1
|
Contrast-enhanced 4D-MRI for internal target volume generation in treatment planning for liver tumors. Radiother Oncol 2022; 173:69-76. [PMID: 35667575 DOI: 10.1016/j.radonc.2022.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Liver tumors are often invisible on four-dimensional commuted tomography (4D-CT). Imperfect imaging surrogates are used to estimate the tumor motion. Here, we assessed multiple 4D magnetic resonance (MR) binning algorithms for directly visualizing liver tumor motion for radiotherapy planning. METHODS Patients were simulated using a 3 Tesla MR and CT scanner. Three prototype binning algorithms (phase, amplitude, and two-directional) were applied to the 4D-MRIs, and the image quality was assessed using a qualitative clarity score and quantitative sharpness score. Radiation plans were generated for internal target volumes (ITVs) derived using 4D-MRI and 4D-CT, and the dosimetry of targets were compared. Paired t-tests were used to compare sharpness scores and dosimetric data. RESULTS Twelve patients with 17 liver tumors were scanned between May and November 2021. Compared to phase binning, two-directional demonstrated equal or better clarity and sharpness scores (end-expiration: 0.33 vs. 0.38, p=0.018, end-inspiration: 0.28 vs. 0.31, p=0.010). Compared to amplitude binning, two-directional binning captured hysteresis of ≥3 mm in 35% of patients. Evaluation of dosimetry CT-optimized plans revealed that PTV coverage of MR-derived targets were significantly lower than CT-derived targets (PTV receiving 90% of prescription: 75.56% vs. 89.38%, p=0.002). CONCLUSION Using contrast-enhanced 4D-MRI is feasible for directly delineating liver tumors throughout the respiratory cycle. The current standard of using radiation plans optimized for 4D-CT-derived targets achieved lower coverage of directly visualized MRI targets, suggesting that adopting MRI for motion management may improve radiation treatment of liver lesions and reduce the risk of marginal misses.
Collapse
|
2
|
Bailly P, Bouzerar R, Galan R, Meyer ME. Phantom study of an in-house amplitude-gating respiratory method with silicon photomultiplier technology positron emission tomography/computed tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106907. [PMID: 35660941 DOI: 10.1016/j.cmpb.2022.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE The objective of this phantom study was to determine whether breathing-synchronized, silicon photomultiplier (SiPM)-based PET/CT has a suitable acquisition time for routine clinical use. METHODS Acquisitions were performed in list mode on a 4-ring SiPM-based PET/CT system. The experimental setup consisted of an external respiratory tracking device placed on a commercial dynamic thorax phantom containing a sphere filled with [F-18]-fluorodeoxyglucose. Three-dimensional sinusoidal motion was imposed on the sphere. Data were processed using frequency binning and amplitude binning (the "DMI" and "OFFLINE" methods, respectively). PET sinograms were reconstructed with a Bayesian penalized likelihood algorithm. RESULTS Respiratory gating from a 150‑sec acquisition was successful. The DMI and OFFLINE methods gave similar activity profiles but both were slightly shifted in space; the latter profile was closest to the reference acquisition. CONCLUSION With SiPM PET/CT systems, the amplitude-based processing of breathing-synchronized data is likely to be feasible in routine clinical practice.
Collapse
Affiliation(s)
- Pascal Bailly
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France.
| | - Roger Bouzerar
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| | - Romain Galan
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Jules Verne University of Picardie, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| | - Marc-Etienne Meyer
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Jules Verne University of Picardie, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| |
Collapse
|
3
|
Thomas MA, Meier JG, Mawlawi OR, Sun P, Pan T. Impact of acquisition time and misregistration with CT on data-driven gated PET. Phys Med Biol 2022; 67:10.1088/1361-6560/ac5f73. [PMID: 35313286 PMCID: PMC9128538 DOI: 10.1088/1361-6560/ac5f73] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Objective. Data-driven gating (DDG) can address patient motion issues and enhance PET quantification but suffers from increased image noise from utilization of <100% of PET data. Misregistration between DDG-PET and CT may also occur, altering the potential benefits of gating. Here, the effects of PET acquisition time and CT misregistration were assessed with a combined DDG-PET/DDG-CT technique.Approach. In the primary PET bed with lesions of interest and likely respiratory motion effects, PET acquisition time was extended to 12 min and a low-dose cine CT was acquired to enable DDG-CT. Retrospective reconstructions were created for both non-gated (NG) and DDG-PET using 30 s to 12 min of PET data. Both the standard helical CT and DDG-CT were used for attenuation correction of DDG-PET data. SUVmax, SUVpeak, and CNR were compared for 45 lesions in the liver and lung from 27 cases.Main results. For both NG-PET (p= 0.0041) and DDG-PET (p= 0.0028), only the 30 s acquisition time showed clear SUVmaxbias relative to the 3 min clinical standard. SUVpeakshowed no bias at any change in acquisition time. DDG-PET alone increased SUVmaxby 15 ± 20% (p< 0.0001), then was increased further by an additional 15 ± 29% (p= 0.0007) with DDG-PET/CT. Both 3 min and 6 min DDG-PET had lesion CNR statistically equivalent to 3 min NG-PET, but then increased at 12 min by 28 ± 48% (p= 0.0022). DDG-PET/CT at 6 min had comparable counts to 3 min NG-PET, but significantly increased CNR by 39 ± 46% (p< 0.0001).Significance. 50% counts DDG-PET did not lead to inaccurate or biased SUV-increased SUV resulted from gating. Improved registration from DDG-CT was equally as important as motion correction with DDG-PET for increasing SUV in DDG-PET/CT. Lesion detectability could be significantly improved when DDG-PET used equivalent counts to NG-PET, but only when combined with DDG-CT in DDG-PET/CT.
Collapse
Affiliation(s)
- M. Allan Thomas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Joseph G. Meier
- Department of Medical Physics, University of Wisconsin, Madison, WI 53726
| | - Osama R. Mawlawi
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Peng Sun
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Tinsu Pan
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
4
|
Pan T, Thomas MA, Luo D. Data-driven gated (DDG) CT: An automated respiratory gating method to enable DDG PET/CT. Med Phys 2022; 49:3597-3611. [PMID: 35324002 DOI: 10.1002/mp.15620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The accuracy of PET quantification and localization can be compromised if a misregistered CT is used for attenuation correction (AC) in PET/CT. As data-driven gating (DDG) continues to grow in clinical use, these issues are becoming more relevant with respect to solutions for gated CT. PURPOSE In this work, a new automated data-driven gated (DDG) CT method was developed to provide average CT and DDG CT for AC of PET and DDG PET, respectively. METHODS An automatic DDG CT was developed to provide the end-expiratory (EE) and end-inspiratory (EI) phases of images from low-dose cine CT images, with all phases being averaged to generate an average CT. The respiratory phases of EE and EI were determined according to lung region Hounsfield unit (HU) values and body outline contours. The average CT was used for AC of baseline PET and DDG CT at EE phase was used for AC of DDG PET at the quiescent or EE phase. The EI and EE phases obtained with DDG CT were used for assessing the magnitude of respiratory motion. The proposed DDG CT was compared to two commercial CT gating methods: 1) 4D CT (external device based) and 2) D4D CT (DDG based) in 38 patient data sets with respect to respiratory phase image selection, lung HU, lung volume, and image artifacts. In a separate set of twenty consecutive PET/CT studies containing a mix of 18 F-FDG, 68 Ga-Dotatate, and 64 Cu-Dotatate scans, the proposed DDG CT was compared with D4D CT for impacts on registration and quantification in DDG PET/CT. RESULTS In the EE phase, the images selected by DDG CT and 4D CT were identical 62.5±21.6% of the time, while DDG CT and D4D CT were 6.5±9.7%, and 4D CT and D4D CT were 8.6±12.2%. These differences in EE phase image selection were significant (p<0.0001). In the EI phase, the images selected by DDG CT and 4D CT were identical 68.2±18.9% of the time, DDG CT and D4D CT were 63.9±18.8%, and 4D CT and D4D CT were 61.2±19.8%. These differences were not significant. The mean lung HU and volumes were not statistically different (p > 0.1) among the three methods. In some studies, DDG CT was better than D4D or 4D CT in appropriate selection of the EE and EI phases, and D4D CT was found to reverse the EE and EI phases or not select the correct images by visual inspection. A statistically significant improvement of DDG CT over D4D CT for AC of DDG PET was also demonstrated with PET quantification analysis. When irregular breath cycles were present in the cine CT, DDG CT could be used to replace average CT for improved AC of baseline PET. CONCLUSION A new automatic DDG CT was developed to tackle the issues of misregistration and tumor motion in PET/CT imaging. DDG CT was significantly more consistent than D4D CT in selecting the EE phase images as the clinical standard of 4D CT. When compared to both commercial gated CT methods of 4D CT and D4D CT, DDG CT appeared to be more robust in the lower lung and upper diaphragm regions where misregistration and tumor motion often occur. DDG CT offered improved AC for DDG PET relative to D4D CT. In cases with irregular respiratory motion, DDG CT improved AC over average CT for baseline PET. The new DDG CT provides the benefits of 4D CT without the need for external device gating. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tinsu Pan
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - M Allan Thomas
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Dershan Luo
- Department of Radiation Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, USA
| |
Collapse
|
5
|
Lamare F, Bousse A, Thielemans K, Liu C, Merlin T, Fayad H, Visvikis D. PET respiratory motion correction: quo vadis? Phys Med Biol 2021; 67. [PMID: 34915465 DOI: 10.1088/1361-6560/ac43fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) respiratory motion correction has been a subject of great interest for the last twenty years, prompted mainly by the development of multimodality imaging devices such as PET/computed tomography (CT) and PET/magnetic resonance imaging (MRI). PET respiratory motion correction involves a number of steps including acquisition synchronization, motion estimation and finally motion correction. The synchronization steps include the use of different external device systems or data driven approaches which have been gaining ground over the last few years. Patient specific or generic motion models using the respiratory synchronized datasets can be subsequently derived and used for correction either in the image space or within the image reconstruction process. Similar overall approaches can be considered and have been proposed for both PET/CT and PET/MRI devices. Certain variations in the case of PET/MRI include the use of MRI specific sequences for the registration of respiratory motion information. The proposed review includes a comprehensive coverage of all these areas of development in field of PET respiratory motion for different multimodality imaging devices and approaches in terms of synchronization, estimation and subsequent motion correction. Finally, a section on perspectives including the potential clinical usage of these approaches is included.
Collapse
Affiliation(s)
- Frederic Lamare
- Nuclear Medicine Department, University Hospital Centre Bordeaux Hospital Group South, ., Bordeaux, Nouvelle-Aquitaine, 33604, FRANCE
| | - Alexandre Bousse
- LaTIM, INSERM UMR1101, Université de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Kris Thielemans
- University College London Institute of Nuclear Medicine, UCL Hospital, Tower 5, 235 Euston Road, London, NW1 2BU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Chi Liu
- Department of Diagnostic Radiology, Yale University School of Medicine Department of Radiology and Biomedical Imaging, PO Box 208048, 801 Howard Avenue, New Haven, Connecticut, 06520-8042, UNITED STATES
| | - Thibaut Merlin
- LaTIM, INSERM UMR1101, Universite de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Hadi Fayad
- Weill Cornell Medicine - Qatar, ., Doha, ., QATAR
| | - Dimitris Visvikis
- LaTIM, UMR1101, Universite de Bretagne Occidentale, INSERM, Brest, Bretagne, 29285, FRANCE
| |
Collapse
|
6
|
Zheng Y, Peng Y, Yue H, Xiang H, Du Y. Multi-channel respiratory signal detection system for 4D-CT in radiotherapy by measuring the back pressure. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5586-5589. [PMID: 34892390 DOI: 10.1109/embc46164.2021.9631091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study proposes a novel respiratory signal detection system for 4D-CT in radiotherapy by measuring back pressure changes at multiple positions on CT couch. The 12-channel pressure sensor is fixed on CT couch to obtain patient's back pressure signal. The 12-channel signal is transmitted to a PC at a sampling rate of 50 Hz after a signal conditioning circuit and an analog-digital converter. The amplitude of pressure changes is characterized to select the optimal channel. This system is validated by comparing with the respiratory signal collected synchronously with a real-time position management (RPM) system on 10 healthy volunteers. The correlation coefficient between the signals is 0.82 ± 0.09 (standard deviation) and the time shift is 0.32 ± 0.15 second. We conclude that the back pressure signal acquired by the proposed system has the potential to replace the clinical RPM system for respiratory signal detection in 4D-CT data acquisition.
Collapse
|
7
|
Sun C, Udupa JK, Tong Y, Wu C, Guo S, McDonough JM, Torigian DA, Cahill PJ. A minimally interactive method for labeling respiratory phases in free-breathing thoracic dynamic MRI for constructing 4D images. IEEE Trans Biomed Eng 2021; 69:1424-1434. [PMID: 34618668 DOI: 10.1109/tbme.2021.3118535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Determination of end-expiration (EE) and end-inspiration (EI) time points in the respiratory cycle in free-breathing slice image acquisitions of the thorax is one key step needed for 4D image construction via dynamic magnetic resonance imaging. The purpose of this paper is to realize the automation of the labeling process. METHODS The diaphragm is used as a surrogate for tracking respiratory motion and determining the state of breathing. Regions of interest (ROIs) containing the hemi-diaphragms are set by human interaction to compute the optical flow matrix between two adjacent 2D time slices. Subsequently, our approach examines the diaphragm speed and direction and by considering the change in the optical flow matrix, the EE or EI points are detected. RESULTS AND CONCLUSION The labeling accuracy for the lateral aspect of the left lung and the lateral aspect of the right lung (0.630.71) is significantly lower (P < 0.05) than the accuracy for other positions (0.420.44), but the error in almost all scenarios is less than 1 time point. By comparing between automatic and manual labeling in 12 scenarios, we found out that 9 scenarios showed no significant difference (P > 0.05) between two methods. Overall, our method is found to be highly agreeable with manual labeling and greatly shortens the labeling time, requiring less than 8 minutes/ study compared to 4 hours/ study for manual labeling. SIGNIFICANCE Our method achieves automatic labeling of EE and EI points without the need for use of patient internal or external markers.
Collapse
|
8
|
Thomas MA, Pan T. Data-driven gated PET/CT: implications for lesion segmentation and quantitation. EJNMMI Phys 2021; 8:64. [PMID: 34453630 PMCID: PMC8403089 DOI: 10.1186/s40658-021-00411-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Background Data-driven gating (DDG) can improve PET quantitation and alleviate many issues with patient motion. However, misregistration between DDG-PET and CT may occur due to the distinct temporal resolutions of PET and CT and can be mitigated by DDG-CT. Here, the effects of misregistration and respiratory motion on PET quantitation and lesion segmentation were assessed with a new DDG-PET/CT method. Methods A low-dose cine-CT was acquired in misregistered regions to enable both average CT (ACT) and DDG-CT. The following were compared: (1) baseline PET/CT, (2) PET/ACT (attenuation correction, AC = ACT), (3) DDG-PET (AC = helical CT), and (4) DDG-PET/CT (AC = DDG-CT). For DDG-PET, end-expiration (EE) data were derived from 50% of the total PET data at 30% from end-inspiration. For DDG-CT, EE phase CT data were extracted from cine-CT data by lung Hounsfield unit (HU) value and body contour. A total of 91 lesions from 16 consecutive patients were assessed for changes in standard uptake value (SUV), lesion glycolysis (LG), lesion volume, centroid-to-centroid distance (CCD), and DICE coefficients. Results Relative to baseline PET/CT, median changes in SUVmax ± σ for all 91 lesions were 20 ± 43%, 26 ± 23%, and 66 ± 66%, respectively, for PET/ACT, DDG-PET, and DDG-PET/CT. Median changes in lesion volume were 0 ± 58%, − 36 ± 26%, and − 26 ± 40%. LG for individual lesions increased for PET/ACT and decreased for DDG-PET, but was not different for DDG-PET/CT. Changes in mean HU from baseline PET/CT were dramatic for most lesions in both PET/ACT and DDG-PET/CT, especially for lesions with mean HU < 0 at baseline. CCD and DICE were both affected more by motion correction with DDG-PET than improved registration with ACT or DDG-CT. Conclusion As misregistration becomes more prominent, the impact of motion correction with DDG-PET is diminished. The potential benefits of DDG-PET toward accurate lesion segmentation and quantitation could only be fully realized when combined with DDG-CT. These results impress upon the necessity of ensuring both misregistration and motion correction are accounted for together to optimize the clinical utility of PET/CT. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00411-5.
Collapse
Affiliation(s)
- M Allan Thomas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tinsu Pan
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Kim DH, Yoo EH, Hong US, Kim JH, Ko YH, Moon SC, Cheon M, Yoo J. Image Registration of 18F-FDG PET/CT Using the MotionFree Algorithm and CT Protocols through Phantom Study and Clinical Evaluation. Healthcare (Basel) 2021; 9:669. [PMID: 34199705 PMCID: PMC8229608 DOI: 10.3390/healthcare9060669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
We evaluated the benefits of the MotionFree algorithm through phantom and patient studies. The various sizes of phantom and vacuum vials were linked to RPM moving with or without MotionFree application. A total of 600 patients were divided into six groups by breathing protocols and CT scanning time. Breathing protocols were applied as follows: (a) patients who underwent scanning without any breathing instructions; (b) patients who were instructed to hold their breath after expiration during CT scan; and (c) patients who were instructed to breathe naturally. The length of PET/CT misregistration was measured and we defined the misregistration when it exceeded 10 mm. In the phantom tests, the images produced by the MotionFree algorithm were observed to have excellent agreement with static images. There were significant differences in PET/CT misregistration according to CT scanning time and each breathing protocol. When applying the type (c) protocol, decreasing the CT scanning time significantly reduced the frequency and length of misregistrations (p < 0.05). The MotionFree application is able to correct respiratory motion artifacts and to accurately quantify lesions. The shorter time of CT scan can reduce the frequency, and the natural breathing protocol also decreases the lengths of misregistrations.
Collapse
Affiliation(s)
- Deok-Hwan Kim
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | - Eun-Hye Yoo
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | - Ui-Seong Hong
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | - Jun-Hyeok Kim
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | - Young-Heon Ko
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | | | - Miju Cheon
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | - Jang Yoo
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| |
Collapse
|
10
|
Hwang D, Kang SK, Kim KY, Choi H, Seo S, Lee JS. Data-driven respiratory phase-matched PET attenuation correction without CT. Phys Med Biol 2021; 66. [PMID: 33910170 DOI: 10.1088/1361-6560/abfc8f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/28/2021] [Indexed: 12/20/2022]
Abstract
We propose a deep learning-based data-driven respiratory phase-matched gated-PET attenuation correction (AC) method that does not need a gated-CT. The proposed method is a multi-step process that consists of data-driven respiratory gating, gated attenuation map estimation using maximum-likelihood reconstruction of attenuation and activity (MLAA) algorithm, and enhancement of the gated attenuation maps using convolutional neural network (CNN). The gated MLAA attenuation maps enhanced by the CNN allowed for the phase-matched AC of gated-PET images. We conducted a non-rigid registration of the gated-PET images to generate motion-free PET images. We trained the CNN by conducting a 3D patch-based learning with 80 oncologic whole-body18F-fluorodeoxyglucose (18F-FDG) PET/CT scan data and applied it to seven regional PET/CT scans that cover the lower lung and upper liver. We investigated the impact of the proposed respiratory phase-matched AC of PET without utilizing CT on tumor size and standard uptake value (SUV) assessment, and PET image quality (%STD). The attenuation corrected gated and motion-free PET images generated using the proposed method yielded sharper organ boundaries and better noise characteristics than conventional gated and ungated PET images. A banana artifact observed in a phase-mismatched CT-based AC was not observed in the proposed approach. By employing the proposed method, the size of tumor was reduced by 12.3% and SUV90%was increased by 13.3% in tumors with larger movements than 5 mm. %STD of liver uptake was reduced by 11.1%. The deep learning-based data-driven respiratory phase-matched AC method improved the PET image quality and reduced the motion artifacts.
Collapse
Affiliation(s)
- Donghwi Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Kwan Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyeong Yun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seongho Seo
- Department of Electronic Engineering, Pai Chai University, Daejeon, Republic of Korea
| | - Jae Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Keikhai Farzaneh MJ, Momennezhad M, Naseri S. Gated Radiotherapy Development and its Expansion. J Biomed Phys Eng 2021; 11:239-256. [PMID: 33937130 PMCID: PMC8064130 DOI: 10.31661/jbpe.v0i0.948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/14/2018] [Indexed: 12/25/2022]
Abstract
One of the most important challenges in treatment of patients with cancerous tumors of chest and abdominal areas is organ movement. The delivery of treatment radiation doses to tumor tissue is a challenging matter while protecting healthy and radio sensitive tissues. Since the movement of organs due to respiration causes a discrepancy in the middle of planned and delivered dose distributions. The moderation in the fatalistic effect of intra-fractional target travel on the radiation therapy correctness is necessary for cutting-edge methods of motion remote monitoring and cancerous growth irradiancy. Tracking respiratory milling and implementation of breath-hold techniques by respiratory gating systems have been used for compensation of respiratory motion negative effects. Therefore, these systems help us to deliver precise treatments and also protect healthy and critical organs. It seems aspiration should be kept under observation all over treatment period employing tracking seed markers (e.g. fiducials), skin surface scanners (e.g. camera and laser monitoring systems) and aspiration detectors (e.g. spirometers). However, these systems are not readily available for most radiotherapy centers around the word. It is believed that providing and expanding the required equipment, gated radiotherapy will be a routine technique for treatment of chest and abdominal tumors in all clinical radiotherapy centers in the world by considering benefits of respiratory gating techniques in increasing efficiency of patient treatment in the near future. This review explains the different technologies and systems as well as some strategies available for motion management in radiotherapy centers.
Collapse
Affiliation(s)
- Mohammad Javad Keikhai Farzaneh
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Department of Medical Physics, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Momennezhad
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrokh Naseri
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
New Data-Driven Gated PET/CT Free of Misregistration Artifacts. Int J Radiat Oncol Biol Phys 2021; 109:1638-1646. [PMID: 33186619 DOI: 10.1016/j.ijrobp.2020.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE We developed a new data-driven gated (DDG) positron emission tomography (PET)/computed tomography (CT) to improve the registration of CT and DDG PET. METHODS We acquired 10 repeat PET/CT and 35 cine CT scans for the mitigation of misregistration between CT and PET data. We also derived end-expiration phase CT as DDG CT for attenuation correction of DDG PET. Radiation exposure, body mass index (BMI), scan coverage, and effective radiation dose were compared between repeat PET/CT and cine CT. Of the 35 cine CT patients, 14 (capturing 59 total tumors) were compared among average PET/CT (baseline PET attenuation correction by average CT), DDG PET (DDG PET attenuation correction by baseline CT), and DDG PET/CT (DDG PET attenuation correction by DDG CT) for registration and quantification without increasing the scan time for DDG PET. RESULTS Compared with repeat PET/CT, cine CT had significantly lower scan coverage (32.5 ± 11.5 cm vs 15.4 ± 4.7 cm; P < .001) and effective radiation dose (3.7 ± 2.6 mSv vs 1.3 ± 0.6 mSv; P < .01). Repeat PET/CT and cine CT did not differ significantly in BMI or radiation exposure (P > .1). Cine CT saved the scan time for not needing a repeat PET. The SUV ratios of average PET/CT, DDG PET, and DDG PET/CT to baseline PET/CT were 1.14 ± 0.28, 1.28 ± 0.20, and 1.63 ± 0.64, respectively (P < .0001), suggesting that the SUVmax increased consecutively from baseline PET/CT to average PET/CT, DDG PET, and DDG PET/CT. Motion correction with DDG PET had a larger impact on quantification than registration improvement with average CT did. The biggest improvement in quantification was from DDG PET/CT, in which both registration was improved and motion was mitigated. CONCLUSION Our new DDG PET/CT approach alleviates misregistration artifacts and, compared with DDG PET, improves quantification and registration. The use of cine CT in our DDG PET/CT method also reduces the effective radiation dose and scan coverage compared with repeat CT.
Collapse
|
13
|
Kang SY, Moon BS, Kim HO, Yoon HJ, Kim BS. The impact of data-driven respiratory gating in clinical F-18 FDG PET/CT: comparison of free breathing and deep-expiration breath-hold CT protocol. Ann Nucl Med 2021; 35:328-337. [PMID: 33449303 DOI: 10.1007/s12149-020-01574-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Respiratory motion can diminish PET image quality and lead to inaccurate lesion quantifications. Data-driven gating (DDG) was recently introduced as an effective respiratory gating technique for PET. In the current study, we investigated the clinical impact of DDG on respiratory movement in 18F-FDG PET/CT. METHOD PET list-mode data were collected for each subject and DDG software was utilized for extracting respiratory waveforms. PET images was reconstructed using Q.clear and Q.clear + DDG, respectively. We evaluated SUVmax, SUVmean, the coefficient of variance (CoV), metabolic tumor volume (MTV), and tumor heterogeneity using the area under the curve of cumulative SUV histogram (AUC-CSH). Metabolic parameter changes were compared between each reconstruction method. The Deep-Expiration Breath Hold (DEBH) protocol was introduced for CT scans to correct spatial misalignment between PET and CT and compared with conventional free breathing. The DEBH and free breathing (FB) protocol comparison was made in a separate matching cohort using propensity core matching rather than the same patient. RESULTS Total 147 PET/CT scans with excessive respiratory movements were used to study DDG-mediated correction. After DDG application, SUVmax (P < 0.0001; 8.15 ± 4.77 vs. 9.03 ± 5.02) and SUVmean (P < 0.0001; 4.91 ± 2.44 vs. 5.49 ± 2.68) of lung and upper abdomen lesions increased, while MTV significantly decreased (P < 0.0001; 7.07 ± 15.46 vs. 6.58 ± 15.14). In addition, the percent change of SUVs was greater in lower lung lesions compared to upper lobe lesions. Likewise, the MTV reduction was significantly greater in lower lobe lesions. No significant difference dependent on location was observed in liver lesions. DEBH-mediated CT breathing correction did not make a significant difference in lesion metabolic parameters compared to conventional free breathing. CONCLUSIONS These results suggest that DDG correction enables more corrected quantification from respiratory movements for lesions located in the lung and upper abdomen. Therefore, we suggest that DDG is worth using as a standard protocol during 18F-FDG PET/CT imaging.
Collapse
Affiliation(s)
- Seo Young Kang
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University Medical Center, (07804) 260, Gonghang-daero, Gangseo-gu, Seoul, Republic of Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University Medical Center, (07804) 260, Gonghang-daero, Gangseo-gu, Seoul, Republic of Korea
| | - Hye Ok Kim
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University Medical Center, (07804) 260, Gonghang-daero, Gangseo-gu, Seoul, Republic of Korea
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University Medical Center, (07804) 260, Gonghang-daero, Gangseo-gu, Seoul, Republic of Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University Medical Center, (07804) 260, Gonghang-daero, Gangseo-gu, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Kim K, Wang M, Guo N, Schaefferkoetter J, Li Q. Data-driven respiratory gating based on localized diaphragm sensing in TOF PET. Phys Med Biol 2020; 65:165007. [PMID: 32454466 DOI: 10.1088/1361-6560/ab9660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is important to measure the respiratory cycle in positron emission tomography (PET) to enhance the contrast of the tumor as well as the accuracy of its localization in organs such as the lung and liver. Several types of data-driven respiratory gating methods, such as center of mass and principal component analysis, have been developed to directly measure the breathing cycle from PET images and listmode data. However, the breathing cycle is still hard to detect in low signal-to-noise ratio (SNR) data, particularly in low dose PET/CT scans. To address this issue, a time-of-flight (TOF) PET is currently utilized for the data-driven respiratory gating because of its higher SNR and better localization of the region of interest. To further improve the accuracy of respiratory gating with TOF information, we propose an accurate data-driven respiratory gating method, which retrospectively derives the respiratory signal using a localized sensing method based on a diaphragm mask in TOF PET data. To assess the accuracy of the proposed method, the performance is evaluated with three patient datasets, and a pressure-belt signal as the ground truth is compared. In our experiments, we validate that the respiratory signal using the proposed data-driven gating method is well matched to the pressure-belt respiratory signal with less than 5% peak time errors and over 80% trace correlations. Based on gated signals, the respiratory-gated image of the proposed method provides more clear edges of organs compared to images using conventional non-TOF methods. Therefore, we demonstrate that the proposed method can achieve improvements for the accuracy of gating signals and image quality.
Collapse
Affiliation(s)
- Kyungsang Kim
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital Harvard Medical School Boston MA 02114 United States of America. Contributed equally to this work
| | | | | | | | | |
Collapse
|
15
|
Vergalasova I, Cai J. A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy. Med Phys 2020; 47:e988-e1008. [PMID: 32506452 DOI: 10.1002/mp.14312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy has become a critical component for the treatment of all stages and types of lung cancer, often times being the primary gateway to a cure. However, given that radiation can cause harmful side effects depending on how much surrounding healthy tissue is exposed, treatment of the lung can be particularly challenging due to the presence of moving targets. Careful implementation of every step in the radiotherapy process is absolutely integral for attaining optimal clinical outcomes. With the advent and now widespread use of stereotactic body radiation therapy (SBRT), where extremely large doses are delivered, accurate, and precise dose targeting is especially vital to achieve an optimal risk to benefit ratio. This has largely become possible due to the rapid development of image-guided technology. Although imaging is critical to the success of radiotherapy, it can often be plagued with uncertainties due to respiratory-induced target motion. There has and continues to be an immense research effort aimed at acknowledging and addressing these uncertainties to further our abilities to more precisely target radiation treatment. Thus, the goal of this article is to provide a detailed review of the prevailing uncertainties that remain to be investigated across the different imaging modalities, as well as to highlight the more modern solutions to imaging motion and their role in addressing the current challenges.
Collapse
Affiliation(s)
- Irina Vergalasova
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
16
|
Hamill JJ, Meier JG, Betancourt Cuellar SL, Sabloff B, Erasmus JJ, Mawlawi O. Improved Alignment of PET and CT Images in Whole-Body PET/CT in Cases of Respiratory Motion During CT. J Nucl Med 2020; 61:1376-1380. [PMID: 32005768 DOI: 10.2967/jnumed.119.235804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
Respiratory motion during the CT and PET parts of a PET/CT scan leads to imperfect alignment of anatomic features seen by the 2 modalities. In this work, we concentrate on the effects of motion during CT. We propose a novel approach for improving the alignment. Methods: Respiratory waveform data were gathered during the CT and PET parts of 28 PET/CT scans of cancer patients with 40 lesions up to 3 cm in size in the lung or upper abdomen. PET list-mode data were reconstructed by 3 reconstruction methods: PET/static (the standard method with no motion correction); PET/ex (a method that calculates a range of expiratory amplitudes from the lowest one to the highest one); and PET/matched (a novel method that uses both waveforms). The 3 methods were compared. The distance between tumor positions in PET and CT were characterized in visual interpretation by physicians as well as quantitatively. Tumor SUVs (SUVmax and SUVpeak) were determined relative to SUV based on the static method. Image noise was evaluated in the liver and compared with PET/static. Results: In visual interpretation, the rate of good alignment was 13 of 21, 13 of 23, and 18 of 21 for the PET/static, PET/ex, and PET/matched methods, respectively, and the mean PET/CT distances were 3.5, 5.1, and 2.8 mm. In visual comparison with PET/ex, the rate of good alignment was increased in 1 of 10 and 7 of 10 cases for PET/static and PET/matched, respectively. SUVmax was on average 21% higher than PET/static when either PET/ex or PET/matched was used. SUVpeak was 12% higher. Image noise in the liver was 15% higher than PET/static for the PET/ex method, and 40% higher for PET/matched; that is, noise was much lower than in gated PET. Conclusion: Acquiring respiratory waveforms both in PET (as in the current state of the art) and in CT (an unusual key step in this approach) has the potential to improve the alignment of PET and CT images. A proposed method for using this information was tested. Improved alignment was demonstrated.
Collapse
Affiliation(s)
- James J Hamill
- Siemens Medical Solutions USA, Inc., Knoxville, Tennessee
| | - Joseph G Meier
- Department of Imaging Physics, M.D. Anderson Cancer Center, Houston Texas.,M.D. Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas; and
| | | | - Bradley Sabloff
- Department of Diagnostic Radiology, M.D. Anderson Cancer Center, Houston Texas
| | - Jeremy J Erasmus
- Department of Diagnostic Radiology, M.D. Anderson Cancer Center, Houston Texas
| | - Osama Mawlawi
- Department of Imaging Physics, M.D. Anderson Cancer Center, Houston Texas.,M.D. Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas; and
| |
Collapse
|
17
|
Zhang X, Tang J, Sharp GC, Xiao L, Xu S, Lu HM. A new respiratory monitor system for four-dimensional computed tomography by measuring the pressure change on the back of body. Br J Radiol 2020; 93:20190303. [PMID: 31912746 DOI: 10.1259/bjr.20190303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE A novel respiratory monitoring method based on the periodical pressure change on the patient's back was proposed and assessed by applying to four-dimensional CT (4DCT) scanning. METHODS A pressure-based respiratory monitoring system is developed and validated by comparing to real-time position management (RPM) system. The pressure change and the RPM signal are compared with phase differences and correlations calculated. The 4DCT images are reconstructed by these two signals. Internal and skin artifacts due to mismatch between CT slices and respiratory phases are evaluated. RESULTS The pressure and RPM signals shows strong consistency (R = 0.68±0.19 (1SD)). The time shift is 0.26 ± 0.51 (1SD) s and the difference of breath cycle is 0.02 ± 0.17 (1SD) s. The quality of 4DCT images reconstructed by two signals is similar. For both methods, the number of patients with artifacts is eight and the maximum magnitudes of artifacts are 20 mm (internal) and 10 mm (skin). The average magnitudes are 8.8 mm (pressure) and 8.2 mm (RPM) for internal artifacts, and 5.2 mm (pressure) and 4.6 mm (RPM) for skin artifacts. The mean square gray value difference shows no significant difference (p = 0.52). CONCLUSION The pressure signal provides qualified results for respiratory monitoring in 4DCT scanning, demonstrating its potential application for respiration monitoring in radiotherapy. ADVANCES IN KNOWLEDGE Pressure change on the back of body is a novel and promising method to monitor respiration in radiotherapy, which may improve treatment comfort and provide more information about respiration and body movement.
Collapse
Affiliation(s)
- Xianwen Zhang
- Nanjing Research Institute of Electronics Technology, Nanjing, 210039, China
| | - Jintian Tang
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, 100084, China
| | - Gregory C Sharp
- Department of Radiation Oncology, Francis H Burr Proton Therapy Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Xiao
- Master School of Electrical Engineering and Automation, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Shouping Xu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hsiao-Ming Lu
- Department of Radiation Oncology, Francis H Burr Proton Therapy Center, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
18
|
Ranjbar M, Sabouri P, Mossahebi S, Leiser D, Foote M, Zhang J, Lasio G, Joshi S, Sawant A. Development and prospective in-patient proof-of-concept validation of a surface photogrammetry + CT-based volumetric motion model for lung radiotherapy. Med Phys 2019; 46:5407-5420. [PMID: 31518437 DOI: 10.1002/mp.13824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/22/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE We develop and validate a motion model that uses real-time surface photogrammetry acquired concurrently with four-dimensional computed tomography (4DCT) to estimate respiration-induced changes within the entire irradiated volume, over arbitrarily many respiratory cycles. METHODS A research, couch-mounted, VisionRT (VRT) system was used to acquire optical surface data (15 Hz, ROI = 15 × 20 cm2 ) from the thoraco-abdominal surface of a consented lung SBRT patient, concurrently with their standard-of-care 4DCT. The end-exhalation phase from the 4DCT was regarded as reference and for each remaining phase, deformation vector fields (DVFs) with respect to the reference phase were computed. To reduce dimensionality, the first two principal components (PCs) of the matrix of nine DVFs were calculated. In parallel, ten phase-averaged VRT surfaces were created. Surface DVFs and corresponding PCs were computed. A principal least squares regression was used to relate the PCs of surface DVF to those of volume DVFs, establishing a relationship between time-varying surface and the underlying time-varying volume. Proof-of-concept validation was performed during each treatment fraction by concurrently acquiring 30 s time series of real-time surface data and "ground truth" kV fluoroscopic data (FL). A ray-tracing algorithm was used to create a digitally reconstructed fluorograph (DRF), and motion trajectories of high-contrast, soft-tissue, anatomical features in the DRF were compared with those from kV FL. RESULTS For five of the six fluoroscopic acquisition sessions, the model out-performed 4DCT in predicting contour Dice coefficient with respect to fluoroscopy-derived contours. Similarly, the model exhibited a marked improvement over 4DCT for patch positions on the diaphragm. Model patch position errors varied from 5 to -15 mm while 4DCT errors ranged between 5 and -22.4 mm. For one fluoroscopic acquisition, a marked change in the a priori internal-external correlation resulted in model errors comparable to those of 4DCT. CONCLUSIONS We described the development and a proof-of-concept validation for a volumetric motion model that uses surface photogrammetry to correlate the time-varying thoraco-abdominal surface to the time-varying internal thoraco-abdominal volume. These early results indicate that the proposed approach can result in a marked improvement over 4DCT. While limited by the duration of the fluoroscopic acquisitions as well as the resolution of the acquired images, the DRF-based proof-of-concept technique developed here is model-agnostic, and therefore, has the potential to be used as an in-patient validation tool for other volumetric motion models.
Collapse
Affiliation(s)
- M Ranjbar
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S Greene Street, Baltimore, MD, 21201, USA
| | - P Sabouri
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S Greene Street, Baltimore, MD, 21201, USA
| | - S Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S Greene Street, Baltimore, MD, 21201, USA
| | - D Leiser
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S Greene Street, Baltimore, MD, 21201, USA
| | - M Foote
- Department of Biomedical Engineering, Scientific Computing and Imaging Institute, University of Utah, 72 South Central Campus Drive, Room 3750, Salt Lake City, UT, 84112, USA
| | - J Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S Greene Street, Baltimore, MD, 21201, USA
| | - G Lasio
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S Greene Street, Baltimore, MD, 21201, USA
| | - S Joshi
- Department of Biomedical Engineering, Scientific Computing and Imaging Institute, University of Utah, 72 South Central Campus Drive, Room 3750, Salt Lake City, UT, 84112, USA
| | - A Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S Greene Street, Baltimore, MD, 21201, USA
| |
Collapse
|
19
|
A Computational Framework for Data Fusion in MEMS-Based Cardiac and Respiratory Gating. SENSORS 2019; 19:s19194137. [PMID: 31554282 PMCID: PMC6811750 DOI: 10.3390/s19194137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022]
Abstract
Dual cardiac and respiratory gating is a well-known technique for motion compensation in nuclear medicine imaging. In this study, we present a new data fusion framework for dual cardiac and respiratory gating based on multidimensional microelectromechanical (MEMS) motion sensors. Our approach aims at robust estimation of the chest vibrations, that is, high-frequency precordial vibrations and low-frequency respiratory movements for prospective gating in positron emission tomography (PET), computed tomography (CT), and radiotherapy. Our sensing modality in the context of this paper is a single dual sensor unit, including accelerometer and gyroscope sensors to measure chest movements in three different orientations. Since accelerometer- and gyroscope-derived respiration signals represent the inclination of the chest, they are similar in morphology and have the same units. Therefore, we use principal component analysis (PCA) to combine them into a single signal. In contrast to this, the accelerometer- and gyroscope-derived cardiac signals correspond to the translational and rotational motions of the chest, and have different waveform characteristics and units. To combine these signals, we use independent component analysis (ICA) in order to obtain the underlying cardiac motion. From this cardiac motion signal, we obtain the systolic and diastolic phases of cardiac cycles by using an adaptive multi-scale peak detector and a short-time autocorrelation function. Three groups of subjects, including healthy controls (n = 7), healthy volunteers (n = 12), and patients with a history of coronary artery disease (n = 19) were studied to establish a quantitative framework for assessing the performance of the presented work in prospective imaging applications. The results of this investigation showed a fairly strong positive correlation (average r = 0.73 to 0.87) between the MEMS-derived (including corresponding PCA fusion) respiration curves and the reference optical camera and respiration belt sensors. Additionally, the mean time offset of MEMS-driven triggers from camera-driven triggers was 0.23 to 0.3 ± 0.15 to 0.17 s. For each cardiac cycle, the feature of the MEMS signals indicating a systolic time interval was identified, and its relation to the total cardiac cycle length was also reported. The findings of this study suggest that the combination of chest angular velocity and accelerations using ICA and PCA can help to develop a robust dual cardiac and respiratory gating solution using only MEMS sensors. Therefore, the methods presented in this paper should help improve predictions of the cardiac and respiratory quiescent phases, particularly with the clinical patients. This study lays the groundwork for future research into clinical PET/CT imaging based on dual inertial sensors.
Collapse
|
20
|
Chowdhury SR, Dutta J. Higher-order singular value decomposition-based lung parcellation for breathing motion management. J Med Imaging (Bellingham) 2019; 6:024004. [PMID: 31065568 DOI: 10.1117/1.jmi.6.2.024004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/04/2019] [Indexed: 11/14/2022] Open
Abstract
Positron emission tomography (PET) imaging of the lungs is confounded by respiratory motion-induced blurring artifacts that degrade quantitative accuracy. Gating and motion-compensated image reconstruction are frequently used to correct these motion artifacts in PET. In the absence of voxel-by-voxel deformation measures, surrogate signals from external markers are used to track internal motion and generate gated PET images. The objective of our work is to develop a group-level parcellation framework for the lungs to guide the placement of markers depending on the location of the internal target region. We present a data-driven framework based on higher-order singular value decomposition (HOSVD) of deformation tensors that enables identification of synchronous areas inside the torso and on the skin surface. Four-dimensional (4-D) magnetic resonance (MR) imaging based on a specialized radial pulse sequence with a one-dimensional slice-projection navigator was used for motion capture under free-breathing conditions. The deformation tensors were computed by nonrigidly registering the gated MR images. Group-level motion signatures obtained via HOSVD were used to cluster the voxels both inside the volume and on the surface. To characterize the parcellation result, we computed correlation measures across the different regions of interest (ROIs). To assess the robustness of the parcellation technique, leave-one-out cross-validation was performed over the subject cohort, and the dependence of the result on varying numbers of gates and singular value thresholds was examined. Overall, the parcellation results were largely consistent across these test cases with Jaccard indices reflecting high degrees of overlap. Finally, a PET simulation study was performed which showed that, depending on the location of the lesion, the selection of a synchronous ROI may lead to noticeable gains in the recovery coefficient. Accurate quantitative interpretation of PET images is important for lung cancer management. Therefore, a guided motion monitoring approach is of utmost importance in the context of pulmonary PET imaging.
Collapse
Affiliation(s)
- Samadrita Roy Chowdhury
- University of Massachusetts Lowell, Department of Electrical and Computer Engineering, Lowell, Massachusetts, United States
| | - Joyita Dutta
- University of Massachusetts Lowell, Department of Electrical and Computer Engineering, Lowell, Massachusetts, United States.,Massachusetts General Hospital and Harvard Medical School, Gordon Center for Medical Imaging, Boston, Massachusetts, United States
| |
Collapse
|
21
|
Thomas L, Schultz T, Prokic V, Guckenberger M, Tanadini-Lang S, Hohberg M, Wild M, Drzezga A, Bundschuh RA. 4D-CT-based motion correction of PET images using 3D iterative deconvolution. Oncotarget 2019; 10:2987-2995. [PMID: 31105880 PMCID: PMC6508203 DOI: 10.18632/oncotarget.26862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/23/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives Positron emission tomography acquisition takes several minutes representing an image averaged over multiple breathing cycles. Therefore, in areas influenced by respiratory movement, PET-positive lesions occur larger, but less intensive than they actually are, resulting in false quantitative assessment. We developed a motion-correction algorithm based on 4D-CT without the need to adapt PET-acquisition. Methods The algorithm is based on a full 3D iterative Richardson-Lucy-Deconvolution using a point-spread-function constructed using the motion information obtained from the 4D-CT. In a motion phantom study (3 different hot spheres in background activity), optimal parameters for the algorithm in terms of number of iterations and start image were estimated. Finally, the correction method was applied to 3 patient data sets. In phantom and patient data sets lesions were delineated and compared between motion corrected and uncorrected images for activity uptake and volume. Results Phantom studies showed best results for motion correction after 6 deconvolution steps or higher. In phantom studies, lesion volume improved up to 23% for the largest, 43% for the medium and 49% for the smallest sphere due to the correction algorithm. In patient data the correction resulted in a significant reduction of the tumor volume up to 33.3 % and an increase of the maximum and mean uptake of the lesion up to 62.1 and 19.8 % respectively. Conclusion In conclusion, the proposed motion correction method showed good results in phantom data and a promising reduction of detected lesion volume and a consequently increasing activity uptake in three patients with lung lesions.
Collapse
Affiliation(s)
- Lena Thomas
- Klinik und Poliklinik für Nuklearmedizin, Universitaetsklinikum Bonn, Bonn, Germany
| | - Thomas Schultz
- B-IT and Department of Computer Science, Universitaet Bonn, Bonn, Germany
| | - Vesna Prokic
- University Koblenz-Landau, Department of Physics, Koblenz, Germany.,University of Applied Sciences Koblenz, Koblenz, Germany
| | | | | | - Melanie Hohberg
- Department of Nuclear Medicine Universitaetsklinikum Köln, Cologne, Germany
| | - Markus Wild
- Department of Nuclear Medicine Universitaetsklinikum Köln, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine Universitaetsklinikum Köln, Cologne, Germany
| | - Ralph A Bundschuh
- Klinik und Poliklinik für Nuklearmedizin, Universitaetsklinikum Bonn, Bonn, Germany
| |
Collapse
|
22
|
Jaudet C, Filleron T, Weyts K, Didierlaurent D, Vallot D, Ouali M, Zerdoud S, Dierickx OL, Caselles O, Courbon F. Gated 18F-FDG PET/CT of the Lung Using a Respiratory Spirometric Gating Device: A Feasibility Study. J Nucl Med Technol 2019; 47:227-232. [PMID: 31019044 DOI: 10.2967/jnmt.118.223339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Spirometric gating devices (SGDs) can measure the respiratory signal with high temporal resolution and accuracy. The primary objective of this study was to assess the feasibility and tolerance of a gated lung PET/CT acquisition using an SGD. The secondary objective was to compare the technical quality, accuracy, and interoperability of the SGD with that of a standard respiratory gating device, Real-Time Position Management (RPM), based on measurement of vertical thoracoabdominal displacement. Methods: A prospective phase I monocentric clinical study was performed on patients undergoing 18F-FDG PET/CT for assessment of a solitary lung nodule, staging of lung malignancy, or planning of radiotherapy. After whole-body PET/CT, a centered gated acquisition of both PET and CT was simultaneously obtained with the SGD and RPM during normal breathing. Results: Of the 46 patients who were included, 6 were prematurely excluded (1 because of hyperglycemia and 5 because of distant metastases revealed by whole-body PET/CT, leading to an unjustified extra gated acquisition). No serious adverse events were observed. Of the 40 remaining patients, the gated acquisition was prematurely stopped in 1 patient because of mask discomfort (2.5%; confidence interval [CI], 0.1%-13.2%). This event was considered patient tolerance failure. The SGD generated accurately gated PET/CT images, with more than 95% of the breathing cycle detected and high temporal resolution, in 34 of the 39 patients (87.2%; 95% CI, 60.0%-100.0%) and failed to generate a biologic tumor volume in 1 of 21 patients with increased 18F-FDG uptake (4.8%; 95% CI, 0.1%-26.5%). The quality and accuracy of respiratory signal detection and synchronization were significantly better than those obtained with RPM (P < 0.05). Conclusion: This trial supports the use of an SGD for gated lung PET/CT because of its high patient tolerance and accuracy. Although this technique seems to technically outperform RPM for gated PET/CT, further assessment of its superiority and the clinical benefit is warranted. We believe that this technique could be used as a gold standard to develop innovative approaches to eliminate respiration-induced blurring artifacts.
Collapse
Affiliation(s)
- Cyril Jaudet
- Department of Nuclear Medicine, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; and
| | - Thomas Filleron
- Department of Biostatistics, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Kathleen Weyts
- Department of Nuclear Medicine, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; and
| | - David Didierlaurent
- Department of Nuclear Medicine, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; and
| | - Delphine Vallot
- Department of Nuclear Medicine, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; and
| | - Mounia Ouali
- Department of Biostatistics, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Slimane Zerdoud
- Department of Nuclear Medicine, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; and
| | - O Lawrence Dierickx
- Department of Nuclear Medicine, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; and
| | - Olivier Caselles
- Department of Nuclear Medicine, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; and
| | - Frédéric Courbon
- Department of Nuclear Medicine, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; and
| |
Collapse
|
23
|
Ranjbar M, Sabouri P, Repetto C, Sawant A. A novel deformable lung phantom with programably variable external and internal correlation. Med Phys 2019; 46:1995-2005. [PMID: 30919974 DOI: 10.1002/mp.13507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Lung motion phantoms used to validate radiotherapy motion management strategies have fairly simplistic designs that do not adequately capture complex phenomena observed in human respiration such as external and internal deformation, variable hysteresis and variable correlation between different parts of the thoracic anatomy. These limitations make reliable evaluation of sophisticated motion management techniques quite challenging. In this work, we present the design and implementation of a programmable, externally and internally deformable lung motion phantom that allows for a reproducible change in external-internal and internal-internal correlation of embedded markers. METHODS An in-house-designed lung module, made from natural latex foam was inserted inside the outer shell of a commercially available lung phantom (RSD, Long Beach, CA, USA). Radiopaque markers were placed on the external surface and embedded into the lung module. Two independently programmable high-precision linear motion actuators were used to generate primarily anterior-posterior (AP) and primarily superior-inferior (SI) motion in a reproducible fashion in order to enable (a) variable correlation between the displacement of interior volume and the exterior surface, (b) independent changes in the amplitude of the AP and SI motions, and (c) variable hysteresis. The ability of the phantom to produce complex and variable motion accurately and reproducibly was evaluated by programming the two actuators with mathematical and patient-recorded lung tumor motion traces, and recording the trajectories of various markers using kV fluoroscopy. As an example application, the phantom was used to evaluate the performance of lung motion models constructed from kV fluoroscopy and 4DCT images. RESULTS The phantom exhibited a high degree of reproducibility and marker motion ranges were reproducible to within 0.5 mm. Variable correlation was observed between the displacements of internal-internal and internal-external markers. The SI and AP components of motion of a specific marker had a correlation parameter that varied from -11 to 17. Monitoring a region of interest on the phantom's surface to estimate internal marker motion led to considerably lower uncertainties than when a single point was monitored. CONCLUSIONS We successfully designed and implemented a programmable, externally and internally deformable lung motion phantom that allows for a reproducible change in external-internal and internal-internal correlation of embedded markers.
Collapse
Affiliation(s)
- Maida Ranjbar
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pouya Sabouri
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Carlo Repetto
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
24
|
Zhong Y, Kalantari F, Zhang Y, Shao Y, Wang J. Quantitative 4D-PET reconstruction for small animal using SMEIR-reconstructed 4D-CBCT. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018; 2:300-306. [PMID: 33778232 DOI: 10.1109/trpms.2018.2814342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Respiratory motions in small animals PET cause image degradation during reconstruction. This work aims to develop a motion compensated 4D-PET reconstruction method using accurate motion corrections and attenuation corrections from 4D-CBCT images reconstructed using a simultaneous motion estimation and image reconstruction (SMEIR) method. Projections of 4D-CBCT were calculated using a ray-tracing method on a digital 4D rat phantom, and list-mode data of 4D-PET with matched respiratory phases were simulated using the GATE Monte Carlo package. The respiratory rate was set at 1.0 second per cycle with 10 phases of 30 projection images each. 4D-CBCT images were reconstructed using the SMEIR method and motion information and linear attenuation from 4D-CBCT were subsequently used for motion compensated 4D-PET reconstruction and attenuation corrections. We quantitatively evaluate the reconstructed 4D-PET using the errors of tumor volume and standard uptake values of tumors with different sizes. The tumor motion was successfully reconstructed and showed good agreement with the original phantom. The proposed method reduced tumor volume errors and standard uptake value errors. For tumor diameters of 3.0, 4.5, and 6.0 mm, the tumor volume errors are 32.5%, 29.2% and 19.4% respectively with motion compensation and 45.1%, 37.5% and 20.2% respectively without compensation.
Collapse
Affiliation(s)
- Yuncheng Zhong
- Medical Physics and Engineering Division in the Department of Radiation Oncology, the University of Texas Southwestern Medical Center, Dallas, TX
| | - Faraz Kalantari
- Medical Physics and Engineering Division in the Department of Radiation Oncology, the University of Texas Southwestern Medical Center, Dallas, TX
| | - You Zhang
- Medical Physics and Engineering Division in the Department of Radiation Oncology, the University of Texas Southwestern Medical Center, Dallas, TX
| | - Yiping Shao
- Medical Physics and Engineering Division in the Department of Radiation Oncology, the University of Texas Southwestern Medical Center, Dallas, TX
| | - Jing Wang
- Medical Physics and Engineering Division in the Department of Radiation Oncology, the University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
25
|
Frood R, McDermott G, Scarsbrook A. Respiratory-gated PET/CT for pulmonary lesion characterisation-promises and problems. Br J Radiol 2018; 91:20170640. [PMID: 29338327 DOI: 10.1259/bjr.20170640] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
2-deoxy-2-(18Fluorine)-fluoro-D-glucose (FDG) PET/CT is an integral part of lung carcinoma staging and frequently used in the assessment of solitary pulmonary nodules. However, a limitation of conventional three-dimensional PET/CT when imaging the thorax is its susceptibility to motion artefact, which blurs the signal from the lesion resulting in inaccurate representation of size and metabolic activity. Respiratory gated (four-dimensional) PET/CT aims to negate the effects of motion artefact and provide a more accurate interpretation of pulmonary nodules and lymphadenopathy. There have been recent advances in technology and a shift from traditional hardware to more streamlined software methods for respiratory gating which should allow more widespread use of respiratory-gating in the future. The purpose of this article is to review the evidence surrounding four-dimensional PET/CT in pulmonary lesion characterisation.
Collapse
Affiliation(s)
- Russell Frood
- 1 Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust , Leeds , United Kingdom
| | - Garry McDermott
- 2 Department of Medical Physics & Engineering, Leeds Teaching Hospitals NHS Trust , Leeds , United Kingdom
| | - Andrew Scarsbrook
- 1 Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust , Leeds , United Kingdom.,3 Leeds Institute of Cancer and Pathology, University of Leeds , Leeds , United Kingdom
| |
Collapse
|
26
|
Frood R, Prestwich R, Tsoumpas C, Murray P, Franks K, Scarsbrook A. Effectiveness of Respiratory-gated Positron Emission Tomography/Computed Tomography for Radiotherapy Planning in Patients with Lung Carcinoma - A Systematic Review. Clin Oncol (R Coll Radiol) 2018; 30:225-232. [PMID: 29397271 DOI: 10.1016/j.clon.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022]
Abstract
AIMS A systematic review of the literature evaluating the clinical use of respiratory-gated (four-dimensional; 4D) fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) compared with non-gated (three-dimensional; 3D) PET/CT for radiotherapy planning in lung cancer. MATERIALS AND METHODS A search of MEDLINE, Cochrane, Web of Science, SCOPUS and clinicaltrials.gov databases was undertaken for articles comparing 3D and 4D PET/CT tumour volume or 4D PET/CT for radiotherapy planning. PRISMA guidelines were followed. RESULTS Thirteen studies compared tumour volumes at 3D and 4D PET/CT; eight reported significantly smaller volumes (6.9-44.5%), three reported significantly larger volumes at 4D PET/CT (16-50%), one reported no significant difference and one reported mixed findings. Six studies, including two that reported differences in tumour volumes, compared target volumes or studied geographic misses. 4D PET/CT target volumes were significantly larger (19-40%) when compared with 3D PET/CT in all but one study, where they were smaller (3.8%). One study reported no significance in 4D PET/CT target volumes when compared with 4D CT, whereas another study reported significantly larger volumes (38.7%). CONCLUSION The use of 4D PET/CT leads to differences in target volume delineation compared with 3D PET/CT. These differences vary depending upon technique and the clinical impact currently remains uncertain. Correlation of pretreatment target volumes generated at 3D and 4D PET/CT with postsurgical histology would be ideal but technically challenging. Evaluation of patient outcomes based on 3D versus 4D PET/CT derived treatment volumes warrants further investigation.
Collapse
Affiliation(s)
- R Frood
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - R Prestwich
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - C Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - P Murray
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - K Franks
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - A Scarsbrook
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| |
Collapse
|
27
|
Chan C, Onofrey J, Jian Y, Germino M, Papademetris X, Carson RE, Liu C. Non-Rigid Event-by-Event Continuous Respiratory Motion Compensated List-Mode Reconstruction for PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:504-515. [PMID: 29028189 PMCID: PMC7304524 DOI: 10.1109/tmi.2017.2761756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Respiratory motion during positron emission tomography (PET)/computed tomography (CT) imaging can cause significant image blurring and underestimation of tracer concentration for both static and dynamic studies. In this paper, with the aim to eliminate both intra-cycle and inter-cycle motions, and apply to dynamic imaging, we developed a non-rigid event-by-event (NR-EBE) respiratory motion-compensated list-mode reconstruction algorithm. The proposed method consists of two components: the first component estimates a continuous non-rigid motion field of the internal organs using the internal-external motion correlation. This continuous motion field is then incorporated into the second component, non-rigid MOLAR (NR-MOLAR) reconstruction algorithm to deform the system matrix to the reference location where the attenuation CT is acquired. The point spread function (PSF) and time-of-flight (TOF) kernels in NR-MOLAR are incorporated in the system matrix calculation, and therefore are also deformed according to motion. We first validated NR-MOLAR using a XCAT phantom with a simulated respiratory motion. NR-EBE motion-compensated image reconstruction using both the components was then validated on three human studies injected with 18F-FPDTBZ and one with 18F-fluorodeoxyglucose (FDG) tracers. The human results were compared with conventional non-rigid motion correction using discrete motion field (NR-discrete, one motion field per gate) and a previously proposed rigid EBE motion-compensated image reconstruction (R-EBE) that was designed to correct for rigid motion on a target lesion/organ. The XCAT results demonstrated that NR-MOLAR incorporating both PSF and TOF kernels effectively corrected for non-rigid motion. The 18F-FPDTBZ studies showed that NR-EBE out-performed NR-Discrete, and yielded comparable results with R-EBE on target organs while yielding superior image quality in other regions. The FDG study showed that NR-EBE clearly improved the visibility of multiple moving lesions in the liver where some of them could not be discerned in other reconstructions, in addition to improving quantification. These results show that NR-EBE motion-compensated image reconstruction appears to be a promising tool for lesion detection and quantification when imaging thoracic and abdominal regions using PET.
Collapse
|
28
|
Balamoutoff N, Serrano B, Hugonnet F, Garnier N, Paulmier B, Faraggi M. Added Value of a Single Fast 20-second Deep-Inspiration Breath-hold Acquisition in FDG PET/CT in the Assessment of Lung Nodules. Radiology 2018; 286:260-270. [DOI: 10.1148/radiol.2017160534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nicolas Balamoutoff
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| | - Benjamin Serrano
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| | - Florent Hugonnet
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| | - Nicolas Garnier
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| | - Benoît Paulmier
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| | - Marc Faraggi
- From the Departments of Nuclear Medicine (N.B., F.H., B.P., M.F.) and Medical Radiophysics (B.S., N.G.), Centre Hospitalier Princesse Grâce, Monaco
| |
Collapse
|
29
|
Gillman A, Smith J, Thomas P, Rose S, Dowson N. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections. Med Phys 2017; 44:e430-e445. [DOI: 10.1002/mp.12577] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/23/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ashley Gillman
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
- Faculty of Medicine; University of Queensland; Brisbane Australia
| | - Jye Smith
- Department of Radiation Oncology; Royal Brisbane and Women's Hospital; Brisbane Australia
| | - Paul Thomas
- Faculty of Medicine; University of Queensland; Brisbane Australia
- Herston Imaging Research Facility and Specialised PET Services Queensland; Royal Brisbane and Women's Hospital; Brisbane Australia
| | - Stephen Rose
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
| | - Nicholas Dowson
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Cardiac positron emission tomography (PET) images often contain errors due to cardiac, respiratory, and patient motion during relatively long image acquisition. Advanced motion compensation techniques may improve PET spatial resolution, eliminate potential artifacts, and ultimately improve the research and clinical capabilities of PET. RECENT FINDINGS Combined cardiac and respiratory gating has only recently been implemented in clinical PET systems. Considering that the gated image bins contain much lower counts than the original PET data, they need to be summed after correcting for motion, forming motion-corrected, high-count image volume. Furthermore, automated image registration techniques can be used to correct for motion between CT attenuation scan and PET acquisition. While motion correction methods are not yet widely used in clinical practice, approaches including dual-gated non-rigid motion correction and the incorporation of motion correction information into the reconstruction process have the potential to markedly improve cardiac PET imaging.
Collapse
Affiliation(s)
- Mathieu Rubeaux
- Cedars-Sinai Medical Center, 8700 Beverly Blvd Taper A238, Los Angeles, CA, 90048, USA
| | - Mhairi K Doris
- Cedars-Sinai Medical Center, 8700 Beverly Blvd Taper A238, Los Angeles, CA, 90048, USA.,Centre for Cardiovascular Science, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, UK
| | - Adam Alessio
- Department of Radiology, University of Washington, Old Fisheries Center, Room 222, 4000 15th Avenue NE, Box 357987, Seattle, WA, 98195-7987, USA
| | - Piotr J Slomka
- Cedars-Sinai Medical Center, 8700 Beverly Blvd Taper A238, Los Angeles, CA, 90048, USA. .,David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Cedars-Sinai Medical Center, 8700 Beverly Blvd Ste. A047N, Los Angeles, CA, 90048, USA.
| |
Collapse
|
31
|
Jafari Tadi M, Teuho J, Lehtonen E, Saraste A, Pänkäälä M, Koivisto T, Teräs M. A novel dual gating approach using joint inertial sensors: implications for cardiac PET imaging. Phys Med Biol 2017; 62:8080-8101. [PMID: 28880843 DOI: 10.1088/1361-6560/aa8b09] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Positron emission tomography (PET) is a non-invasive imaging technique which may be considered as the state of art for the examination of cardiac inflammation due to atherosclerosis. A fundamental limitation of PET is that cardiac and respiratory motions reduce the quality of the achieved images. Current approaches for motion compensation involve gating the PET data based on the timing of quiescent periods of cardiac and respiratory cycles. In this study, we present a novel gating method called microelectromechanical (MEMS) dual gating which relies on joint non-electrical sensors, i.e. tri-axial accelerometer and gyroscope. This approach can be used for optimized selection of quiescent phases of cardiac and respiratory cycles. Cardiomechanical activity according to echocardiography observations was investigated to confirm whether this dual sensor solution can provide accurate trigger timings for cardiac gating. Additionally, longitudinal chest motions originating from breathing were measured by accelerometric- and gyroscopic-derived respiratory (ADR and GDR) tracking. The ADR and GDR signals were evaluated against Varian real-time position management (RPM) signals in terms of amplitude and phase. Accordingly, high linear correlation and agreement were achieved between the reference electrocardiography, RPM, and measured MEMS signals. We also performed a Ge-68 phantom study to evaluate possible metal artifacts caused by the integrated read-out electronics including mechanical sensors and semiconductors. The reconstructed phantom images did not reveal any image artifacts. Thus, it was concluded that MEMS-driven dual gating can be used in PET studies without an effect on the quantitative or visual accuracy of the PET images. Finally, the applicability of MEMS dual gating for cardiac PET imaging was investigated with two atherosclerosis patients. Dual gated PET images were successfully reconstructed using only MEMS signals and both qualitative and quantitative assessments revealed encouraging results that warrant further investigation of this method.
Collapse
Affiliation(s)
- Mojtaba Jafari Tadi
- Turku PET Center, University of Turku, Finland. Department of Future Technologies, University of Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
32
|
Ren S, Jin X, Chan C, Jian Y, Mulnix T, Liu C, Carson RE. Data-driven event-by-event respiratory motion correction using TOF PET list-mode centroid of distribution. Phys Med Biol 2017; 62:4741-4755. [PMID: 28520558 DOI: 10.1088/1361-6560/aa700c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Data-driven respiratory gating techniques were developed to correct for respiratory motion in PET studies, without the help of external motion tracking systems. Due to the greatly increased image noise in gated reconstructions, it is desirable to develop a data-driven event-by-event respiratory motion correction method. In this study, using the Centroid-of-distribution (COD) algorithm, we established a data-driven event-by-event respiratory motion correction technique using TOF PET list-mode data, and investigated its performance by comparing with an external system-based correction method. Ten human scans with the pancreatic β-cell tracer 18F-FP-(+)-DTBZ were employed. Data-driven respiratory motions in superior-inferior (SI) and anterior-posterior (AP) directions were first determined by computing the centroid of all radioactive events during each short time frame with further processing. The Anzai belt system was employed to record respiratory motion in all studies. COD traces in both SI and AP directions were first compared with Anzai traces by computing the Pearson correlation coefficients. Then, respiratory gated reconstructions based on either COD or Anzai traces were performed to evaluate their relative performance in capturing respiratory motion. Finally, based on correlations of displacements of organ locations in all directions and COD information, continuous 3D internal organ motion in SI and AP directions was calculated based on COD traces to guide event-by-event respiratory motion correction in the MOLAR reconstruction framework. Continuous respiratory correction results based on COD were compared with that based on Anzai, and without motion correction. Data-driven COD traces showed a good correlation with Anzai in both SI and AP directions for the majority of studies, with correlation coefficients ranging from 63% to 89%. Based on the determined respiratory displacements of pancreas between end-expiration and end-inspiration from gated reconstructions, there was no significant difference between COD-based and Anzai-based methods. Finally, data-driven COD-based event-by-event respiratory motion correction yielded comparable results to that based on Anzai respiratory traces, in terms of contrast recovery and reduced motion-induced blur. Data-driven event-by-event respiratory motion correction using COD showed significant image quality improvement compared with reconstructions with no motion correction, and gave comparable results to the Anzai-based method.
Collapse
Affiliation(s)
- Silin Ren
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | | | | | | | | | | | | |
Collapse
|
33
|
Brandner ED, Chetty IJ, Giaddui TG, Xiao Y, Huq MS. Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: A review from NRG oncology. Med Phys 2017; 44:2595-2612. [PMID: 28317123 DOI: 10.1002/mp.12227] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/23/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
The efficacy of stereotactic body radiotherapy (SBRT) has been well demonstrated. However, it presents unique challenges for accurate planning and delivery especially in the lungs and upper abdomen where respiratory motion can be significantly confounding accurate targeting and avoidance of normal tissues. In this paper, we review the current literature on SBRT for lung and upper abdominal tumors with particular emphasis on addressing respiratory motion and its affects. We provide recommendations on strategies to manage motion for different, patient-specific situations. Some of the recommendations will potentially be adopted to guide clinical trial protocols.
Collapse
Affiliation(s)
- Edward D Brandner
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, PA, 15232, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Tawfik G Giaddui
- Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ying Xiao
- Imaging and Radiation Oncology Core (IROC), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, PA, 15232, USA
| |
Collapse
|
34
|
Tang J, Wang X, Gao X, Segars WP, Lodge MA, Rahmim A. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging. Phys Med Biol 2017; 62:4496-4513. [PMID: 28252451 DOI: 10.1088/1361-6560/aa6417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.
Collapse
Affiliation(s)
- Jing Tang
- Department of Electrical and Computer Engineering, Oakland University, Rochester, MI, United States of America
| | | | | | | | | | | |
Collapse
|
35
|
Siman W, Mawlawi OR, Mikell JK, Mourtada F, Kappadath SC. Effects of image noise, respiratory motion, and motion compensation on 3D activity quantification in count-limited PET images. Phys Med Biol 2016; 62:448-464. [DOI: 10.1088/1361-6560/aa5088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Berberoğlu K. Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer. Mol Imaging Radionucl Ther 2016; 25:50-62. [PMID: 27277321 PMCID: PMC5096621 DOI: 10.4274/mirt.19870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) plays an important role in the treatment of lung cancer. Accurate diagnosis and staging are crucial in the delivery of RT with curative intent. Target miss can be prevented by accurate determination of tumor contours during RT planning. Currently, tumor contours are determined manually by computed tomography (CT) during RT planning. This method leads to differences in delineation of tumor volume between users. Given the change in RT tools and methods due to rapidly developing technology, it is now more significant to accurately delineate the tumor tissue. F18 fluorodeoxyglucose positron emission tomography/CT (F18 FDG PET/CT) has been established as an accurate method in correctly staging and detecting tumor dissemination in lung cancer. Since it provides both anatomic and biologic information, F18 FDG PET decreases inter-user variability in tumor delineation. For instance, tumor volumes may be decreased as atelectasis and malignant tissue can be more accurately differentiated, as well as better evaluation of benign and malignant lymph nodes given the difference in FDG uptake. Using F18 FDG PET/CT, the radiation dose can be escalated without serious adverse effects in lung cancer. In this study, we evaluated the contribution of F18 FDG PET/CT for RT planning in lung cancer.
Collapse
Affiliation(s)
- Kezban Berberoğlu
- Anadolu Medical Center, Clinic of Nuclear Medicine, İstanbul, Turkey, Phone: +90 532 584 62 56 E-mail:
| |
Collapse
|
37
|
Tong Y, Udupa JK, Ciesielski KC, Wu C, McDonough JM, Mong DA, Campbell RM. Retrospective 4D MR image construction from free-breathing slice Acquisitions: A novel graph-based approach. Med Image Anal 2016; 35:345-359. [PMID: 27567735 DOI: 10.1016/j.media.2016.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 07/05/2016] [Accepted: 08/09/2016] [Indexed: 11/20/2022]
Abstract
PURPOSE Dynamic or 4D imaging of the thorax has many applications. Both prospective and retrospective respiratory gating and tracking techniques have been developed for 4D imaging via CT and MRI. For pediatric imaging, due to radiation concerns, MRI becomes the de facto modality of choice. In thoracic insufficiency syndrome (TIS), patients often suffer from extreme malformations of the chest wall, diaphragm, and/or spine with inability of the thorax to support normal respiration or lung growth (Campbell et al., 2003, Campbell and Smith, 2007), as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort and interference with the breathing mechanism itself. Therefore (ventilator-supported) free-breathing MRI acquisition is currently the best choice for imaging these patients. This, however, raises a question of how to create a consistent 4D image from such acquisitions. This paper presents a novel graph-based technique for compiling the best 4D image volume representing the thorax over one respiratory cycle from slice images acquired during unencumbered natural tidal-breathing of pediatric TIS patients. METHODS In our approach, for each coronal (or sagittal) slice position, images are acquired at a rate of about 200-300ms/slice over several natural breathing cycles which yields over 2000 slices. A weighted graph is formed where each acquired slice constitutes a node and the weight of the arc between two nodes defines the degree of contiguity in space and time of the two slices. For each respiratory phase, an optimal 3D spatial image is constructed by finding the best path in the graph in the spatial direction. The set of all such 3D images for a given respiratory cycle constitutes a 4D image. Subsequently, the best 4D image among all such constructed images is found over all imaged respiratory cycles. Two types of evaluation studies are carried out to understand the behavior of this algorithm and in comparison to a method called Random Stacking - a 4D phantom study and 10 4D MRI acquisitions from TIS patients and normal subjects. The 4D phantom was constructed by 3D printing the pleural spaces of an adult thorax, which were segmented in a breath-held MRI acquisition. RESULTS Qualitative visual inspection via cine display of the slices in space and time and in 3D rendered form showed smooth variation for all data sets constructed by the proposed method. Quantitative evaluation was carried out to measure spatial and temporal contiguity of the slices via segmented pleural spaces. The optimal method showed smooth variation of the pleural space as compared to Random Stacking whose behavior was erratic. The volumes of the pleural spaces at the respiratory phase corresponding to end inspiration and end expiration were compared to volumes obtained from breath-hold acquisitions at roughly the same phase. The mean difference was found to be roughly 3%. CONCLUSIONS The proposed method is purely image-based and post-hoc and does not need breath holding or external surrogates or instruments to record respiratory motion or tidal volume. This is important and practically warranted for pediatric patients. The constructed 4D images portray spatial and temporal smoothness that should be expected in a consistent 4D volume. We believe that the method can be routinely used for thoracic 4D imaging.
Collapse
Affiliation(s)
- Yubing Tong
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104 United States
| | - Jayaram K Udupa
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104 United States.
| | - Krzysztof C Ciesielski
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104 United States; Department of Mathematics, West Virginia University, Morgantown, WV, 26505 United States
| | - Caiyun Wu
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104 United States
| | - Joseph M McDonough
- Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104 United States
| | - David A Mong
- Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104 United States
| | - Robert M Campbell
- Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104 United States
| |
Collapse
|
38
|
Sindoni A, Minutoli F, Pontoriero A, Iatì G, Baldari S, Pergolizzi S. Usefulness of four dimensional (4D) PET/CT imaging in the evaluation of thoracic lesions and in radiotherapy planning: Review of the literature. Lung Cancer 2016; 96:78-86. [DOI: 10.1016/j.lungcan.2016.03.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022]
|
39
|
Kokki T, Klén R, Noponen T, Pärkkä J, Saunavaara V, Hoppela E, Teräs M, Knuuti J. Linear relation between spirometric volume and the motion of cardiac structures: MRI and clinical PET study. J Nucl Cardiol 2016; 23:475-85. [PMID: 25698470 DOI: 10.1007/s12350-014-0057-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND In cardiac PET, CT, and MRI respiration is major reason for impaired image quality of small targets such as coronary arteries. Strong correlations between heart motion and respiratory signals have been detected but quantitative relation between signals and motion of cardiac structures in MRI or PET is not reported . METHODS Relation between spirometric lung volume or pressure belt signal and motion of coronary vessels in MRI was studied on nine healthy volunteers. Spirometry was further applied to (18)F-FDG cardiac PET study to determine quantitative relation between volume change and motion of center of myocardium activity (CMA) on nine CAD patients. RESULTS Correlation coefficients (CC) between vessel motions and volume or pressure changes were 0.90-0.92 or 0.86-0.84, respectively. The linear equations based on volume or pressure changes derived 2.0-2.6 or 2.9-3.3 mm mean estimation error for vessel motions. In PET CC value of 0.93 was determined between volume changes and CMA motions. The linear equation based on volume change derived maximum estimation error of 2.5 mm for CMA motion. CONCLUSION The spirometric volume change linearly estimates motion of myocardium in PET with good accuracy and have potential to guide selection of optimal number of respiratory gates in cardiac PET.
Collapse
Affiliation(s)
- Tommi Kokki
- Turku PET Centre, University of Turku and Turku University Hospital, PO BOX 52, 20521, Turku, Finland.
- Department of Clinical Physiology and Radioisotope Imaging, Turku University Hospital, 20521, Turku, Finland.
| | - Riku Klén
- Turku PET Centre, University of Turku and Turku University Hospital, PO BOX 52, 20521, Turku, Finland
- Department of Mathematics and Statistics, University of Turku, 20014, Turku, Finland
| | - Tommi Noponen
- Turku PET Centre, University of Turku and Turku University Hospital, PO BOX 52, 20521, Turku, Finland
| | - Jussi Pärkkä
- Turku PET Centre, University of Turku and Turku University Hospital, PO BOX 52, 20521, Turku, Finland
- Department of Clinical Physiology and Radioisotope Imaging, Turku University Hospital, 20521, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, University of Turku and Turku University Hospital, PO BOX 52, 20521, Turku, Finland
| | - Erika Hoppela
- Turku PET Centre, University of Turku and Turku University Hospital, PO BOX 52, 20521, Turku, Finland
| | - Mika Teräs
- Turku PET Centre, University of Turku and Turku University Hospital, PO BOX 52, 20521, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku and Turku University Hospital, PO BOX 52, 20521, Turku, Finland
| |
Collapse
|
40
|
Slomka PJ, Pan T, Germano G. Imaging moving heart structures with PET. J Nucl Cardiol 2016; 23:486-90. [PMID: 25809083 DOI: 10.1007/s12350-015-0094-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Piotr J Slomka
- Artificial Intelligence Program, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- UCLA School of Medicine, Los Angeles, CA, 90048, USA.
| | - Tinsu Pan
- University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guido Germano
- Artificial Intelligence Program, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- UCLA School of Medicine, Los Angeles, CA, 90048, USA
| |
Collapse
|
41
|
Cheng NM, Fang YHD, Tsan DL, Hsu CH, Yen TC. Respiration-Averaged CT for Attenuation Correction of PET Images - Impact on PET Texture Features in Non-Small Cell Lung Cancer Patients. PLoS One 2016; 11:e0150509. [PMID: 26930211 PMCID: PMC4773107 DOI: 10.1371/journal.pone.0150509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/14/2016] [Indexed: 01/06/2023] Open
Abstract
PURPOSE We compared attenuation correction of PET images with helical CT (PET/HCT) and respiration-averaged CT (PET/ACT) in patients with non-small-cell lung cancer (NSCLC) with the goal of investigating the impact of respiration-averaged CT on 18F FDG PET texture parameters. MATERIALS AND METHODS A total of 56 patients were enrolled. Tumors were segmented on pretreatment PET images using the adaptive threshold. Twelve different texture parameters were computed: standard uptake value (SUV) entropy, uniformity, entropy, dissimilarity, homogeneity, coarseness, busyness, contrast, complexity, grey-level nonuniformity, zone-size nonuniformity, and high grey-level large zone emphasis. Comparisons of PET/HCT and PET/ACT were performed using Wilcoxon signed-rank tests, intraclass correlation coefficients, and Bland-Altman analysis. Receiver operating characteristic (ROC) curves as well as univariate and multivariate Cox regression analyses were used to identify the parameters significantly associated with disease-specific survival (DSS). A fixed threshold at 45% of the maximum SUV (T45) was used for validation. RESULTS SUV maximum and total lesion glycolysis (TLG) were significantly higher in PET/ACT. However, texture parameters obtained with PET/ACT and PET/HCT showed a high degree of agreement. The lowest levels of variation between the two modalities were observed for SUV entropy (9.7%) and entropy (9.8%). SUV entropy, entropy, and coarseness from both PET/ACT and PET/HCT were significantly associated with DSS. Validation analyses using T45 confirmed the usefulness of SUV entropy and entropy in both PET/HCT and PET/ACT for the prediction of DSS, but only coarseness from PET/ACT achieved the statistical significance threshold. CONCLUSIONS Our results indicate that 1) texture parameters from PET/ACT are clinically useful in the prediction of survival in NSCLC patients and 2) SUV entropy and entropy are robust to attenuation correction methods.
Collapse
Affiliation(s)
- Nai-Ming Cheng
- Departments of Nuclear Medicine, Chang Gung Memorial Hospita, Linkou, Chang Gung University College of Medicine, Taoyuan City 33305, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City, 30071, Taiwan
| | - Yu-Hua Dean Fang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Din-Li Tsan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan City 33305, Taiwan
| | - Ching-Han Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City, 30071, Taiwan
| | - Tzu-Chen Yen
- Departments of Nuclear Medicine, Chang Gung Memorial Hospita, Linkou, Chang Gung University College of Medicine, Taoyuan City 33305, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Yu Y, Chan C, Ma T, Liu Y, Gallezot JD, Naganawa M, Kelada OJ, Germino M, Sinusas AJ, Carson RE, Liu C. Event-by-Event Continuous Respiratory Motion Correction for Dynamic PET Imaging. J Nucl Med 2016; 57:1084-90. [DOI: 10.2967/jnumed.115.167676] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022] Open
|
43
|
Chamberland M, McEwen MR, Xu T. Technical aspects of real time positron emission tracking for gated radiotherapy. Med Phys 2016; 43:783-95. [PMID: 26843241 DOI: 10.1118/1.4939664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Respiratory motion can lead to treatment errors in the delivery of radiotherapy treatments. Respiratory gating can assist in better conforming the beam delivery to the target volume. We present a study of the technical aspects of a real time positron emission tracking system for potential use in gated radiotherapy. METHODS The tracking system, called PeTrack, uses implanted positron emission markers and position sensitive gamma ray detectors to track breathing motion in real time. PeTrack uses an expectation-maximization algorithm to track the motion of fiducial markers. A normalized least mean squares adaptive filter predicts the location of the markers a short time ahead to account for system response latency. The precision and data collection efficiency of a prototype PeTrack system were measured under conditions simulating gated radiotherapy. The lung insert of a thorax phantom was translated in the inferior-superior direction with regular sinusoidal motion and simulated patient breathing motion (maximum amplitude of motion ±10 mm, period 4 s). The system tracked the motion of a (22)Na fiducial marker (0.34 MBq) embedded in the lung insert every 0.2 s. The position of the was marker was predicted 0.2 s ahead. For sinusoidal motion, the equation used to model the motion was fitted to the data. The precision of the tracking was estimated as the standard deviation of the residuals. Software was also developed to communicate with a Linac and toggle beam delivery. In a separate experiment involving a Linac, 500 monitor units of radiation were delivered to the phantom with a 3 × 3 cm photon beam and with 6 and 10 MV accelerating potential. Radiochromic films were inserted in the phantom to measure spatial dose distribution. In this experiment, the period of motion was set to 60 s to account for beam turn-on latency. The beam was turned off when the marker moved outside of a 5-mm gating window. RESULTS The precision of the tracking in the IS direction was 0.53 mm for a sinusoidally moving target, with an average count rate ∼250 cps. The average prediction error was 1.1 ± 0.6 mm when the marker moved according to irregular patient breathing motion. Across all beam deliveries during the radiochromic film measurements, the average prediction error was 0.8 ± 0.5 mm. The maximum error was 2.5 mm and the 95th percentile error was 1.5 mm. Clear improvement of the dose distribution was observed between gated and nongated deliveries. The full-width at halfmaximum of the dose profiles of gated deliveries differed by 3 mm or less than the static reference dose distribution. Monitoring of the beam on/off times showed synchronization with the location of the marker within the latency of the system. CONCLUSIONS PeTrack can track the motion of internal fiducial positron emission markers with submillimeter precision. The system can be used to gate the delivery of a Linac beam based on the position of a moving fiducial marker. This highlights the potential of the system for use in respiratory-gated radiotherapy.
Collapse
Affiliation(s)
- Marc Chamberland
- Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Malcolm R McEwen
- Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Tong Xu
- Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
44
|
|
45
|
Tian Y, Stützer K, Enghardt W, Priegnitz M, Helmbrecht S, Bert C, Fiedler F. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring. Phys Med Biol 2016; 61:N20-34. [PMID: 26733104 DOI: 10.1088/0031-9155/61/2/n20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with ⩽ 4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed.
Collapse
Affiliation(s)
- Y Tian
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstraße 74, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Rui X, Cheng L, Long Y, Fu L, Alessio AM, Asma E, Kinahan PE, De Man B. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms. Phys Med Biol 2015; 60:7437-60. [PMID: 26352168 PMCID: PMC5260824 DOI: 10.1088/0031-9155/60/19/7437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels simulated, sparse view protocols with 41 and 24 views best balanced the tradeoff between electronic noise and aliasing artifacts. In terms of lesion activity error and ensemble RMSE of the PET images, these two protocols, when combined with MBIR, are able to provide results that are comparable to the baseline full dose CT scan. View interpolation significantly improves the performance of FDK reconstruction but was not necessary for MBIR. With the more technically feasible continuous exposure data acquisition, the CT images show an increase in azimuthal blur compared to tube pulsing. However, this blurring generally does not have a measureable impact on PET reconstructed images.Our simulations demonstrated that ultra-low-dose CT-based attenuation correction can be achieved at dose levels on the order of 0.044 mAs with little impact on PET image quality. Highly sparse 41- or 24- view ultra-low dose CT scans are feasible for PET attenuation correction, providing the best tradeoff between electronic noise and view aliasing artifacts. The continuous exposure acquisition mode could potentially be implemented in current commercially available scanners, thus enabling sparse view data acquisition without requiring x-ray tubes capable of operating in a pulsing mode.
Collapse
Affiliation(s)
- Xue Rui
- Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| | - Lishui Cheng
- Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| | - Yong Long
- Formerly with Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| | - Lin Fu
- Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| | - Adam M. Alessio
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Evren Asma
- Formerly with Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| | - Paul E. Kinahan
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Bruno De Man
- Image Reconstruction Laboratory, General Electric Global Research Center, Niskayuna, NY, USA
| |
Collapse
|
48
|
Paganelli C, Summers P, Bellomi M, Baroni G, Riboldi M. Liver 4DMRI: A retrospective image-based sorting method. Med Phys 2015; 42:4814-21. [DOI: 10.1118/1.4927252] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
49
|
Dasari PKR, Shazeeb MS, Könik A, Lindsay C, Mukherjee JM, Johnson KL, King MA. Adaptation of the modified Bouc-Wen model to compensate for hysteresis in respiratory motion for the list-mode binning of cardiac SPECT and PET acquisitions: testing using MRI. Med Phys 2015; 41:112508. [PMID: 25370667 DOI: 10.1118/1.4895845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc-Wen (BW) model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors' previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. METHODS In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior-inferior direction during free breathing using MRI navigators. A visual tracking system (vts) synchronized with MRI acquisition tracked the anterior-posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc-Wen model by inputting the vts derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson's linear correlation coefficient between the abdomen, chest, average of chest and abdomen markers, and Bouc-Wen derived signals versus the true internal motion of the heart from MRI was used to judge the signals match to the heart motion. RESULTS The results show that the Bouc-Wen model generated signals demonstrated strong correlation with the heart motion. This correlation was slightly larger on average than that of the external surrogate signals derived from the abdomen marker, and average of the abdomen and chest markers, but was not statistically significantly different from them. CONCLUSIONS The results suggest that the proposed model has the potential to be a unified framework for modeling hysteresis in respiratory motion in cardiac perfusion studies and beyond.
Collapse
Affiliation(s)
- Paul K R Dasari
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655 and Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Mohammed Salman Shazeeb
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655 and Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Arda Könik
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Clifford Lindsay
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Joyeeta M Mukherjee
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Karen L Johnson
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Michael A King
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
50
|
Li G, Schmidtlein CR, Burger IA, Ridge CA, Solomon SB, Humm JL. Assessing and accounting for the impact of respiratory motion on FDG uptake and viable volume for liver lesions in free-breathing PET using respiration-suspended PET images as reference. Med Phys 2015; 41:091905. [PMID: 25186392 DOI: 10.1118/1.4892602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To assess and account for the impact of respiratory motion on the variability of activity and volume determination of liver tumor in positron emission tomography (PET) through a comparison between free-breathing (FB) and respiration-suspended (RS) PET images. METHODS As part of a PET/computed tomography (CT) guided percutaneous liver ablation procedure performed on a PET/CT scanner, a patient's breathing is suspended on a ventilator, allowing the acquisition of a near-motionless PET and CT reference images of the liver. In this study, baseline RS and FB PET/CT images of 20 patients undergoing thermal ablation were acquired. The RS PET provides near-motionless reference in a human study, and thereby allows a quantitative evaluation of the effect of respiratory motion on PET images obtained under FB conditions. Two methods were applied to calculate tumor activity and volume: (1) threshold-based segmentation (TBS), estimating the total lesion glycolysis (TLG) and the segmented volume and (2) histogram-based estimation (HBE), yielding the background-subtracted lesion (BSL) activity and associated volume. The TBS method employs 50% of the maximum standardized uptake value (SUVmax) as the threshold for tumors with SUVmax≥2× SUVliver-bkg, and tumor activity above this threshold yields TLG50%. The HBE method determines local PET background based on a Gaussian fit of the low SUV peak in a SUV-volume histogram, which is generated within a user-defined and optimized volume of interest containing both local background and lesion uptakes. Voxels with PET intensity above the fitted background were considered to have originated from the tumor and used to calculate the BSL activity and its associated lesion volume. RESULTS Respiratory motion caused SUVmax to decrease from RS to FB by -15%±11% (p=0.01). Using TBS method, there was also a decrease in SUVmean (-18%±9%, p=0.01), but an increase in TLG50% (18%±36%) and in the segmented volume (47%±52%, p=0.01) from RS to FB PET images. The background uptake in normal liver was stable, 1%±9%. In contrast, using the HBE method, the differences in both BSL activity and BSL volume from RS to FB were -8%±10% (p=0.005) and 0%±16% (p=0.94), respectively. CONCLUSIONS This is the first time that almost motion-free PET images of the human liver were acquired and compared to free-breathing PET. The BSL method's results are more consistent, for the calculation of both tumor activity and volume in RS and FB PET images, than those using conventional TBS. This suggests that the BSL method might be less sensitive to motion blurring and provides an improved estimation of tumor activity and volume in the presence of respiratory motion.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - C Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Irene A Burger
- Department of Radiology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | - Carole A Ridge
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|