1
|
Kubo N, Saitoh JI, Shimada H, Shirai K, Kawamura H, Ohno T, Nakano T. Dosimetric comparison of carbon ion and X-ray radiotherapy for Stage IIIA non-small cell lung cancer. JOURNAL OF RADIATION RESEARCH 2016; 57:548-554. [PMID: 27242341 PMCID: PMC5045075 DOI: 10.1093/jrr/rrw041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/12/2016] [Indexed: 05/04/2023]
Abstract
The present study compared the dose-volume histograms of patients with Stage IIIA non-small cell lung cancer (NSCLC) treated with carbon ion radiotherapy with those of patients treated with X-ray radiotherapy. Patients with Stage IIIA NSCLC (n = 10 patients for each approach) were enrolled. Both radiotherapy plans were calculated with the same targets and organs at risk on the same CT. The treatment plan for the prophylactic lymph node and primary tumor (PTV1) delivered 40 Gy for X-ray radiotherapy and 40 Gy (relative biological effectiveness; RBE) for carbon ion radiotherapy. The total doses for the primary tumor and clinically positive lymph nodes (PTV2) were 60 Gy for X-ray radiotherapy and 60 Gy (RBE) for carbon ion radiotherapy. The homogeneity indexes for PTV1 and PTV2 were superior for carbon ion radiotherapy in comparison with X-ray radiotherapy (PTV1, 0.57 vs 0.65, P = 0.009; PTV2, 0.07 vs 0.16, P = 0.005). The normal lung mean dose, V5, V10 and V20 for carbon ion radiotherapy were 7.7 Gy (RBE), 21.4%, 19.7% and 17.0%, respectively, whereas the corresponding doses for X-ray radiotherapy were 11.9 Gy, 34.9%, 26.6% and 20.8%, respectively. Maximum spinal cord dose, esophageal maximum dose and V50, and bone V10, V30 and V50 were lower with carbon ion radiotherapy than with X-ray radiotherapy. The present study indicates that carbon ion radiotherapy provides a more homogeneous target dose and a lower dose to organs at risk than X-ray radiotherapy for Stage IIIA non-small cell lung cancer.
Collapse
Affiliation(s)
- Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Jun-Ichi Saitoh
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hirofumi Shimada
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Katsuyuki Shirai
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
2
|
DesRosiers PM, Moskvin VP, DesRosiers CM, Timmerman RD, Randall ME, Papiez LS. Lung Cancer Radiation Therapy: Monte Carlo Investigation of “Under Dose” by High Energy Photons. Technol Cancer Res Treat 2016; 3:289-94. [PMID: 15161321 DOI: 10.1177/153303460400300306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Loss of electronic equilibrium in lung tissue causes a build-up region in the tumor. Increasing the photon energy increases the depth at which electronic equilibrium is reestablished within the lung tumor. This study uses the Monte Carlo code PENELOPE for simulations of radiation treatment of tumor surrounded by lung. Six MV photons were compared to 15 MV photons using four beam arrangements in both homogeneous and heterogeneous media. The experimental results demonstrate that for every beam arrangement in heterogeneous media 15 MV photons delivered 5% to 10% lower dose to the tumor periphery than 6 MV photons. The simulations also show that in axial coplanar treatment plans, the loss of electronic equilibrium was greatest in the coronal plane. In conclusion there is a tumor sparing effect at the tumor-lung interface that is a function of beam energy. As an alternative to increasing beam energy, the addition of multiple beam angles with lower energy photons improved target coverage. If higher energy beams are required for patients with large separation, then adding multiple beam angles does offer some improved target coverage. The non-coplanar technique with the lower energy photons covered the tumor with a greatest isodose at the tumor periphery without tangential sparing in the coronal plane.
Collapse
Affiliation(s)
- Paul M DesRosiers
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Dose correction in lung for HDR breast brachytherapy. J Contemp Brachytherapy 2013; 4:106-10. [PMID: 23349652 PMCID: PMC3552632 DOI: 10.5114/jcb.2012.29367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/16/2012] [Accepted: 06/06/2012] [Indexed: 11/17/2022] Open
Abstract
Purpose To evaluate the dosimetric impact of lung tissue in Ir-192 APBI. Material and methods In a 40 × 40 × 40 cm3 water tank, an Accelerated Partial Breast Irradiation (APBI) brachytherapy balloon inflated to 4 cm diameter was situated directly below the center of a 30 × 30 × 1 cm3 solid water slab. Nine cm of solid water was stacked above the 1 cm base. A parallel plate ion chamber was centered above the base and ionization current measurements were taken from the central HDR source dwell position for channels 1, 2, 3 and 5 of the balloon. Additional ionization data was acquired in the 9 cm stack at 1 cm increments. A comparable data set was also measured after replacing the 9 cm solid water stack with cork slabs. The ratios of measurements in the two phantoms were calculated and compared to predicted results of a commercial treatment planning system. Results Lower dose was measured in the cork within 1 cm of the cork/solid water interface possibly due to backscatter effects. Higher dose was measured beyond 1 cm from the cork/solid water interface, increasing with path length up to 15% at 9 cm depth in cork. The treatment planning system did not predict either dose effect. Conclusions This study investigates the dosimetry of low density material when the breast is treated with Ir-192 brachytherapy. HDR dose from Ir-192 in a cork media is shown to be significantly different than in unit density media. These dose differences are not predicted in most commercial brachytherapy planning systems. Empirical models based on measurements could be used to estimate lung dose associated with HDR breast brachytherapy.
Collapse
|
4
|
Chang KP, Hung SH, Chie YH, Shiau AC, Huang RJ. A comparison of physical and dosimetric properties of lung substitute materials. Med Phys 2012; 39:2013-20. [PMID: 22482622 DOI: 10.1118/1.3694097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The need for an accurate estimate of absorbed doses within and around irradiated thorax tissues necessitates the use of carefully selected materials from which phantoms are constructed. A lung substitute is more difficult to establish mostly due to its low physical density. Although many researchers have used cork as a lung substitute, very little research data address cork's characteristics to determine which type of cork is optimal as a substitute for lung tissue. METHODS Natural cork, composition cork, rubber cork, ATOM, RANDO, and a reference lung material (ICRU-44 lung tissue) were investigated to establish comparisons of physical properties. Following the determination of the respective physical properties, the dose distributions from 6 MV photon beams in water/lung substitute/water phantoms were assessed using the Monte Carlo method. Physical and electron densities affecting the dose distributions through lung tissues in different field size conditions were investigated. RESULTS The physical properties (physical density, electronic density, and effective atomic number) of the composition cork are the most similar to those of the ICRU-44 lung, and the CT number of the composition cork is very similar to that of humans aged 30-60. PDD of the composition cork and the RANDO phantom are the most comparable to that of ICRU-44 lung in 1 × 1 cm(2) field size due to the combined properties of physical density (PD) and electron density per gram (EDG) of the studied lung materials. PD and EDG affect the lung dose primarily in small field size. The effects of PD are minimal in large fields, having a more rapid lateral electron equilibrium. EDG dominates PDD pattern in lung material when large fields are applied. Combined effects of PD and EDG are nonlinear for all field sizes. CONCLUSIONS The composition cork is the preferred lung substitute based on physical and dosimetric properties.
Collapse
Affiliation(s)
- Kwo-Ping Chang
- Department of Radiological Technology, Tzu Chi College of Technology, Taiwan.
| | | | | | | | | |
Collapse
|
5
|
Panettieri V, Malik ZI, Eswar CV, Landau DB, Thornton JM, Nahum AE, Mayles WPM, Fenwick JD. Influence of dose calculation algorithms on isotoxic dose-escalation of non-small cell lung cancer radiotherapy. Radiother Oncol 2010; 97:418-24. [DOI: 10.1016/j.radonc.2010.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/01/2010] [Accepted: 06/06/2010] [Indexed: 12/25/2022]
|
6
|
Papanikolaou N, Stathakis S. Dose-calculation algorithms in the context of inhomogeneity corrections for high energy photon beams. Med Phys 2009; 36:4765-75. [DOI: 10.1118/1.3213523] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
7
|
Monte Carlo simulations of electron beams collimated with a dual electron multileaf collimator: a feasibility study. Radiol Phys Technol 2009; 2:210-8. [DOI: 10.1007/s12194-009-0068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 06/16/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
|
8
|
Panettieri V, Wennberg B, Gagliardi G, Duch MA, Ginjaume M, Lax I. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems. Phys Med Biol 2007; 52:4265-81. [PMID: 17664607 DOI: 10.1088/0031-9155/52/14/016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this work was to simulate with the Monte Carlo (MC) code PENELOPE the dose distribution in lung tumours including breathing motion in stereotactic body radiation therapy (SBRT). Two phantoms were modelled to simulate a pentagonal cross section with chestwall (unit density), lung (density 0.3 g cm(-3)) and two spherical tumours (unit density) of diameters respectively of 2 cm and 5 cm. The phase-space files (PSF) of four different SBRT field sizes of 6 MV from a Varian accelerator were calculated and used as beam sources to obtain both dose profiles and dose-volume histograms (DVHs) in different volumes of interest. Dose distributions were simulated for five beams impinging on the phantom. The simulations were conducted both for the static case and including the influence of respiratory motion. To reproduce the effect of breathing motion different simulations were performed keeping the beam fixed and displacing the phantom geometry in chosen positions in the cranial and caudal and left-right directions. The final result was obtained by combining the different position with two motion patterns. The MC results were compared with those obtained with three commercial treatment planning systems (TPSs), two based on the pencil beam (PB) algorithm, the TMS-HELAX (Nucletron, Sweden) and Eclipse (Varian Medical System, Palo Alto, CA), and one based on the collapsed cone algorithm (CC), Pinnacle(3) (Philips). Some calculations were also carried out with the analytical anisotropic algorithm (AAA) in the Eclipse system. All calculations with the TPSs were performed without simulated breathing motion, according to clinical practice. In order to compare all the TPSs and MC an absolute dose calibration in Gy/MU was performed. The analysis shows that the dose (Gy/MU) in the central part of the gross tumour volume (GTV) is calculated for both tumour sizes with an accuracy of 2-3% with PB and CC algorithms, compared to MC. At the periphery of the GTV the TPSs overestimate the dose up to 10%, while in the lung tissue close to the GTV PB algorithms overestimate the dose and the CC underestimates it. When clinically relevant breathing motions are included in the MC simulations, the static calculations with the TPSs still give a relatively accurate estimate of the dose in the GTV. On the other hand, the dose at the periphery of the GTV is overestimated, compared to the static case.
Collapse
Affiliation(s)
- Vanessa Panettieri
- Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Jin L, Wang L, Li J, Luo W, Feigenberg SJ, Ma CM. Investigation of optimal beam margins for stereotactic radiotherapy of lung-cancer using Monte Carlo dose calculations. Phys Med Biol 2007; 52:3549-61. [PMID: 17664559 DOI: 10.1088/0031-9155/52/12/014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work investigated the selection of beam margins in lung-cancer stereotactic body radiotherapy (SBRT) with 6 MV photon beams. Monte Carlo dose calculations were used to systematically and quantitatively study the dosimetric effects of beam margins for different lung densities (0.1, 0.15, 0.25, 0.35 and 0.5 g cm(-3)), planning target volumes (PTVs) (14.4, 22.1 and 55.3 cm3) and numbers of beam angles (three, six and seven) in lung-cancer SBRT in order to search for optimal beam margins for various clinical situations. First, a large number of treatment plans were generated in a commercial treatment planning system, and then recalculated using Monte Carlo simulations. All the plans were normalized to ensure that 95% of the PTV at least receives the prescription dose and compared quantitatively. Based on these plans, the relationships between the beam margin and quantities such as the lung toxicity (quantified by V20, the percentage volume of the two lungs receiving at least 20 Gy) and the maximum target (PTV) dose were established for different PTVs and lung densities. The impact of the number of beam angles on the relationship between V20 and the beam margin was assessed. Quantitative information about optimal beam margins for lung-cancer SBRT was obtained for clinical applications.
Collapse
Affiliation(s)
- L Jin
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
10
|
Dobler B, Walter C, Knopf A, Fabri D, Loeschel R, Polednik M, Schneider F, Wenz F, Lohr F. Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms. Radiat Oncol 2006; 1:45. [PMID: 17132177 PMCID: PMC1769387 DOI: 10.1186/1748-717x-1-45] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 11/29/2006] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms. METHODS A 9-field conformal treatment plan was generated on an inhomogeneous phantom with lung mimics and a soft tissue equivalent insert, mimicking a lung tumor. The dose distribution was calculated with the Pencil Beam and Collapsed Cone algorithms implemented in Masterplan (Nucletron) and the Monte Carlo system XVMC and validated using Gafchromic EBT films. Differences in dose distribution were evaluated. The plans were then optimized by adding segments to the outer shell of the target in order to increase the dose near the interface to the lung. RESULTS The Pencil Beam algorithm overestimated the dose by up to 15% compared to the measurements. Collapsed Cone and Monte Carlo predicted the dose more accurately with a maximum difference of -8% and -3% respectively compared to the film. Plan optimization by adding small segments to the peripheral parts of the target, creating a 2-step fluence modulation, allowed to increase target coverage and homogeneity as compared to the uncorrected 9 field plan. CONCLUSION The use of forward 2-step fluence modulation in radiotherapy of small lung lesions allows the improvement of tumor coverage and dose homogeneity as compared to non-modulated treatment plans and may thus help to increase the local tumor control probability. While the Collapsed Cone algorithm is closer to measurements than the Pencil Beam algorithm, both algorithms are limited at tissue/lung interfaces, leaving Monte-Carlo the most accurate algorithm for dose prediction.
Collapse
Affiliation(s)
- Barbara Dobler
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Cornelia Walter
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Antje Knopf
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Daniella Fabri
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Rainer Loeschel
- Department of Computer Science and Mathematics, University of Applied Sciences, Regensburg, Germany
| | - Martin Polednik
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Frank Schneider
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Frank Lohr
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
11
|
Correction to BrainSCAN central axis dose calculations for 6-MV photon beams to lung with lateral electron disequilibrium. Int J Radiat Oncol Biol Phys 2006. [DOI: 10.1016/j.ijrobp.2006.03.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Tsiakalos MF, Stathakis S, Plataniotis GA, Kappas C, Theodorou K. Monte Carlo dosimetric evaluation of high energy vs low energy photon beams in low density tissues. Radiother Oncol 2006; 79:131-8. [PMID: 16618511 DOI: 10.1016/j.radonc.2006.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Low megavoltage photon beams are often the treatment choice in radiotherapy when low density heterogeneities are involved, because higher energies show some undesirable dosimetric effects. This work is aimed at investigating the effects of different energy selection for low density tissues. PATIENTS AND METHODS BEAMnrc was used to simulate simple treatment set-ups in a simple and a CT reconstructed lung phantom and an air-channel phantom. The dose distribution of 6, 15 and 20 MV photon beams was studied using single, AP/PA and three-field arrangements. RESULTS Our results showed no significant changes in the penumbra width in lung when a pair of opposed fields were used. The underdosage at the anterior/posterior tumor edge caused by the dose build-up at the lung-tumor interface reached 7% for a 5 x 5 cm AP/PA set-up. Shrinkage of the 90% isodose volume was noticed for the same set-up, which could be rectified by adding a lateral field. For the CT reconstructed phantom, the AP/PA set-up offered better tumor coverage when lower energies were used but for the three field set-up, higher energies resulted to better sparing of the lung tissue. For the air-channel set-up, adding an opposed field reduced the penumbra width. Using higher energies resulted in a 7% cold spot around the air-tissue interface for a 5 x 5 cm field. CONCLUSIONS The choice of energy for treatment in the low density areas is not a straightforward decision but depends on a number of parameters such as the beam set-up and the dosimetric criteria. Updated calculation algorithms should be used in order to be confident for the choice of energy of treatment.
Collapse
Affiliation(s)
- Miltiadis F Tsiakalos
- Medical Physics Department, Medical School, University of Thessalia, Larissa, Hellas, Greece.
| | | | | | | | | |
Collapse
|
13
|
De Smedt B, Vanderstraeten B, Reynaert N, De Neve W, Thierens H. Investigation of geometrical and scoring grid resolution for Monte Carlo dose calculations for IMRT. Phys Med Biol 2005; 50:4005-19. [PMID: 16177526 DOI: 10.1088/0031-9155/50/17/006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Monte Carlo based treatment planning of two different patient groups treated with step-and-shoot IMRT (head-and-neck and lung treatments) with different CT resolutions and scoring methods is performed to determine the effect of geometrical and scoring voxel sizes on DVHs and calculation times. Dose scoring is performed in two different ways: directly into geometrical voxels (or in a number of grouped geometrical voxels) or into scoring voxels defined by a separate scoring grid superimposed on the geometrical grid. For the head-and-neck cancer patients, more than 2% difference is noted in the right optical nerve when using voxel dimensions of 4 x 4 x 4 mm3 compared to the reference calculation with 1 x 1 x 2 mm3 voxel dimensions. For the lung cancer patients, 2% difference is noted in the spinal cord when using voxel dimensions of 4 x 4 x 10 mm3 compared to the 1 x 1 x 5 mm3 calculation. An independent scoring grid introduces several advantages. In cases where a relatively high geometrical resolution is required and where the scoring resolution is less important, the number of scoring voxels can be limited while maintaining a high geometrical resolution. This can be achieved either by grouping several geometrical voxels together into scoring voxels or by superimposing a separate scoring grid of spherical voxels with a user-defined radius on the geometrical grid. For the studied lung cancer cases, both methods produce accurate results and introduce a speed increase by a factor of 10-36. In cases where a low geometrical resolution is allowed, but where a high scoring resolution is required, superimposing a separate scoring grid on the geometrical grid allows a reduction in geometrical voxels while maintaining a high scoring resolution. For the studied head-and-neck cancer cases, calculations performed with a geometrical resolution of 2 x 2 x 2 mm3 and a separate scoring grid containing spherical scoring voxels with a radius of 2 mm produce accurate results and introduce a speed increase by a factor of 13. The scoring grid provides an additional degree of freedom for limiting calculation time and memory requirements by selecting optimized scoring and geometrical voxel dimensions in an independent way.
Collapse
Affiliation(s)
- B De Smedt
- Department of Medical Physics, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
14
|
Tsiakalos MF, Theodorou K, Kappas C, Zefkili S, Rosenwold JC. Analysis of the penumbra enlargement in lung versus the Quality Index of photon beams: A methodology to check the dose calculation algorithm. Med Phys 2004; 31:943-9. [PMID: 15125013 DOI: 10.1118/1.1669085] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
It is well known that considerable underdosage can occur at the edges of a tumor inside the lung because of the degradation of penumbra due to lack of lateral electronic equilibrium. Although present even at smaller energies, this phenomenon is more pronounced for higher energies. Apart from Monte Carlo calculation, most of the existing Treatment Planning Systems (TPSs) cannot deal at all, or with acceptable accuracy, with this effect. A methodology has been developed for assessing the dose calculation algorithms in the lung region where lateral electronic disequilibrium exists, based on the Quality Index (QI) of the incident beam. A phantom, consisting of layers of polystyrene and lung material, has been irradiated using photon beams of 4, 6, 15, and 20 MV. The cross-plane profiles of each beam for 5x5, 10x10, and 25x10 fields have been measured at the middle of the phantom with the use of films. The penumbra (20%-80%) and fringe (50%-90%) enlargement was measured and the ratio of the widths for the lung to that of polystyrene was defined as the Correction Factor (CF). Monte Carlo calculations in the two phantoms have also been performed for energies of 6, 15, and 20 MV. Five commercial TPS's algorithms were tested for their ability to predict the penumbra and fringe enlargement. A linear relationship has been found between the QI of the beams and the CF of the penumbra and fringe enlargement for all the examined fields. Monte Carlo calculations agree very well (less than 1% difference) with the film measurements. The CF values range between 1.1 for 4 MV (QI 0.620) and 2.28 for 20 MV (QI 0.794). Three of the tested TPS's algorithms could not predict any enlargement at all for all energies and all fields and two of them could predict the penumbra enlargement to some extent. The proposed methodology can help any user or developer to check the accuracy of its algorithm for lung cases, based on a simple phantom geometry and the QI of the incident beam. This check is very important especially when higher energies are used, as the inaccuracies in existing algorithms can lead to an incorrect choice of energy for lung treatment and consequently to a failure in tumor control.
Collapse
|