) plans are compared to proton plans created by a commercial treatment planning system (TPS). A triple beam radiotherapy (TriB-RT) plan is generated for an exemplary academic case and the dose contributions of the three particle types are investigated. To investigate the dosimetric potential, a TriB-RT plan is compared to an in-house IMPT plan for two clinically motivated cases. Benefits of TriB-RT for a fixed proton beam line with a single proton field are investigated. RESULTS In-house optimized IMPT are of at least equal or better quality than TPS-generated proton plans, and MC-based optimization shows dosimetric advantages for inhomogeneous situations. Concerning TriB-RT, for the academic case, the resulting plan shows substantial contribution of all particle types. For the clinically motivated case, improved sparing of organs at risk close to the target volume is achieved compared to IMPT (e.g. myelon and brainstem [Formula: see text] -37%) at cost of an increased low dose bath (healthy tissue V 10% +22%). In the scenario of a fixed proton beam line, TriB-RT plans are able to compensate the loss in degrees of freedom to substantially improve plan quality compared to a single field proton plan. CONCLUSION A novel TPP which simultaneously optimizes photon, electron and proton beams was successfully developed. TriB-RT shows the potential for improved treatment plan quality and is especially promising for cost-effective single-room proton solutions with a fixed beamline in combination with a conventional linac delivering photon and electron fields.
Collapse
Affiliation(s)
- R Kueng
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Simiele E, Viscariello N, DeWerd L. Monte Carlo modeling of the influence of strong magnetic fields on the stem-effect in plastic scintillation detectors used in radiotherapy dosimetry. Med Phys 2021; 48:1381-1394. [PMID: 33283279 DOI: 10.1002/mp.14637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate the impact of strong magnetic fields on the stem-effect in plastic scintillation detectors (PSDs) using Monte Carlo methods. METHODS Prior to building the light guide model, the properties of the Čerenkov process in GEANT4 were investigated by simulating depth-dose and depth-Čerenkov emission profiles in water as functions of Čerenkov process input parameters. In addition, profile simulations were performed for magnetic field strengths ranging from 0 T to 1.5 T. A PMMA light guide was constructed in GEANT4 using data from the manufacturer and literature. Simulations were performed with the model as functions of depth and fiber-beam angle where the simulated stem-effect spectrum and the Čerenkov light ratio (CLR) were scored and compared to measured data in the literature. The light guide optical properties were iteratively adjusted until agreement between the simulated and measured data was achieved. Simulations were performed with the validated model as functions of depth and magnetic field strength and the simulated data were compared to measured data in the literature. The model was also used to evaluate the sensitivity of the CLR to the various optical properties of the light guide in different irradiation conditions. RESULTS No significant changes in the depth-dose or depth-Čerenkov emission profiles were observed with step-size restrictions imposed by the Čerenkov process input parameters, which was attributed to the condensed history algorithm and transport parameters used in this work. Similar changes in the depth-dose and depth-Čerenkov emission profiles were observed with increasing magnetic field strength, which indicates the Čerenkov process is not adversely impacted by the presence of the magnetic field. Following optimization of the light guide optical properties, agreement within two standard deviations was observed between the simulated and measured optical data for all validation geometries considered. Agreement within one standard deviation was observed between the simulated and measured data for all depths and field strengths ≥0 T whereas discrepancies were observed for magnetic field strengths <-0.35 T. These significant differences were attributed to insufficient measurement data for this irradiation configuration during model validation. Of the light guide optical properties investigated, the fluorescence signal had the greatest impact on the CLR sensitivity to the magnetic field. CONCLUSIONS No significant change in the Čerenkov emission per dose in water was observed for magnetic field strengths up to 1.5 T. The nominal fiber fluorescence signal was found to have a significant impact on the CLR sensitivity to varying irradiation conditions where changes up to 11.7% were observed whereas the mirror reflectivity and fiber attenuation had a modest impact with maximum CLR changes of 2.6% and 1.2% relative to 0 T, respectively. The results of this work suggest light guides with low fiber fluorescence should be used with PSDs for dosimetry measurements in magnetic fields to minimize the impact of the magnetic field on the CLR correction.
Collapse
Affiliation(s)
- E Simiele
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - N Viscariello
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - L DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
48
|
Simiele EA, Breitkreutz DY, Capaldi DPI, Liu W, Bush KK, Skinner LB. Precision radiotherapy using monochromatic inverse Compton x-ray sources. Med Phys 2020; 48:366-375. [PMID: 33107049 DOI: 10.1002/mp.14552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The dosimetric properties of inverse Compton (IC) x-ray sources were investigated to determine their utility for stereotactic radiation therapy. METHODS Monte Carlo simulations were performed using the egs brachy user code of EGSnrc. Nominal IC source x-ray energies of 80 and 150 keV were considered in this work. Depth-dose and lateral dose profiles in water were calculated, as was dose enhancement in the bone. Further simulations were performed for brain and spine treatment sites. The impact of gold nanoparticle doping was also investigated for the brain treatment site. Analogous dose calculations were performed in a clinical treatment planning system using a clinical 6 MV photon beam model and were compared to the Monte Carlo simulations. RESULTS Both 80 and 150 keV IC beams were observed to have sharp 80-20 penumbra (i.e., < 0.1 mm) with broad low-dose tails in water. For reference, the calculated penumbra for the 6 MV clinical beam was 3 mm. Maximum dose enhancement factors in bone of 3.1, 1.4, and 1.1 were observed for the 80, 150 keV, and clinical 6 MV beams, respectively. The plan quality for the single brain metastasis case was similar between the IC beams and the 6 MV beam without gold nanoparticles. As the concentration of gold within the target increased, the V12 Gy to the normal brain tissue and D max within the target volume significantly decreased and the conformity significantly improved, which resulted in superior plan quality over the clinical 6 MV beam plan. In the spine cases, the sharp penumbra and enhanced dose to bone of the IC beams produced superior plan quality (i.e., better conformity, normal tissue sparing, and spinal cord sparing) as compared to the clinical 6 MV beam plans. CONCLUSIONS The findings from this work indicate that inverse Compton x-ray sources are well suited for stereotactic radiotherapy treatments due to their sharp penumbra and dose enhancement around high atomic number materials. Future work includes investigating the properties of intensity-modulated inverse Compton x-ray sources to improve the homogeneity within the target tissue.
Collapse
Affiliation(s)
- Eric A Simiele
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Dylan Y Breitkreutz
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Dante P I Capaldi
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Wu Liu
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Karl K Bush
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Lawrie B Skinner
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
49
|
Kueng R, Guyer G, Volken W, Frei D, Stabel F, Stampanoni MFM, Manser P, Fix MK. Development of an extended Macro Monte Carlo method for efficient and accurate dose calculation in magnetic fields. Med Phys 2020; 47:6519-6530. [PMID: 33075168 DOI: 10.1002/mp.14542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/06/2022] Open
Abstract
MOTIVATION Progress in the field of magnetic resonance (MR)-guided radiotherapy has triggered the need for fast and accurate dose calculation in presence of magnetic fields. The aim of this work is to satisfy this need by extending the macro Monte Carlo (MMC) method to enable dose calculation for photon, electron, and proton beams in a magnetic field. METHODS The MMC method is based on the transport of particles in macroscopic steps through an absorber by sampling the relevant physical quantities from a precalculated database containing probability distribution functions. To enable MMC particle transport in a magnetic field, a transformation accounting for the Lorentz force is applied for each macro step by rotating the sampled position and direction around the magnetic field vector. The transformed position and direction distributions on local geometries are validated against full MC for electron and proton pencil beams. To enable photon dose calculation, an in-house MC algorithm is used for photon transport and interaction. Emerging secondary charged particles are passed to MMC for transport and energy deposition. The extended MMC dose calculation accuracy and efficiency is assessed by comparison with EGSnrc (photon and electron beams) and Geant4 (proton beam) calculated dose distributions of different energies and homogeneous magnetic fields for broad beams impinging on water phantoms with bone and lung inhomogeneities. RESULTS The geometric transformation on the local geometries is able to reproduce the results of full MC for all investigated settings (difference in mean value and standard deviation <1%). Macro Monte Carlo calculated dose distributions in a homogeneous magnetic field are in agreement with EGSnrc and Geant4, respectively, with gamma passing rates >99.6% (global 2%, 2 mm and 10% threshold criteria) for all situations. MMC achieves a substantial efficiency gain of up to a factor of 21 (photon beam), 66 (electron beam), and 356 (proton beam) compared to EGSnrc or Geant4. CONCLUSION Efficient and accurate dose calculation in magnetic fields was successfully enabled by utilizing the developed extended MMC transport method for photon, electron, and proton beams.
Collapse
Affiliation(s)
- R Kueng
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - G Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - D Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - F Stabel
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M F M Stampanoni
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Oliver PAK, Monajemi TT. Skin dose in chest wall radiotherapy with bolus: a Monte Carlo study. Phys Med Biol 2020; 65:155016. [PMID: 32442990 DOI: 10.1088/1361-6560/ab95dc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monte Carlo simulations are used to investigate skin dose resulting from chest wall radiotherapy with bolus. A simple model of a female thorax is developed, which includes a 2 mm-thick skin layer. Two representative 6 MV source models are considered: a tangents source model consisting of a parallel opposed pair of medial and lateral fields and subfields, and an arc source model. Tissue equivalent (TE) boluses (thicknesses of 3, 5 and 10 mm) and brass mesh bolus are considered. Skin dose distributions depend on incident photon obliquity: for tangents, radiation is incident more obliquely, resulting in longer path lengths through the bolus and higher skin dose compared to the arc source model in most cases. However, for thicker TE boluses, attenuation of oblique photons becomes apparent. Brass bolus and 3 mm TE bolus result in similar mean skin dose. This relatively simple computational model allows for consideration of different bolus thicknesses, materials and usage schedules based on desired skin dose and choice of either tangents or an arc beam technique. For example, using a 5 mm TE bolus every second treatment would result in mean skin doses of 89% and 85% for tangents and the arc source model, respectively. The hot spot metric D[Formula: see text] would be 103% and 99%, respectively.
Collapse
Affiliation(s)
- P A K Oliver
- Dept. of Medical Physics, Nova Scotia Health Authority, Halifax, B3H 1V7 Canada
| | | |
Collapse
|