1
|
Sun P, Thomas MA, Luo D, Pan T. New full-counts phase-matched data-driven gated (DDG) PET/CT. Med Phys 2024; 51:4646-4654. [PMID: 38648671 PMCID: PMC11233242 DOI: 10.1002/mp.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Data-driven gated (DDG) PET has gained clinical acceptance and has been shown to match or outperform external-device gated (EDG) PET. However, in most clinical applications, DDG PET is matched with helical CT acquired in free breathing (FB) at a random respiratory phase, leaving registration, and optimal attenuation correction (AC) to chance. Furthermore, DDG PET requires additional scan time to reduce image noise as it only preserves 35%-50% of the PET data at or near the end-expiratory phase of the breathing cycle. PURPOSE A new full-counts, phase-matched (FCPM) DDG PET/CT was developed based on a low-dose cine CT to improve registration between DDG PET and DDG CT, to reduce image noise, and to avoid increasing acquisition times in DDG PET. METHODS A new DDG CT was developed for three respiratory phases of CT images from a low dose cine CT acquisition of 1.35 mSv for a coverage of about 15.4 cm: end-inspiration (EI), average (AVG), and end-expiration (EE) to match with the three corresponding phases of DDG PET data: -10% to 15%; 15% to 30%, and 80% to 90%; and 30% to 80%, respectively. The EI and EE phases of DDG CT were selected based on the physiological changes in lung density and body outlines reflected in the dynamic cine CT images. The AVG phase was derived from averaging of all phases of the cine CT images. The cine CT was acquired over the lower lungs and/or upper abdomen for correction of misregistration between PET and FB CT as well as DDG PET and FB CT. The three phases of DDG CT were used for AC of the corresponding phases of PET. After phase-matched AC of each PET dataset, the EI and AVG PET data were registered to the EE PET data with deformable image registration. The final result was FCPM DDG PET/CT which accounts for all PET data registered at the EE phase. We applied this approach to 14 18F-FDG lung cancer patient studies acquired at 2 min/bed position on the GE Discovery MI (25-cm axial FOV) and evaluated its efficacy in improved quantification and noise reduction. RESULTS Relative to static PET/CT, the SUVmax increases for the EI, AVG, EE, and FCPM DDG PET/CT were 1.67 ± 0.40, 1.50 ± 0.28, 1.64 ± 0.36, and 1.49 ± 0.28, respectively. There were 10.8% and 9.1% average decreases in SUVmax from EI and EE to FCPM DDG PET/CT, respectively. EI, AVG, and EE DDG PET/CT all maintained increased image noise relative to static PET/CT. However, the noise levels of FCPM and static PET were statistically equivalent, suggesting the inclusion of all counts was able to decrease the image noise relative to EI and EE DDG PET/CT. CONCLUSIONS A new FCPM DDG PET/CT has been developed to account for 100% of collected PET data in DDG PET applications. Image noise in FCPM is comparable to static PET, while small decreases in SUVmax were also observed in FCPM when compared to either EI or EE DDG PET/CT.
Collapse
Affiliation(s)
- Peng Sun
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - M Allan Thomas
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Dershan Luo
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Tinsu Pan
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
2
|
Pan T, Luo D. Data-driven gated positron emission tomography/computed tomography for radiotherapy. Phys Imaging Radiat Oncol 2024; 31:100601. [PMID: 39040434 PMCID: PMC11261283 DOI: 10.1016/j.phro.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose Software-based data-driven gated (DDG) positron emission tomography/computed tomography (PET/CT) has replaced hardware-based 4D PET/CT. The purpose of this article was to review DDG PET/CT, which could improve the accuracy of treatment response assessment, tumor motion evaluation, and target tumor contouring with whole-body (WB) PET/CT for radiotherapy (RT). Material and methods This review covered the topics of 4D PET/CT with hardware gating, advancements in PET instrumentation, DDG PET, DDG CT, and DDG PET/CT based on a systematic literature review. It included a discussion of the large axial field-of-view (AFOV) PET detector and a review of the clinical results of DDG PET and DDG PET/CT. Results DDG PET matched or outperformed 4D PET with hardware gating. DDG CT was more compatible with DDG PET than 4D CT, which required hardware gating. DDG CT could replace 4D CT for RT. DDG PET and DDG CT for DDG PET/CT can be incorporated in a WB PET/CT of less than 15 min scan time on a PET/CT scanner of at least 25 cm AFOV PET detector. Conclusions DDG PET/CT could correct the misregistration and tumor motion artifacts in a WB PET/CT and provide the quantitative PET and tumor motion information of a registered PET/CT for RT.
Collapse
Affiliation(s)
- Tinsu Pan
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, United States
| | - Dershan Luo
- Department of Radiation Physics, M.D. Anderson Cancer Center, University of Texas, United States
| |
Collapse
|
3
|
Cook EL, Su KH, Higgins GS, Johnsen R, Bouhnik JP, McGowan DR. Data-driven gating (DDG)-based motion match for improved CTAC registration. EJNMMI Phys 2024; 11:42. [PMID: 38691232 PMCID: PMC11554991 DOI: 10.1186/s40658-024-00644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Respiratory motion artefacts are a pitfall in thoracic PET/CT imaging. A source of these motion artefacts within PET images is the CT used for attenuation correction of the images. The arbitrary respiratory phase in which the helical CT ( CT helical ) is acquired often causes misregistration between PET and CT images, leading to inaccurate attenuation correction of the PET image. As a result, errors in tumour delineation or lesion uptake values can occur. To minimise the effect of motion in PET/CT imaging, a data-driven gating (DDG)-based motion match (MM) algorithm has been developed that estimates the phase of the CT helical , and subsequently warps this CT to a given phase of the respiratory cycle, allowing it to be phase-matched to the PET. A set of data was used which had four-dimensional CT (4DCT) acquired alongside PET/CT. The 4DCT allowed ground truth CT phases to be generated and compared to the algorithm-generated motion match CT (MMCT). Measurements of liver and lesion margin positions were taken across CT images to determine any differences and establish how well the algorithm performed concerning warping the CT helical to a given phase (end-of-expiration, EE). RESULTS Whilst there was a minor significance in the liver measurement between the 4DCT and MMCT ( p = 0.045 ), no significant differences were found between the 4DCT or MMCT for lesion measurements ( p = 1.0 ). In all instances, the CT helical was found to be significantly different from the 4DCT ( p < 0.001 ). Consequently, the 4DCT and MMCT can be considered equivalent with respect to warped CT generation, showing the DDG-based MM algorithm to be successful. CONCLUSION The MM algorithm successfully enables the phase-matching of a CT helical to the EE of a ground truth 4DCT. This would reduce the motion artefacts caused by PET/CT registration without requiring additional patient dose (required for a 4DCT).
Collapse
Affiliation(s)
- Ella L Cook
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | | | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, UK.
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals Foundation Trust, Oxford, UK.
| |
Collapse
|
4
|
Zheng Z, Wang J, Tan W, Zhang Y, Li J, Song R, Xing L, Sun X. 18F-FDG PET/CT radiomics predicts brain metastasis in I-IIIA resected Non-Small cell lung cancer. Eur J Radiol 2023; 165:110933. [PMID: 37406583 DOI: 10.1016/j.ejrad.2023.110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVE To establish 18F-FDG PET/CT radiomics model for predicting brain metastasis in non-small cell lung cancer (NSCLC) patients. METHODS This research comprised 203 NSCLC patients who had received surgical therapy at two institutions. To identify independent predictive factors of brain metastasis, metabolic indicators, CT features, and clinical features were investigated. A prediction model was established by incorporating radiomics signature and clinicopathological risk variables. The suggested model's performance was assessed from the perspective of discrimination, calibration, and clinical application. RESULTS The C-indices of the PET/CT radiomics model in the training, internal validation, and external validation cohorts were 0.911, 0.825 and 0.800, respectively. According to the multivariate analysis, neuron-specific enolase (NSE) and air bronchogram were independent risk factors for brain metastasis (BM). Furthermore, the combined model integrating radiomics and clinicopathological characteristics related to brain metastasis performed better in terms of prediction, with C-indices of 0.927, 0.861, and 0.860 in the training, internal validation, and external validation cohorts, respectively. The decision curve analysis (DCA) suggested that the PET/CT nomogram was clinically beneficial. CONCLUSIONS A predictive algorithm based on PET/CT imaging information and clinicopathological features may accurately predict the probability of brain metastasis in NSCLC patients following surgery. This presented doctors with a unique technique for screening NSCLC patients at high risk of brain metastasis.
Collapse
Affiliation(s)
- Zhonghang Zheng
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Jie Wang
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Weiyue Tan
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Yi Zhang
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Jing Li
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Ruiting Song
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China.
| |
Collapse
|
5
|
Tsai YJ, Liu C. Joint motion estimation and penalized image reconstruction algorithm with anatomical priors for gated TOF-PET/CT. Phys Med Biol 2023; 68. [PMID: 36549009 DOI: 10.1088/1361-6560/acae19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The presence of respiratory motion not only degrades the reconstructed image but also limits the utilization of anatomical priors in emission tomography. In this study, we explore the potential application of a joint motion estimation and penalized image reconstruction algorithm using anatomical priors in gated time-of-flight positron emission tomography/computed tomography (PET/CT). The algorithm is able to warp both the activity image and the attenuation map to align them with the measured data with the facilitation of anatomical information contained in the attenuation map. Five patient datasets, three acquired in single-bed position and two acquired in whole-body continuous-bed-motion mode, are included. For each patient, the attenuation map is derived from a breath-hold CT. The Parallel Levels Sets (PLS) is chosen as a representative anatomical prior. In addition to demonstrating the reliability of the estimated motion and the benefits of incorporating anatomical prior, preliminary results also indicate that the algorithm shows the potential to reconstruct an activity image in the space corresponding to that of the attenuation map, which could be applied to address the potential misalignment issue in applications involving multiple PET acquisitions but a single CT.
Collapse
Affiliation(s)
- Yu-Jung Tsai
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, United States of America.,Canon Medical Research USA, Inc., Vernon Hills, IL 60061, United States of America
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, United States of America
| |
Collapse
|
6
|
Robert A, Rit S, Baudier T, Jomier J, Sarrut D. Data-Driven Respiration-Gated SPECT for Liver Radioembolization. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3137990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Antoine Robert
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Simon Rit
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | | | | | - David Sarrut
- Univ.Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| |
Collapse
|
7
|
Image Human Thorax Using Ultrasound Traveltime Tomography with Supervised Descent Method. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The change of acoustic velocity in the human thorax reflects the functional status of the respiratory system. Imaging the thorax’s acoustic velocity distribution can be used to monitor the respiratory system. In this paper, the feasibility of imaging the human thorax using ultrasound traveltime tomography with a supervised descent method (SDM) is studied. The forward modeling is computed using the shortest path ray tracing (SPR) method. The training model is composed of homogeneous acoustic velocity background and a high-velocity rectangular block moving in the domain of interest (DoI). The average descent direction is learned from the training set. Numerical experiments are conducted to verify the method’s feasibility. Normal thorax model experiment proves that SDM traveltime tomography can efficiently reconstruct thorax acoustic velocity distribution. Numerical experiments based on synthetic thorax model of pleural effusion and pneumothorax show that SDM traveltime tomography has good generalization ability and can detect the change of acoustic velocity in human thorax. This method might be helpful for the diagnosis and evaluation of respiratory diseases.
Collapse
|
8
|
Hapdey S, Dubray B, Chastan M, Thureau S, Gouel P, Edet-Sanson A, Becker S, Vera P, Bouyeure-Petit AC. Respiratory gated multistatic PET reconstructions to delineate radiotherapy target volume in patients with mobile lung tumors. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:171-178. [PMID: 31922369 DOI: 10.23736/s1824-4785.19.03183-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND PET-CT with 18F-FDG or other radiopharmaceuticals is a recommended tool to help the delineation of lung cancers candidate to radiotherapy. The motion artifacts caused by respiratory movements are reduced by 4D acquisitions. We introduced an extended reconstruction algorithm (multiple reconstruct register and average [multi-RRA]) which requires much shorter acquisition times than standard 4D PET-CT. Our aim was to evaluate the interest on multi-RRA images as an alternative of 3D and 4D PET-CT for the delineation of lung lesion. METHODS PET acquisitions synchronized to the respiratory signal were obtained in 18 patients with mobile lung tumors. We compared the tumor volumes delineated on Multi-RRA images to 3D and 4D PET-CT, considering the 4D CT as a reference. The tumor volumes were delineated and compared with topologic similarity indexes (Dice, Jaccard and overlap). RESULTS Twenty tumors were delineated. The volumes delineated with multi-RRA and 4D PET were not significantly different (mean difference of 0.2±0.7 mL). Comparison by pairs (Tukey-Kramer test) showed that 3D-PET volumes were significantly smaller than 4D-PET and multi-RRA volumes (P<0.001). Topologic similarity indexes with 4D-PET were slightly statistically higher with multi-RRA than with 3D-PET (Dice and Jaccard) or 4D-CT (Dice, Jaccard and Overlap). CONCLUSIONS The tumor volumes delineated on multi-RRA are similar to the volumes obtained with 4D PET, with shorter acquisition time.
Collapse
Affiliation(s)
- Sebastien Hapdey
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France -
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France -
| | - Bernard Dubray
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
- Department of Radiotherapy, Henri Becquerel Cancer Center, Rouen, France
| | - Mathieu Chastan
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Sebastien Thureau
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
- Department of Radiotherapy, Henri Becquerel Cancer Center, Rouen, France
| | - Pierrick Gouel
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Agathe Edet-Sanson
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Stéphanie Becker
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Pierre Vera
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | |
Collapse
|
9
|
Pan T, Thomas MA, Luo D. Data-driven gated (DDG) CT: An automated respiratory gating method to enable DDG PET/CT. Med Phys 2022; 49:3597-3611. [PMID: 35324002 DOI: 10.1002/mp.15620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The accuracy of PET quantification and localization can be compromised if a misregistered CT is used for attenuation correction (AC) in PET/CT. As data-driven gating (DDG) continues to grow in clinical use, these issues are becoming more relevant with respect to solutions for gated CT. PURPOSE In this work, a new automated data-driven gated (DDG) CT method was developed to provide average CT and DDG CT for AC of PET and DDG PET, respectively. METHODS An automatic DDG CT was developed to provide the end-expiratory (EE) and end-inspiratory (EI) phases of images from low-dose cine CT images, with all phases being averaged to generate an average CT. The respiratory phases of EE and EI were determined according to lung region Hounsfield unit (HU) values and body outline contours. The average CT was used for AC of baseline PET and DDG CT at EE phase was used for AC of DDG PET at the quiescent or EE phase. The EI and EE phases obtained with DDG CT were used for assessing the magnitude of respiratory motion. The proposed DDG CT was compared to two commercial CT gating methods: 1) 4D CT (external device based) and 2) D4D CT (DDG based) in 38 patient data sets with respect to respiratory phase image selection, lung HU, lung volume, and image artifacts. In a separate set of twenty consecutive PET/CT studies containing a mix of 18 F-FDG, 68 Ga-Dotatate, and 64 Cu-Dotatate scans, the proposed DDG CT was compared with D4D CT for impacts on registration and quantification in DDG PET/CT. RESULTS In the EE phase, the images selected by DDG CT and 4D CT were identical 62.5±21.6% of the time, while DDG CT and D4D CT were 6.5±9.7%, and 4D CT and D4D CT were 8.6±12.2%. These differences in EE phase image selection were significant (p<0.0001). In the EI phase, the images selected by DDG CT and 4D CT were identical 68.2±18.9% of the time, DDG CT and D4D CT were 63.9±18.8%, and 4D CT and D4D CT were 61.2±19.8%. These differences were not significant. The mean lung HU and volumes were not statistically different (p > 0.1) among the three methods. In some studies, DDG CT was better than D4D or 4D CT in appropriate selection of the EE and EI phases, and D4D CT was found to reverse the EE and EI phases or not select the correct images by visual inspection. A statistically significant improvement of DDG CT over D4D CT for AC of DDG PET was also demonstrated with PET quantification analysis. When irregular breath cycles were present in the cine CT, DDG CT could be used to replace average CT for improved AC of baseline PET. CONCLUSION A new automatic DDG CT was developed to tackle the issues of misregistration and tumor motion in PET/CT imaging. DDG CT was significantly more consistent than D4D CT in selecting the EE phase images as the clinical standard of 4D CT. When compared to both commercial gated CT methods of 4D CT and D4D CT, DDG CT appeared to be more robust in the lower lung and upper diaphragm regions where misregistration and tumor motion often occur. DDG CT offered improved AC for DDG PET relative to D4D CT. In cases with irregular respiratory motion, DDG CT improved AC over average CT for baseline PET. The new DDG CT provides the benefits of 4D CT without the need for external device gating. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tinsu Pan
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - M Allan Thomas
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Dershan Luo
- Department of Radiation Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, USA
| |
Collapse
|
10
|
Vaz SC, Adam JA, Delgado Bolton RC, Vera P, van Elmpt W, Herrmann K, Hicks RJ, Lievens Y, Santos A, Schöder H, Dubray B, Visvikis D, Troost EGC, de Geus-Oei LF. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[ 18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur J Nucl Med Mol Imaging 2022; 49:1386-1406. [PMID: 35022844 PMCID: PMC8921015 DOI: 10.1007/s00259-021-05624-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE 2-[18F]FDG PET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this subject, with involvement of the nuclear medicine societies. METHODS A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the different fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO). RESULTS AND CONCLUSION This guideline results from a joint and dynamic collaboration between the relevant disciplines for this topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine Radiopharmacology, Champalimaud Centre for the Unkown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit A. Adam
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Pierre Vera
- Henri Becquerel Cancer Center, QuantIF-LITIS EA 4108, Université de Rouen, Rouen, France
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Rodney J. Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bernard Dubray
- Department of Radiotherapy and Medical Physics, Centre Henri Becquerel, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Esther G. C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Lamare F, Bousse A, Thielemans K, Liu C, Merlin T, Fayad H, Visvikis D. PET respiratory motion correction: quo vadis? Phys Med Biol 2021; 67. [PMID: 34915465 DOI: 10.1088/1361-6560/ac43fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) respiratory motion correction has been a subject of great interest for the last twenty years, prompted mainly by the development of multimodality imaging devices such as PET/computed tomography (CT) and PET/magnetic resonance imaging (MRI). PET respiratory motion correction involves a number of steps including acquisition synchronization, motion estimation and finally motion correction. The synchronization steps include the use of different external device systems or data driven approaches which have been gaining ground over the last few years. Patient specific or generic motion models using the respiratory synchronized datasets can be subsequently derived and used for correction either in the image space or within the image reconstruction process. Similar overall approaches can be considered and have been proposed for both PET/CT and PET/MRI devices. Certain variations in the case of PET/MRI include the use of MRI specific sequences for the registration of respiratory motion information. The proposed review includes a comprehensive coverage of all these areas of development in field of PET respiratory motion for different multimodality imaging devices and approaches in terms of synchronization, estimation and subsequent motion correction. Finally, a section on perspectives including the potential clinical usage of these approaches is included.
Collapse
Affiliation(s)
- Frederic Lamare
- Nuclear Medicine Department, University Hospital Centre Bordeaux Hospital Group South, ., Bordeaux, Nouvelle-Aquitaine, 33604, FRANCE
| | - Alexandre Bousse
- LaTIM, INSERM UMR1101, Université de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Kris Thielemans
- University College London Institute of Nuclear Medicine, UCL Hospital, Tower 5, 235 Euston Road, London, NW1 2BU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Chi Liu
- Department of Diagnostic Radiology, Yale University School of Medicine Department of Radiology and Biomedical Imaging, PO Box 208048, 801 Howard Avenue, New Haven, Connecticut, 06520-8042, UNITED STATES
| | - Thibaut Merlin
- LaTIM, INSERM UMR1101, Universite de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Hadi Fayad
- Weill Cornell Medicine - Qatar, ., Doha, ., QATAR
| | - Dimitris Visvikis
- LaTIM, UMR1101, Universite de Bretagne Occidentale, INSERM, Brest, Bretagne, 29285, FRANCE
| |
Collapse
|
12
|
Madore B, Belsley G, Cheng CC, Preiswerk F, Foley Kijewski M, Wu PH, Martell LB, Pluim JPW, Di Carli M, Moore SC. Ultrasound-based sensors for respiratory motion assessment in multimodality PET imaging. Phys Med Biol 2021; 67. [PMID: 34891142 DOI: 10.1088/1361-6560/ac4213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Breathing motion can displace internal organs by up to several cm; as such, it is a primary factor limiting image quality in medical imaging. Motion can also complicate matters when trying to fuse images from different modalities, acquired at different locations and/or on different days. Currently available devices for monitoring breathing motion often do so indirectly, by detecting changes in the outline of the torso rather than the internal motion itself, and these devices are often fixed to floors, ceilings or walls, and thus cannot accompany patients from one location to another. We have developed small ultrasound-based sensors, referred to as 'organ configuration motion' (OCM) sensors, that attach to the skin and provide rich motion-sensitive information. In the present work we tested the ability of OCM sensors to enable respiratory gating during in vivo PET imaging. A motion phantom involving an FDG solution was assembled, and two cancer patients scheduled for a clinical PET/CT exam were recruited for this study. OCM signals were used to help reconstruct phantom and in vivo data into time series of motion-resolved images. As expected, the motion-resolved images captured the underlying motion. In Patient #1, a single large lesion proved to be mostly stationary through the breathing cycle. However, in Patient #2, several small lesions were mobile during breathing, and our proposed new approach captured their breathing-related displacements. In summary, a relatively inexpensive hardware solution was developed here for respiration monitoring. Because the proposed sensors attach to the skin, as opposed to walls or ceilings, they can accompany patients from one procedure to the next, potentially allowing data gathered in different places and at different times to be combined and compared in ways that account for breathing motion.
Collapse
Affiliation(s)
- Bruno Madore
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Gabriela Belsley
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxford, OX3 9DU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Cheng-Chieh Cheng
- Computer Science and Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Frank Preiswerk
- Amazon Robotics, Westborough, MA, USA, Amazon Robotics, 50 Otis St, Westborough, Massachusetts, 01581, UNITED STATES
| | - Marie Foley Kijewski
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Pei-Hsin Wu
- Electrical Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Laurel B Martell
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Josien P W Pluim
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Eindhoven, PO Box 513, NETHERLANDS
| | - Marcelo Di Carli
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Stephen C Moore
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, Pennsylvania, 19104, UNITED STATES
| |
Collapse
|
13
|
Mohammadi I, Castro IF, Rahmim A, Veloso JFCA. Motion in nuclear cardiology imaging: types, artifacts, detection and correction techniques. Phys Med Biol 2021; 67. [PMID: 34826826 DOI: 10.1088/1361-6560/ac3dc7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
In this paper, the authors review the field of motion detection and correction in nuclear cardiology with single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging systems. We start with a brief overview of nuclear cardiology applications and description of SPECT and PET imaging systems, then explaining the different types of motion and their related artefacts. Moreover, we classify and describe various techniques for motion detection and correction, discussing their potential advantages including reference to metrics and tasks, particularly towards improvements in image quality and diagnostic performance. In addition, we emphasize limitations encountered in different motion detection and correction methods that may challenge routine clinical applications and diagnostic performance.
Collapse
Affiliation(s)
- Iraj Mohammadi
- Department of Physics, University of Aveiro, Aveiro, PORTUGAL
| | - I Filipe Castro
- i3n Physics Department, Universidade de Aveiro, Aveiro, PORTUGAL
| | - Arman Rahmim
- Radiology and Physics, The University of British Columbia, Vancouver, British Columbia, CANADA
| | | |
Collapse
|
14
|
Thomas MA, Pan T. Data-driven gated PET/CT: implications for lesion segmentation and quantitation. EJNMMI Phys 2021; 8:64. [PMID: 34453630 PMCID: PMC8403089 DOI: 10.1186/s40658-021-00411-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Background Data-driven gating (DDG) can improve PET quantitation and alleviate many issues with patient motion. However, misregistration between DDG-PET and CT may occur due to the distinct temporal resolutions of PET and CT and can be mitigated by DDG-CT. Here, the effects of misregistration and respiratory motion on PET quantitation and lesion segmentation were assessed with a new DDG-PET/CT method. Methods A low-dose cine-CT was acquired in misregistered regions to enable both average CT (ACT) and DDG-CT. The following were compared: (1) baseline PET/CT, (2) PET/ACT (attenuation correction, AC = ACT), (3) DDG-PET (AC = helical CT), and (4) DDG-PET/CT (AC = DDG-CT). For DDG-PET, end-expiration (EE) data were derived from 50% of the total PET data at 30% from end-inspiration. For DDG-CT, EE phase CT data were extracted from cine-CT data by lung Hounsfield unit (HU) value and body contour. A total of 91 lesions from 16 consecutive patients were assessed for changes in standard uptake value (SUV), lesion glycolysis (LG), lesion volume, centroid-to-centroid distance (CCD), and DICE coefficients. Results Relative to baseline PET/CT, median changes in SUVmax ± σ for all 91 lesions were 20 ± 43%, 26 ± 23%, and 66 ± 66%, respectively, for PET/ACT, DDG-PET, and DDG-PET/CT. Median changes in lesion volume were 0 ± 58%, − 36 ± 26%, and − 26 ± 40%. LG for individual lesions increased for PET/ACT and decreased for DDG-PET, but was not different for DDG-PET/CT. Changes in mean HU from baseline PET/CT were dramatic for most lesions in both PET/ACT and DDG-PET/CT, especially for lesions with mean HU < 0 at baseline. CCD and DICE were both affected more by motion correction with DDG-PET than improved registration with ACT or DDG-CT. Conclusion As misregistration becomes more prominent, the impact of motion correction with DDG-PET is diminished. The potential benefits of DDG-PET toward accurate lesion segmentation and quantitation could only be fully realized when combined with DDG-CT. These results impress upon the necessity of ensuring both misregistration and motion correction are accounted for together to optimize the clinical utility of PET/CT. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00411-5.
Collapse
Affiliation(s)
- M Allan Thomas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tinsu Pan
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Abstract
Hybrid FDG PET/CT plays a vital role in oncologic imaging and has been widely adopted for the staging and restaging of a variety of malignancies. Its diagnostic value in urogenital malignancies is less well-known, not at least because of the variable FDG avidity of these tumor entities, the sites of these tumors, and technical challenges associated with sequential imaging of CT and PET. PET/CT interpretation thus can be especially challenging and is associated with many pitfalls, which can lead to both false-positive and false-negative diagnoses as well as incorrect assessment of metabolic change following therapy. Currently, FDG PET/CT is not the standard of care for the initial diagnosis or staging of early-stage or low-risk urogenital cancers; however, it can help evaluate distant metastatic disease, response to therapy, and disease recurrence in high-risk patients. Knowledge of imaging features of tumor metabolic avidity and pitfalls is essential for accurate interpretation.
Collapse
Affiliation(s)
- Anil Vasireddi
- Department of Radiology, University of Pittsburgh Medical Center, UPMC Presbyterian Hospital, Pittsburgh, PA
| | - Nghi C Nguyen
- Department of Radiology, University of Pittsburgh Medical Center, UPMC Presbyterian Hospital, Pittsburgh, PA.
| |
Collapse
|
16
|
Abstract
PET/CT has become a preferred imaging modality over PET-only scanners in clinical practice. However, along with the significant improvement in diagnostic accuracy and patient throughput, pitfalls on PET/CT are reported as well. This review provides a general overview on the potential influence of the limitations with respect to PET/CT instrumentation and artifacts associated with the modality integration on the image appearance and quantitative accuracy of PET. Approaches proposed in literature to address the limitations or minimize the artifacts are discussed as well as their current challenges for clinical applications. Although the CT component can play an important role in assisting clinical diagnosis, we concentrate on the imaging scenarios where CT is used to provide auxiliary information for attenuation compensation and scatter correction in PET.
Collapse
Affiliation(s)
- Yu-Jung Tsai
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT.
| |
Collapse
|
17
|
Kyme AZ, Fulton RR. Motion estimation and correction in SPECT, PET and CT. Phys Med Biol 2021; 66. [PMID: 34102630 DOI: 10.1088/1361-6560/ac093b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/08/2021] [Indexed: 11/11/2022]
Abstract
Patient motion impacts single photon emission computed tomography (SPECT), positron emission tomography (PET) and X-ray computed tomography (CT) by giving rise to projection data inconsistencies that can manifest as reconstruction artifacts, thereby degrading image quality and compromising accurate image interpretation and quantification. Methods to estimate and correct for patient motion in SPECT, PET and CT have attracted considerable research effort over several decades. The aims of this effort have been two-fold: to estimate relevant motion fields characterizing the various forms of voluntary and involuntary motion; and to apply these motion fields within a modified reconstruction framework to obtain motion-corrected images. The aims of this review are to outline the motion problem in medical imaging and to critically review published methods for estimating and correcting for the relevant motion fields in clinical and preclinical SPECT, PET and CT. Despite many similarities in how motion is handled between these modalities, utility and applications vary based on differences in temporal and spatial resolution. Technical feasibility has been demonstrated in each modality for both rigid and non-rigid motion, but clinical feasibility remains an important target. There is considerable scope for further developments in motion estimation and correction, and particularly in data-driven methods that will aid clinical utility. State-of-the-art machine learning methods may have a unique role to play in this context.
Collapse
Affiliation(s)
- Andre Z Kyme
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| | - Roger R Fulton
- Sydney School of Health Sciences, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| |
Collapse
|
18
|
Hwang D, Kang SK, Kim KY, Choi H, Seo S, Lee JS. Data-driven respiratory phase-matched PET attenuation correction without CT. Phys Med Biol 2021; 66. [PMID: 33910170 DOI: 10.1088/1361-6560/abfc8f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/28/2021] [Indexed: 12/20/2022]
Abstract
We propose a deep learning-based data-driven respiratory phase-matched gated-PET attenuation correction (AC) method that does not need a gated-CT. The proposed method is a multi-step process that consists of data-driven respiratory gating, gated attenuation map estimation using maximum-likelihood reconstruction of attenuation and activity (MLAA) algorithm, and enhancement of the gated attenuation maps using convolutional neural network (CNN). The gated MLAA attenuation maps enhanced by the CNN allowed for the phase-matched AC of gated-PET images. We conducted a non-rigid registration of the gated-PET images to generate motion-free PET images. We trained the CNN by conducting a 3D patch-based learning with 80 oncologic whole-body18F-fluorodeoxyglucose (18F-FDG) PET/CT scan data and applied it to seven regional PET/CT scans that cover the lower lung and upper liver. We investigated the impact of the proposed respiratory phase-matched AC of PET without utilizing CT on tumor size and standard uptake value (SUV) assessment, and PET image quality (%STD). The attenuation corrected gated and motion-free PET images generated using the proposed method yielded sharper organ boundaries and better noise characteristics than conventional gated and ungated PET images. A banana artifact observed in a phase-mismatched CT-based AC was not observed in the proposed approach. By employing the proposed method, the size of tumor was reduced by 12.3% and SUV90%was increased by 13.3% in tumors with larger movements than 5 mm. %STD of liver uptake was reduced by 11.1%. The deep learning-based data-driven respiratory phase-matched AC method improved the PET image quality and reduced the motion artifacts.
Collapse
Affiliation(s)
- Donghwi Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Kwan Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyeong Yun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seongho Seo
- Department of Electronic Engineering, Pai Chai University, Daejeon, Republic of Korea
| | - Jae Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Tsai YJ, Bousse A, Arridge S, Stearns CW, Hutton BF, Thielemans K. Penalized PET/CT Reconstruction Algorithms With Automatic Realignment for Anatomical Priors. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3025540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Kim JS, Park CR, Yoon SH, Lee JA, Kim TY, Yang HJ. Improvement of image quality using amplitude-based respiratory gating in PET-computed tomography scanning. Nucl Med Commun 2021; 42:553-565. [PMID: 33625179 DOI: 10.1097/mnm.0000000000001368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study sought to provide data supporting the expanded clinical use of respiratory gating by assessing the diagnostic accuracy of breathing motion correction using amplitude-based respiratory gating. METHODS A respiratory movement tracking device was attached to a PET-computed tomography scanner, and images were obtained in respiratory gating mode using a motion phantom that was capable of sensing vertical motion. Specifically, after setting amplitude changes and intervals according to the movement cycle using a total of nine combinations of three waveforms and three amplitude ranges, respiratory motion-corrected images were reconstructed using the filtered back projection method. After defining areas of interest in the acquired images in the same image planes, statistical analyses were performed to compare differences in standardized uptake value (SUV), lesion volume, full width at half maximum (FWHM), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). RESULTS SUVmax increased by 89.9%, and lesion volume decreased by 27.9%. Full width at half maximum decreased by 53.9%, signal-to-noise ratio increased by 11% and contrast-to-noise ratio increased by 16.3%. Optimal results were obtained when using a rest waveform and 35% duty cycle, in which the change in amplitude in the respiratory phase signal was low, and a constant level of long breaths was maintained. CONCLUSIONS These results demonstrate that respiratory-gated PET-CT imaging can be used to accurately correct for SUV changes and image distortion caused by respiratory motion, thereby providing excellent imaging information and quality.
Collapse
Affiliation(s)
- Jung-Soo Kim
- Department of Radiological Technology, Dongnam Health University, Suwon
- Department of Biomedical Science, The Korea University, Sejong
| | - Chan-Rok Park
- Department of Biomedical Science, The Korea University, Sejong
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul
| | - Seok-Hwan Yoon
- Department of Biomedical Science, The Korea University, Sejong
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul
| | - Joo-Ah Lee
- Department of Biomedical Science, The Korea University, Sejong
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
| | - Tae-Yoon Kim
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
- Department of Radiation Oncology, National Cancer Center, Goyang
| | - Hyung-Jin Yang
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
- Department of Physics, The Korea University, Sejong, Korea
| |
Collapse
|
21
|
Motion-compensated FDG PET/CT for oesophageal cancer. Strahlenther Onkol 2021; 197:791-801. [PMID: 33825916 DOI: 10.1007/s00066-021-01761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Respiratory-induced motion of oesophageal tumours and lymph nodes can influence positron-emission tomography/computed tomography (PET/CT). The aim was to compare standard three-dimensional (3D) and motion-compensated PET/CT regarding standardized uptake value (SUV), metabolic tumour volume (MTV) and detection of lymph node metastases. METHODS This prospective observational study (NCT02424864) included 37 newly diagnosed oesophageal cancer patients. Diagnostic PET/CT was reconstructed in 3D and motion-compensated PET/CT. MTVs of the primary tumour were calculated using an automated region-growing algorithm with SUV thresholds of 2.5 (MTV2.5) and ≥ 50% of SUVmax (MTV50%). Blinded for reconstruction method, a nuclear medicine physician assessed all lymph nodes showing 18F‑fluorodeoxyglucose uptake for their degree of suspicion. RESULTS The mean (95% CI) SUVmax of the primary tumour was 13.1 (10.6-15.5) versus 13.0 (10.4-15.6) for 3D and motion-compensated PET/CT, respectively. MTVs were also similar between the two techniques. Bland-Altman analysis showed mean differences between both measurements (95% limits of agreement) of 0.08 (-3.60-3.75), -0.26 (-2.34-1.82), 4.66 (-29.61-38.92) cm3 and -0.95 (-19.9-18.0) cm3 for tumour SUVmax, lymph node SUVmax, MTV2.5 and MTV50%, respectively. Lymph nodes were classified as highly suspicious (30/34 nodes), suspicious (20/22) and dubious (66/59) for metastases on 3D/motion-compensated PET/CT. No additional lymph node metastases were found on motion-compensated PET/CT. SUVmax of the most intense lymph nodes was similar for both scans: mean (95% CI) 6.6 (4.3-8.8) and 6.8 (4.5-9.1) for 3D and motion-compensated, respectively. CONCLUSION SUVmax of the primary oesophageal tumour and lymph nodes was comparable on 3D and motion-compensated PET/CT. The use of motion-compensated PET/CT did not improve lymph node detection.
Collapse
|
22
|
Keikhai Farzaneh MJ, Momennezhad M, Naseri S. Gated Radiotherapy Development and its Expansion. J Biomed Phys Eng 2021; 11:239-256. [PMID: 33937130 PMCID: PMC8064130 DOI: 10.31661/jbpe.v0i0.948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/14/2018] [Indexed: 12/25/2022]
Abstract
One of the most important challenges in treatment of patients with cancerous tumors of chest and abdominal areas is organ movement. The delivery of treatment radiation doses to tumor tissue is a challenging matter while protecting healthy and radio sensitive tissues. Since the movement of organs due to respiration causes a discrepancy in the middle of planned and delivered dose distributions. The moderation in the fatalistic effect of intra-fractional target travel on the radiation therapy correctness is necessary for cutting-edge methods of motion remote monitoring and cancerous growth irradiancy. Tracking respiratory milling and implementation of breath-hold techniques by respiratory gating systems have been used for compensation of respiratory motion negative effects. Therefore, these systems help us to deliver precise treatments and also protect healthy and critical organs. It seems aspiration should be kept under observation all over treatment period employing tracking seed markers (e.g. fiducials), skin surface scanners (e.g. camera and laser monitoring systems) and aspiration detectors (e.g. spirometers). However, these systems are not readily available for most radiotherapy centers around the word. It is believed that providing and expanding the required equipment, gated radiotherapy will be a routine technique for treatment of chest and abdominal tumors in all clinical radiotherapy centers in the world by considering benefits of respiratory gating techniques in increasing efficiency of patient treatment in the near future. This review explains the different technologies and systems as well as some strategies available for motion management in radiotherapy centers.
Collapse
Affiliation(s)
- Mohammad Javad Keikhai Farzaneh
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Department of Medical Physics, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Momennezhad
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrokh Naseri
- PhD, Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- PhD, Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
New Data-Driven Gated PET/CT Free of Misregistration Artifacts. Int J Radiat Oncol Biol Phys 2021; 109:1638-1646. [PMID: 33186619 DOI: 10.1016/j.ijrobp.2020.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE We developed a new data-driven gated (DDG) positron emission tomography (PET)/computed tomography (CT) to improve the registration of CT and DDG PET. METHODS We acquired 10 repeat PET/CT and 35 cine CT scans for the mitigation of misregistration between CT and PET data. We also derived end-expiration phase CT as DDG CT for attenuation correction of DDG PET. Radiation exposure, body mass index (BMI), scan coverage, and effective radiation dose were compared between repeat PET/CT and cine CT. Of the 35 cine CT patients, 14 (capturing 59 total tumors) were compared among average PET/CT (baseline PET attenuation correction by average CT), DDG PET (DDG PET attenuation correction by baseline CT), and DDG PET/CT (DDG PET attenuation correction by DDG CT) for registration and quantification without increasing the scan time for DDG PET. RESULTS Compared with repeat PET/CT, cine CT had significantly lower scan coverage (32.5 ± 11.5 cm vs 15.4 ± 4.7 cm; P < .001) and effective radiation dose (3.7 ± 2.6 mSv vs 1.3 ± 0.6 mSv; P < .01). Repeat PET/CT and cine CT did not differ significantly in BMI or radiation exposure (P > .1). Cine CT saved the scan time for not needing a repeat PET. The SUV ratios of average PET/CT, DDG PET, and DDG PET/CT to baseline PET/CT were 1.14 ± 0.28, 1.28 ± 0.20, and 1.63 ± 0.64, respectively (P < .0001), suggesting that the SUVmax increased consecutively from baseline PET/CT to average PET/CT, DDG PET, and DDG PET/CT. Motion correction with DDG PET had a larger impact on quantification than registration improvement with average CT did. The biggest improvement in quantification was from DDG PET/CT, in which both registration was improved and motion was mitigated. CONCLUSION Our new DDG PET/CT approach alleviates misregistration artifacts and, compared with DDG PET, improves quantification and registration. The use of cine CT in our DDG PET/CT method also reduces the effective radiation dose and scan coverage compared with repeat CT.
Collapse
|
24
|
Feasibility of Total Variation Noise Reduction Algorithm According to Various MR-Based PET Images in a Simultaneous PET/MR System: A Phantom Study. Diagnostics (Basel) 2021; 11:diagnostics11020319. [PMID: 33669416 PMCID: PMC7920458 DOI: 10.3390/diagnostics11020319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, the total variation (TV) algorithm has been used for noise reduction distribution in degraded nuclear medicine images. To acquire positron emission tomography (PET) to correct the attenuation region in the PET/magnetic resonance (MR) system, the MR Dixon pulse sequence, which is based on controlled aliasing in parallel imaging, results from higher acceleration (CAIPI; MR-ACDixon-CAIPI) and generalized autocalibrating partially parallel acquisition (GRAPPA; MR-ACDixon-GRAPPA) algorithms are used. Therefore, this study aimed to evaluate the image performance of the TV noise reduction algorithm for PET/MR images using the Jaszczak phantom by injecting 18F radioisotopes with PET/MR, which is called mMR (Siemens, Germany), compared with conventional noise-reduction techniques such as Wiener and median filters. The contrast-to-noise (CNR) and coefficient of variation (COV) were used for quantitative analysis. Based on the results, PET images with the TV algorithm were improved by approximately 7.6% for CNR and decreased by approximately 20.0% for COV compared with conventional noise-reduction techniques. In particular, the image quality for the MR-ACDixon-CAIPI PET image was better than that of the MR-ACDixon-GRAPPA PET image. In conclusion, the TV noise-reduction algorithm is efficient for improving the PET image quality in PET/MR systems.
Collapse
|
25
|
Vergalasova I, Cai J. A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy. Med Phys 2020; 47:e988-e1008. [PMID: 32506452 DOI: 10.1002/mp.14312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy has become a critical component for the treatment of all stages and types of lung cancer, often times being the primary gateway to a cure. However, given that radiation can cause harmful side effects depending on how much surrounding healthy tissue is exposed, treatment of the lung can be particularly challenging due to the presence of moving targets. Careful implementation of every step in the radiotherapy process is absolutely integral for attaining optimal clinical outcomes. With the advent and now widespread use of stereotactic body radiation therapy (SBRT), where extremely large doses are delivered, accurate, and precise dose targeting is especially vital to achieve an optimal risk to benefit ratio. This has largely become possible due to the rapid development of image-guided technology. Although imaging is critical to the success of radiotherapy, it can often be plagued with uncertainties due to respiratory-induced target motion. There has and continues to be an immense research effort aimed at acknowledging and addressing these uncertainties to further our abilities to more precisely target radiation treatment. Thus, the goal of this article is to provide a detailed review of the prevailing uncertainties that remain to be investigated across the different imaging modalities, as well as to highlight the more modern solutions to imaging motion and their role in addressing the current challenges.
Collapse
Affiliation(s)
- Irina Vergalasova
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
26
|
Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, Ma J, Shiyam Sundar LK, Theek B, Mawlawi O. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging 2020; 20:38. [PMID: 32517801 PMCID: PMC7285725 DOI: 10.1186/s40644-020-00312-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non-invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/CT), advanced MRI, optical or ultrasound imaging.This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and, then point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now.Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by advances in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as "data", and - through the wider adoption of advanced analysis, including machine learning approaches and a "big data" concept - move to the next stage of non-invasive tumour phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi-dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging.
Collapse
Affiliation(s)
- Thomas Beyer
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria.
| | - Luc Bidaut
- College of Science, University of Lincoln, Lincoln, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospital, London, UK
| | - Marc Kachelriess
- Division of X-ray imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, DE, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Rainer Leitgeb
- Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, AT, Austria
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lalith Kumar Shiyam Sundar
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
2-[ 18F]FDG PET/CT radiomics in lung cancer: An overview of the technical aspect and its emerging role in management of the disease. Methods 2020; 188:84-97. [PMID: 32497604 DOI: 10.1016/j.ymeth.2020.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common cancer, worldwide, and a major health issue with a remarkable mortality rate. 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (2-[18F]FDG PET/CT) plays an indispensable role in the management of lung cancer patients. Long-established quantitative parameters such as size, density, and metabolic activity have been and are being employed in the current practice to enhance interpretation and improve diagnostic and prognostic value. The introduction of radiomics analysis revolutionized the quantitative evaluation of medical imaging, revealing data within images beyond visual interpretation. The "big data" are extracted from high-quality images and are converted into information that correlates to relevant genetic, pathologic, clinical, or prognostic features. Technically advanced, diverse methods have been implemented in different studies. The standardization of image acquisition, segmentation and features analysis is still a debated issue. Importantly, a body of features has been extracted and employed for diagnosis, staging, risk stratification, prognostication, and therapeutic response. 2-[18F]FDG PET/CT-derived features show promising value in non-invasively diagnosing the malignant nature of pulmonary nodules, differentiating lung cancer subtypes, and predicting response to different therapies as well as survival. In this review article, we aimed to provide an overview of the technical aspects used in radiomics analysis in non-small cell lung cancer (NSCLC) and elucidate the role of 2-[18F]FDG PET/CT-derived radiomics in the diagnosis, prognostication, and therapeutic response.
Collapse
|
28
|
Beheshti M, Manafi-Farid R, Rezaee A, Langsteger W. PET/CT and PET/MRI, Normal Variations, and Artifacts. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Hamill JJ, Meier JG, Betancourt Cuellar SL, Sabloff B, Erasmus JJ, Mawlawi O. Improved Alignment of PET and CT Images in Whole-Body PET/CT in Cases of Respiratory Motion During CT. J Nucl Med 2020; 61:1376-1380. [PMID: 32005768 DOI: 10.2967/jnumed.119.235804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
Respiratory motion during the CT and PET parts of a PET/CT scan leads to imperfect alignment of anatomic features seen by the 2 modalities. In this work, we concentrate on the effects of motion during CT. We propose a novel approach for improving the alignment. Methods: Respiratory waveform data were gathered during the CT and PET parts of 28 PET/CT scans of cancer patients with 40 lesions up to 3 cm in size in the lung or upper abdomen. PET list-mode data were reconstructed by 3 reconstruction methods: PET/static (the standard method with no motion correction); PET/ex (a method that calculates a range of expiratory amplitudes from the lowest one to the highest one); and PET/matched (a novel method that uses both waveforms). The 3 methods were compared. The distance between tumor positions in PET and CT were characterized in visual interpretation by physicians as well as quantitatively. Tumor SUVs (SUVmax and SUVpeak) were determined relative to SUV based on the static method. Image noise was evaluated in the liver and compared with PET/static. Results: In visual interpretation, the rate of good alignment was 13 of 21, 13 of 23, and 18 of 21 for the PET/static, PET/ex, and PET/matched methods, respectively, and the mean PET/CT distances were 3.5, 5.1, and 2.8 mm. In visual comparison with PET/ex, the rate of good alignment was increased in 1 of 10 and 7 of 10 cases for PET/static and PET/matched, respectively. SUVmax was on average 21% higher than PET/static when either PET/ex or PET/matched was used. SUVpeak was 12% higher. Image noise in the liver was 15% higher than PET/static for the PET/ex method, and 40% higher for PET/matched; that is, noise was much lower than in gated PET. Conclusion: Acquiring respiratory waveforms both in PET (as in the current state of the art) and in CT (an unusual key step in this approach) has the potential to improve the alignment of PET and CT images. A proposed method for using this information was tested. Improved alignment was demonstrated.
Collapse
Affiliation(s)
- James J Hamill
- Siemens Medical Solutions USA, Inc., Knoxville, Tennessee
| | - Joseph G Meier
- Department of Imaging Physics, M.D. Anderson Cancer Center, Houston Texas.,M.D. Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas; and
| | | | - Bradley Sabloff
- Department of Diagnostic Radiology, M.D. Anderson Cancer Center, Houston Texas
| | - Jeremy J Erasmus
- Department of Diagnostic Radiology, M.D. Anderson Cancer Center, Houston Texas
| | - Osama Mawlawi
- Department of Imaging Physics, M.D. Anderson Cancer Center, Houston Texas.,M.D. Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas; and
| |
Collapse
|
30
|
Real-time control of respiratory motion: Beyond radiation therapy. Phys Med 2019; 66:104-112. [PMID: 31586767 DOI: 10.1016/j.ejmp.2019.09.241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
Motion management in radiation oncology is an important aspect of modern treatment planning and delivery. Special attention has been paid to control respiratory motion in recent years. However, other medical procedures related to both diagnosis and treatment are likely to benefit from the explicit control of breathing motion. Quantitative imaging - including increasingly important tools in radiology and nuclear medicine - is among the fields where a rapid development of motion control is most likely, due to the need for quantification accuracy. Emerging treatment modalities like focussed-ultrasound tumor ablation are also likely to benefit from a significant evolution of motion control in the near future. In the present article an overview of available respiratory motion systems along with ongoing research in this area is provided. Furthermore, an attempt is made to envision some of the most expected developments in this field in the near future.
Collapse
|
31
|
Tong Y, Udupa JK, McDonough JM, Wileyto EP, Capraro A, Wu C, Ho S, Galagedera N, Talwar D, Mayer OH, Torigian DA, Campbell RM. Quantitative Dynamic Thoracic MRI: Application to Thoracic Insufficiency Syndrome in Pediatric Patients. Radiology 2019; 292:206-213. [PMID: 31112090 PMCID: PMC6614911 DOI: 10.1148/radiol.2019181731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/07/2019] [Accepted: 03/28/2019] [Indexed: 11/11/2022]
Abstract
Background Available methods to quantify regional dynamic thoracic function in thoracic insufficiency syndrome (TIS) are limited. Purpose To evaluate the use of quantitative dynamic MRI to depict changes in regional dynamic thoracic function before and after surgical correction of TIS. Materials and Methods Images from free-breathing dynamic MRI in pediatric patients with TIS (July 2009-August 2015) were retrospectively evaluated before and after surgical correction by using vertical expandable prosthetic titanium rib (VEPTR). Eleven volumetric parameters were derived from lung, chest wall, and diaphragm segmentations, and parameter changes before versus after operation were correlated with changes in clinical parameters. Paired analysis from Student t test on MRI parameters and clinical parameters was performed to detect if changes (from preoperative to postoperative condition) were statistically significant. Results Left and right lung volumes at end inspiration and end expiration increased substantially after operation in pediatric patients with thoracic insufficiency syndrome, especially right lung volume with 22.9% and 26.3% volume increase at end expiration (P = .001) and end inspiration (P = .002), respectively. The average lung tidal volumes increased after operation for TIS; there was a 43.8% and 55.3% increase for left lung tidal volume and right lung tidal volume (P < .001 for both), respectively. However, clinical parameters did not show significant changes from pre- to posttreatment states. Thoracic and lumbar Cobb angle were poor predictors of MRI tidal volumes (chest wall, diaphragm, and left and right separately), but assisted ventilation rating and forced vital capacity showed moderate correlations with tidal volumes (chest wall, diaphragm, and left and right separately). Conclusion Vertical expandable prosthetic titanium rib operation was associated with postoperative increases in all components of tidal volume (left and right chest wall and diaphragm, and left and right lung tidal volumes) measured at MRI. Clinical parameters did not demonstrate improvements in postoperative tidal volumes. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Paltiel in this issue.
Collapse
Affiliation(s)
- Yubing Tong
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - Jayaram K. Udupa
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - Joseph M. McDonough
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - E. Paul Wileyto
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - Anthony Capraro
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - Caiyun Wu
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - Suzanne Ho
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - Nirupa Galagedera
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - Divya Talwar
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - Oscar H. Mayer
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - Drew A. Torigian
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| | - Robert M. Campbell
- From the Department of Radiology, Medical Image Processing Group,
University of Pennsylvania, 602W Goddard Building, 3710 Hamilton Walk,
Philadelphia, PA 19104-6021 (Y.T., J.K.U., C.W., D.A.T.); Center for Thoracic
Insufficiency Syndrome, Children’s Hospital of Philadelphia,
Philadelphia, Pa (J.M.M., A.C., S.H., N.G., D.T., O.H.M., R.M.C.); and Data
Management and Biostatistics Core for the Tobacco Use Research Center,
University of Pennsylvania, Philadelphia, Pa (E.P.W.)
| |
Collapse
|
32
|
Thomas L, Schultz T, Prokic V, Guckenberger M, Tanadini-Lang S, Hohberg M, Wild M, Drzezga A, Bundschuh RA. 4D-CT-based motion correction of PET images using 3D iterative deconvolution. Oncotarget 2019; 10:2987-2995. [PMID: 31105880 PMCID: PMC6508203 DOI: 10.18632/oncotarget.26862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/23/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives Positron emission tomography acquisition takes several minutes representing an image averaged over multiple breathing cycles. Therefore, in areas influenced by respiratory movement, PET-positive lesions occur larger, but less intensive than they actually are, resulting in false quantitative assessment. We developed a motion-correction algorithm based on 4D-CT without the need to adapt PET-acquisition. Methods The algorithm is based on a full 3D iterative Richardson-Lucy-Deconvolution using a point-spread-function constructed using the motion information obtained from the 4D-CT. In a motion phantom study (3 different hot spheres in background activity), optimal parameters for the algorithm in terms of number of iterations and start image were estimated. Finally, the correction method was applied to 3 patient data sets. In phantom and patient data sets lesions were delineated and compared between motion corrected and uncorrected images for activity uptake and volume. Results Phantom studies showed best results for motion correction after 6 deconvolution steps or higher. In phantom studies, lesion volume improved up to 23% for the largest, 43% for the medium and 49% for the smallest sphere due to the correction algorithm. In patient data the correction resulted in a significant reduction of the tumor volume up to 33.3 % and an increase of the maximum and mean uptake of the lesion up to 62.1 and 19.8 % respectively. Conclusion In conclusion, the proposed motion correction method showed good results in phantom data and a promising reduction of detected lesion volume and a consequently increasing activity uptake in three patients with lung lesions.
Collapse
Affiliation(s)
- Lena Thomas
- Klinik und Poliklinik für Nuklearmedizin, Universitaetsklinikum Bonn, Bonn, Germany
| | - Thomas Schultz
- B-IT and Department of Computer Science, Universitaet Bonn, Bonn, Germany
| | - Vesna Prokic
- University Koblenz-Landau, Department of Physics, Koblenz, Germany.,University of Applied Sciences Koblenz, Koblenz, Germany
| | | | | | - Melanie Hohberg
- Department of Nuclear Medicine Universitaetsklinikum Köln, Cologne, Germany
| | - Markus Wild
- Department of Nuclear Medicine Universitaetsklinikum Köln, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine Universitaetsklinikum Köln, Cologne, Germany
| | - Ralph A Bundschuh
- Klinik und Poliklinik für Nuklearmedizin, Universitaetsklinikum Bonn, Bonn, Germany
| |
Collapse
|
33
|
Mitsumoto T, Minamimoto R, Sunaoka F, Kishimoto S, Inoue K, Fukushi M. The clinical utility of phase-based respiratory gated PET imaging based on visual feedback with a head-mounted display system. Br J Radiol 2019; 92:20180233. [PMID: 31017455 DOI: 10.1259/bjr.20180233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE We developed a new respiratory-gated positron emission tomography (PET) imaging method (RGV-PET) that phase-based respiratory gated PET imaging (RG-PET) combine with head-mounted display (HMD)-guided "visual feedback." The purpose of this study was to investigate whether RGV-PET is effective at improving the quantitative measurement of tracer uptake in tumors using the phase-based respiratory gating method. METHODS Of the 41 enrolled patients with hepatobiliary or pancreatic cancer, 20 patients underwent RGV-PET and the remaining 21 patients underwent RG-PET. We measured the peak standardized uptake value (SUVpeak) of the primary lesion in each five bins obtained from both RG-PET and RGV-PET. The SUVpeak change rate calculated based on the ungated PET imaging. To evaluate the quantitative variation, the coefficient of variation of the SUVpeak change rate was compared between RG-PET and RGV-PET. In addition, we performed qualitative evaluation using visual score for the incidence of artifacts on four-dimensional-CT. RESULTS The coefficient of variation of the average SUVpeak change rate in RGV-PET was 7.01 ± 4.43, which was significantly lower than the values in RG-PET (10.72 ± 5.74, p < 0.05). A significant improvement in the SUVpeak change rate of RGV-PET was obtained in bins 1 and 2 compared to RG-PET ( p < 0.05). The visual score of RGV-PET was significantly lower than RG-PET ( p < 0.05). CONCLUSION RGV-PET was effective for respiratory stabilization and improved respiratory gating imaging quality. ADVANCES IN KNOWLEDGE The RGV-PET is applicable to various PET/CT respiratory gating imaging and may improve the quantitativeness of PET images.
Collapse
Affiliation(s)
- Takuya Mitsumoto
- 1 Department of Radioisotope Research Center, Teikyo university , Tokyo.,2 Department of Radiology, National Center for Global Health and Medicine , Tokyo
| | - Ryogo Minamimoto
- 2 Department of Radiology, National Center for Global Health and Medicine , Tokyo
| | - Fumio Sunaoka
- 2 Department of Radiology, National Center for Global Health and Medicine , Tokyo
| | - Seishi Kishimoto
- 1 Department of Radioisotope Research Center, Teikyo university , Tokyo
| | - Kazumasa Inoue
- 3 Department of Radiological Sciences, Graduate School of Medicine, Tokyo Metropolitan University , Tokyo
| | - Masahiro Fukushi
- 3 Department of Radiological Sciences, Graduate School of Medicine, Tokyo Metropolitan University , Tokyo
| |
Collapse
|
34
|
Hunter CRRN, Klein R, Alessio AM, deKemp RA. Patient body motion correction for dynamic cardiac PET-CT by attenuation-emission alignment according to projection consistency conditions. Med Phys 2019; 46:1697-1706. [PMID: 30710381 DOI: 10.1002/mp.13419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Patient body motion is known to cause large deviations in the determination of myocardial blood flow (MBF) with errors exceeding 300%. Accurate correction for patient whole-body motion is still a largely unsolved problem in cardiac positron emission tomography (PET) imaging. OBJECTIVE This study evaluated the efficacy of using Natterer's formulation of the Helgason-Ludwig consistency conditions on the two-dimensional Radon transform to align computed tomography to PET projection data in multiple time frames of a dynamic sequence for the purpose of frame-by-frame correction of rigid whole-body motion. METHODS The correction algorithm was evaluated with digital NCAT phantoms using realistic noise added by the analytical simulator. Count rates used in the simulation were derived from clinical patient data. In addition, a proof of concept test using measured data with a cardiac torso phantom was conducted. RESULTS Motion correction resulted in significant improvement in the accuracy of MBF estimates, especially for high count-rate acquisitions. Maximum errors for 2 cm of motion dropped from 325% to 25% and from 250% to 25% using global and regional partial-volume correction, respectively. Median MBF errors dropped from 33% to 4.5% and 27% to 3.8%, respectively. Importantly, the correction algorithm performed equally well to compensate for body motion in both early and late time frames. CONCLUSION Cardiac PET-CT data used for attenuation correction (CTAC) alignment using projection consistency conditions was effective for reducing errors in MBF measurements due to simulated patient motion, and can be integrated into the image reconstruction workflow.
Collapse
Affiliation(s)
- Chad R R N Hunter
- Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.,University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
| | - Ran Klein
- Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.,The Ottawa Hospital, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada
| | - Adam M Alessio
- Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
| | - Robert A deKemp
- Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.,University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
| |
Collapse
|
35
|
Zou W, Dong L, Kevin Teo BK. Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy. Semin Radiat Oncol 2018; 28:238-247. [PMID: 29933883 DOI: 10.1016/j.semradonc.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Image guidance technology has evolved and seen widespread application in the past several decades. Advancements in the diagnostic imaging field have found new applications in radiation oncology and promoted the development of therapeutic devices with advanced imaging capabilities. A recent example is the development of linear accelerators that offer magnetic resonance imaging for real-time imaging and online adaptive planning. Volumetric imaging, in particular, offers more precise localization of soft tissue targets and critical organs which reduces setup uncertainty and permit the use of smaller setup margins. We present a review of the status of current imaging modalities available for radiation oncology and its impact on target margins and use for adaptive therapy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
36
|
van der Vos CS, Meeuwis APW, Grootjans W, Geus-Oei LFD, Visser EP. Improving the Spatial Alignment in PET/CT Using Amplitude-Based Respiration-Gated PET and Patient-Specific Breathing-Instructed CT. J Nucl Med Technol 2018; 47:154-159. [PMID: 30413602 DOI: 10.2967/jnmt.118.215970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022] Open
Abstract
Appropriate attenuation correction is important for accurate quantification of SUVs in PET. Patient respiratory motion can introduce a spatial mismatch between respiration-gated PET and CT, reducing quantitative accuracy. In this study, the effect of a patient-specific breathing-instructed CT protocol on the spatial alignment between CT and amplitude-based optimal respiration-gated PET images was investigated. Methods: 18F-FDG PET/CT imaging was performed on 20 patients. In addition to the standard low-dose free-breathing CT, breath-hold CT was performed. The amplitude limits of the respiration-gated PET were used to instruct patients to hold their breath during CT acquisition at a similar amplitude level. Spatial mismatch was quantified using the position differences between the lung-liver transition in PET and CT images, the distance between PET and CT lesions' centroids, and the amount of overlap as indicated by the Jaccard similarity coefficient. Furthermore, the effect on attenuation correction was quantified by measuring SUVs, metabolic tumor volume, and total lesion glycolysis (TLG) of lung lesions. Results: All patients found the breathing instructions feasible; however, 4 patients had trouble complying with the instructions. In total, 18 patients were included. The average distance between the lung-liver transition between PET and CT was significantly reduced for breath-hold CT (1.7 ± 2.1 mm), compared with standard CT (5.6 ± 7.3 mm) (P = 0.049). Furthermore, the mean distance between the lesions' centroids on PET and CT was significantly smaller for breath-hold CT (3.6 ± 2.0 mm) than for standard CT (5.5 ± 6.5 mm) (P = 0.040). Quantification of lung lesion SUV was significantly affected, with a higher SUVmean when breath-hold CT (6.3 ± 3.9 g/cm3) was used for image reconstruction than for standard CT (6.1 ± 3.8 g/cm3) (P = 0.044). Though metabolic tumor volume was not significantly different, TLG reached statistical significance. Conclusion: Optimal respiration-gated PET in combination with patient-specific breathing-instructed CT results in an improved alignment between PET and CT images and shows an increased SUVmean and TLG. Even though the effects are small, a more accurate SUV and TLG determination is of importance for a more stable PET quantification, which is relevant for radiotherapy planning and therapy response monitoring.
Collapse
Affiliation(s)
- Charlotte S van der Vos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands .,University of Twente, Enschede, The Netherlands; and
| | - Antoi P W Meeuwis
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willem Grootjans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lioe-Fee de Geus-Oei
- University of Twente, Enschede, The Netherlands; and.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric P Visser
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Rakvongthai Y, El Fakhri G. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging. PET Clin 2018; 12:321-327. [PMID: 28576170 DOI: 10.1016/j.cpet.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR.
Collapse
Affiliation(s)
- Yothin Rakvongthai
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Ichikawa Y, Tomita Y, Ishida M, Kobayashi S, Takeda K, Sakuma H. Usefulness of abdominal belt for restricting respiratory cardiac motion and improving image quality in myocardial perfusion PET. J Nucl Cardiol 2018; 25:407-415. [PMID: 27535413 DOI: 10.1007/s12350-016-0623-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The current study evaluated the usefulness of a belt technique for restricting respiratory motion of the heart and for improving image quality of 13N-ammonia myocardial PET/CT, and it assessed the tolerability of the belt technique in the clinical setting. METHODS Myocardial 13N-ammonia PET/CT scanning was performed in 8 volunteers on Discovery PET/CT 690 with an optical respiratory motion tracking system. Emission scans were performed with and without an abdominal belt. The amplitude of left ventricular (LV) respiratory motion was measured on respiratory-gated PET images. The degree of erroneous decreases in regional myocardial uptake was visually assessed on ungated PET images using a 5-point scale (0 = normal, 1/2/3 = mild/moderate/severe decrease, 4 = defect). The tolerability of the belt technique was evaluated in 53 patients. RESULTS All subjects tolerated the belt procedure. The amplitude of the LV respiratory motion decreased significantly with the belt (8.1 ± 7.1 vs 12.1 ± 6.1 mm, P = .0078). The belt significantly improved the image quality scores in the anterior (0.29 ± 0.81 vs 0.71 ± 1.04, P = .015) and inferior (0.33 ± 0.92 vs 1.04 ± 1.04, P < .0001) wall. No adverse events related to the belt technique were observed. CONCLUSIONS The belt technique restricts LV respiratory motion and improves the image quality of myocardial PET/CT, and it is well tolerated by patients.
Collapse
Affiliation(s)
- Yasutaka Ichikawa
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yoya Tomita
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shigeki Kobayashi
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kan Takeda
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
39
|
Tong Y, Udupa JK, Wileyto EP, Wu C, McDonough JM, Capraro A, Mayer OH, Torigian DA, Campbell RM. Quantitative dynamic MRI (QdMRI) Volumetric Analysis of Pediatric Patients with Thoracic Insufficiency Syndrome. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10578. [PMID: 30906105 DOI: 10.1117/12.2294048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The lack of standardizable objective diagnostic measurement techniques is a major hurdle in the assessment and treatment of pediatric patients with thoracic insufficiency syndrome (TIS). The aim of this paper is to explore quantitative dynamic MRI (QdMRI) volumetric parameters derived from thoracic dMRI in pediatric patients with TIS and the relationships between dMRI parameters and clinical measurements. 25 TIS patients treated with vertical expandable prosthetic titanium rib (VEPTR) surgery are included in this retrospective study. Left and right lungs at end-inspiration and end-expiration are segmented from constructed 4D dMRI images. Lung volumes and excursion (or tidal) volumes of the left/right chest wall and hemi-diaphragms are computed. Commonly used clinical parameters include thoracic and lumbar Cobb angles and respiratory measurements from pulmonary function testing (PFT). 200 3D lungs in total (left & right, pre-operative & post-operative, end-inspiration & end-expiration) are segmented for analysis. Our analysis indicates that change of resting breathing rate (RR) following surgery is negatively correlated with that of QdMRI parameters. Chest wall tidal volumes and hemi-diaphragm tidal volumes increase significantly following surgery. Clinical parameter RR reduced after surgical treatment with P values around 0.06 but no significant differences were found on other clinical parameters. The significant increase in post-operative tidal volumes suggests a treatment-related improvement in lung capacity. The reduction of RR following surgery shows that breathing function is improved. The QdMRI parameters may offer an objective marker set for studying TIS, which is currently lacking.
Collapse
Affiliation(s)
- Yubing Tong
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Jayaram K Udupa
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - E Paul Wileyto
- Data Management and Biostatistics Core for the Tobacco Use Research Center, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Caiyun Wu
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Joseph M McDonough
- Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Anthony Capraro
- Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Oscar H Mayer
- Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Drew A Torigian
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Robert M Campbell
- Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| |
Collapse
|
40
|
Frood R, Prestwich R, Tsoumpas C, Murray P, Franks K, Scarsbrook A. Effectiveness of Respiratory-gated Positron Emission Tomography/Computed Tomography for Radiotherapy Planning in Patients with Lung Carcinoma - A Systematic Review. Clin Oncol (R Coll Radiol) 2018; 30:225-232. [PMID: 29397271 DOI: 10.1016/j.clon.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022]
Abstract
AIMS A systematic review of the literature evaluating the clinical use of respiratory-gated (four-dimensional; 4D) fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) compared with non-gated (three-dimensional; 3D) PET/CT for radiotherapy planning in lung cancer. MATERIALS AND METHODS A search of MEDLINE, Cochrane, Web of Science, SCOPUS and clinicaltrials.gov databases was undertaken for articles comparing 3D and 4D PET/CT tumour volume or 4D PET/CT for radiotherapy planning. PRISMA guidelines were followed. RESULTS Thirteen studies compared tumour volumes at 3D and 4D PET/CT; eight reported significantly smaller volumes (6.9-44.5%), three reported significantly larger volumes at 4D PET/CT (16-50%), one reported no significant difference and one reported mixed findings. Six studies, including two that reported differences in tumour volumes, compared target volumes or studied geographic misses. 4D PET/CT target volumes were significantly larger (19-40%) when compared with 3D PET/CT in all but one study, where they were smaller (3.8%). One study reported no significance in 4D PET/CT target volumes when compared with 4D CT, whereas another study reported significantly larger volumes (38.7%). CONCLUSION The use of 4D PET/CT leads to differences in target volume delineation compared with 3D PET/CT. These differences vary depending upon technique and the clinical impact currently remains uncertain. Correlation of pretreatment target volumes generated at 3D and 4D PET/CT with postsurgical histology would be ideal but technically challenging. Evaluation of patient outcomes based on 3D versus 4D PET/CT derived treatment volumes warrants further investigation.
Collapse
Affiliation(s)
- R Frood
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - R Prestwich
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - C Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - P Murray
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - K Franks
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - A Scarsbrook
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| |
Collapse
|
41
|
Gillman A, Smith J, Thomas P, Rose S, Dowson N. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections. Med Phys 2017; 44:e430-e445. [DOI: 10.1002/mp.12577] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/23/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ashley Gillman
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
- Faculty of Medicine; University of Queensland; Brisbane Australia
| | - Jye Smith
- Department of Radiation Oncology; Royal Brisbane and Women's Hospital; Brisbane Australia
| | - Paul Thomas
- Faculty of Medicine; University of Queensland; Brisbane Australia
- Herston Imaging Research Facility and Specialised PET Services Queensland; Royal Brisbane and Women's Hospital; Brisbane Australia
| | - Stephen Rose
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
| | - Nicholas Dowson
- Australian e-Health Research Centre; CSIRO; Brisbane Australia
| |
Collapse
|
42
|
Brandner ED, Chetty IJ, Giaddui TG, Xiao Y, Huq MS. Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: A review from NRG oncology. Med Phys 2017; 44:2595-2612. [PMID: 28317123 DOI: 10.1002/mp.12227] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/23/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
The efficacy of stereotactic body radiotherapy (SBRT) has been well demonstrated. However, it presents unique challenges for accurate planning and delivery especially in the lungs and upper abdomen where respiratory motion can be significantly confounding accurate targeting and avoidance of normal tissues. In this paper, we review the current literature on SBRT for lung and upper abdominal tumors with particular emphasis on addressing respiratory motion and its affects. We provide recommendations on strategies to manage motion for different, patient-specific situations. Some of the recommendations will potentially be adopted to guide clinical trial protocols.
Collapse
Affiliation(s)
- Edward D Brandner
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, PA, 15232, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Tawfik G Giaddui
- Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ying Xiao
- Imaging and Radiation Oncology Core (IROC), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, PA, 15232, USA
| |
Collapse
|
43
|
Jones T, Townsend D. History and future technical innovation in positron emission tomography. J Med Imaging (Bellingham) 2017; 4:011013. [PMID: 28401173 PMCID: PMC5374360 DOI: 10.1117/1.jmi.4.1.011013] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/14/2017] [Indexed: 02/01/2023] Open
Abstract
Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare.
Collapse
Affiliation(s)
- Terry Jones
- University of California, Department of Radiology, Davis, California, United States
| | - David Townsend
- National University of Singapore, Department of Diagnostic Imaging, Singapore
| |
Collapse
|
44
|
Cui Y, Bowsher J, Cai J, Yin FF. Impact of moving target on measurement accuracy in 3D and 4D PET imaging-a phantom study. Adv Radiat Oncol 2016; 2:94-100. [PMID: 28740918 PMCID: PMC5514228 DOI: 10.1016/j.adro.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the impact of tumor motion on maximum standardized uptake value (SUVmax) and metabolic tumor volume (MTV) measurements in both 3-dimensional and respiratory-correlated, 4-dimensional positron emission tomography (PET) imaging. We also evaluated the effect of implementing different attenuation correction methods in 4-dimensional PET image reconstruction on SUVmax and MTV. METHODS AND MATERIALS An anthropomorphic thorax phantom with a spherical ball as a surrogate for a tumor was used. Different types of motion were imposed on the ball to mimic a patient's breathing motion. Three-dimensional PET imaging of the phantom without tumor motion was performed and used as the reference. The ball was then set in motion with different breathing motion traces and imaged with both 3- and 4-dimensional PET methods. The clinical 4-dimensional PET imaging protocol was modified so that 3 different types of attenuation correction images were used for reconstructions: the same free-breathing computed tomography (CT) for all PET phases, the same average intensity projection CT for all PET phases, and 4-dimensional CT for phase-matched attenuation correction. Tumor SUVmax and MTV values that were measured from the moving phantom were compared with the reference values. RESULTS SUVmax that was measured in 3-dimensional PET imaging was different from the reference value by 20.4% on average for the motions that were investigated; this difference decreased to 2.6% with 4-dimensional PET imaging. The measurement of MTV in 4-dimensional PET also showed a similar magnitude of reduction of deviation compared with 3-dimensional PET. Four-dimensional PET with use of phase-matched 4-dimensional CT for attenuation correction showed less variation in SUVmax and MTV among phases compared with 4-dimensional PET with free-breathing CT or average intensity projection CT for attenuation correction. CONCLUSIONS Four-dimensional PET imaging reduces the impact of motion on measured SUVmax and MTV when compared with 3-dimensional PET imaging. Clinical 4-dimensional PET imaging protocols should consider phase-matched 4-dimensional CT imaging for attenuation correction to achieve more accurate measurements.
Collapse
Affiliation(s)
- Yunfeng Cui
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - James Bowsher
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jing Cai
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
45
|
Zirnsak M, Bärwolf R, Freesmeyer M. Breath-hold [68Ga]DOTA-TOC PET/CT in neuroendocrine tumors: detection of additional lesions and effects on quantitative parameters. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2016; 63:292-301. [PMID: 27824238 DOI: 10.23736/s1824-4785.16.02922-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Respiratory motion during PET/CT acquisition generates artifacts in the form of breath-related blurring, which influences the lesion detectability and diagnostic accuracy. The goal of this study was to verify whether breath-hold [68Ga]DOTA-TOC PET/CT (bhPET) allows detection of additional foci compared to free-breathing PET/CT (fbPET), and to assess the impact of breath-holding on standard uptake values (SUV) and isocontoured volume (Vic40) in patients with neuroendocrine tumors (NET). METHODS Patients with NET (N.=39) were included in this study. BhPET and fbPET characteristics of 96 lesions were compared, and correlated with standard contrast-enhanced (ce) CT and MRI for lesion verification. Quantitative parameters SUV (max and mean) and Vic40 were assessed for both methods and evaluated by linear regression and Spearman's correlation. The impact of lesion size, localization and time interval between investigations was also analyzed. RESULTS bhPET identified one additional metastasis not seen at fbPET but visible at ceMRI. Another additional bhPET focus did not have a morphological correlate. At bhPET, the SUVmax and SUVmean proved significantly higher and the Vic40 significantly lower than at fbPET. Lesion size, localization and time intervals did not impact significantly on SUV or Vic40. CONCLUSIONS Currently, routine use of breath-hold [68Ga]DOTA-TOC PET/CT cannot be recommended as only one additional lesion was identified. Therefore, bhPET has currently no indication in patients with NET. If technical improvements regarding PET/CT scanner sensitivity are available, bhPET should be reevaluated in the future.
Collapse
Affiliation(s)
- Mariana Zirnsak
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| | - Robert Bärwolf
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| | - Martin Freesmeyer
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany -
| |
Collapse
|
46
|
Minamimoto R, Mitsumoto T, Miyata Y, Sunaoka F, Morooka M, Okasaki M, Iagaru A, Kubota K. Evaluation of a new motion correction algorithm in PET/CT: combining the entire acquired PET data to create a single three-dimensional motion-corrected PET/CT image. Nucl Med Commun 2016; 37:162-70. [PMID: 26513056 DOI: 10.1097/mnm.0000000000000423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study evaluated the potential of Q.Freeze algorithm for reducing motion artifacts, in comparison with ungated imaging (UG) and respiratory-gated imaging (RG). PATIENTS AND METHODS Twenty-nine patients with 53 lesions who had undergone RG F-FDG PET/CT were included in this study. Using PET list mode data, five series of PET images [UG, RG, and QF images with an acquisition duration of 3 min (QF3), 5 min (QF5), and 10 min (QF10)] were reconstructed retrospectively. The image quality was evaluated first. Next, quantitative metrics [maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), SD, metabolic tumor volume, signal to noise ratio, or lesion to background ratio] were calculated for the liver, background, and each lesion, and the results were compared across the series. RESULTS QF10 and QF5 showed better image quality compared with all other images. SUVmax in the liver, background, and lesions was lower with QF10 and QF5 than with the others, but there were no statistically significant differences in SUVmean and the lesion to background ratios. The SD with UG and RG was significantly higher than that with QF5 and QF10. The metabolic tumor volume in QF3 and QF5 was significantly lower than that in UG. CONCLUSION The Q.Freeze algorithm can improve the quality of PET imaging compared with RG and UG.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- aDepartment of Radiology, Division of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo bDepartment of Radiology, National Center for Global Health and Medicine, Kohnodai Hospital, Ichikawa, Japan cDepartment of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Adaptive Dose Escalation using Serial Four-dimensional Positron Emission Tomography/Computed Tomography Scans during Radiotherapy for Locally Advanced Non-small Cell Lung Cancer. Clin Oncol (R Coll Radiol) 2016; 28:e199-e205. [PMID: 27637725 DOI: 10.1016/j.clon.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/20/2016] [Accepted: 06/24/2016] [Indexed: 11/23/2022]
Abstract
AIMS Computed tomography (CT)-based radiotherapy dose escalation for locally advanced non-small cell lung cancer (LA-NSCLC) has had limited success. In this planning study, we investigated the potential for adaptive dose escalation using respiratory-gated 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography scans (4DPET/4DCT) acquired before and during a course of chemoradiotherapy (CRT). MATERIALS AND METHODS We prospectively enrolled patients with LA-NSCLC receiving curative intent CRT. Radiotherapy was delivered using intensity-modulated radiotherapy (IMRT) using the week 0 4DCT scan. Three alternative, dose-escalated IMRT plans were developed offline based on the week 0, 2 and 4 4DPET/4DCT scans. The FDG-avid primary (PET-T) and nodal disease (PET-N) volumes defined by the 50% of maximum standard uptake value threshold were dose escalated to as high as possible while respecting organ at risk constraints. RESULTS Thirty-two patients were recruited, 27 completing all scans. Twenty-five patients (93%) were boosted successfully above the clinical plan doses at week 0, 23 (85%) at week 2 and 20 (74%) at week 4. The median dose received by 95% of the planning target volume (D95) at week 0, 2 and 4 to PET-T were 74.4 Gy, 75.3 Gy and 74.1 Gy and to PET-N were 74.3 Gy, 71.0 Gy and 69.5 Gy. CONCLUSIONS Using 18F-FDG-4DPET/4DCT, it is feasible to dose escalate both primary and nodal disease in most patients. Choosing week 0 images to plan a course with an integrated boost to PET-avid disease allows for more patients to be successfully dose escalated with the highest boost dose.
Collapse
|
48
|
Kogay M, Thariat J, Benisvy D, Dufour M, Gastaud L, Saada E, Iannessi A, Thyss A. Évaluation de l’utilisation de la TEP au FDG pour le bilan des sarcomes de l’adulte en pratique quotidienne. Bull Cancer 2016; 103:735-42. [DOI: 10.1016/j.bulcan.2016.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/23/2016] [Accepted: 05/28/2016] [Indexed: 12/31/2022]
|
49
|
Respiratory-gated time-of-flight PET/CT during whole-body scan for lung lesions: feasibility in a routine clinical setting and quantitative analysis. Ann Nucl Med 2016; 30:722-730. [PMID: 27566685 DOI: 10.1007/s12149-016-1118-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE To demonstrate the feasibility of respiratory gating during whole-body scan for lung lesions in routine 18F-FDG PET/CT examinations using a time-of-flight (TOF)-capable scanner to determine the effect of respiratory gating on reduction of both misregistration (between CT and PET) and image blurring, and on improvement of the maximum standardized uptake value (SUVmax). MATERIALS AND METHODS Patients with lung lesions who received FDG PET/CT were prospectively studied. Misregistration, volume of PET (Vp), and SUVmax were compared between ungated and gated images. The difference in respiratory gating effects was compared between lesions located in the upper or middle lobes (UML) and the lower lobe (LL). The correlation between three parameters (% change in misregistration, % change in Vp, and lesion size) and % change in SUVmax was analyzed. RESULTS The study population consisted of 60 patients (37 males, 23 females; age 68 ± 12 years) with lung lesions (2.5 ± 1.7 cm). Fifty-eight out of sixty respiratory gating studies were successfully completed with a total scan time of 20.9 ± 1.9 min. Eight patients' data were not suitable for analysis, while the remaining 50 patients' data were analyzed. Respiratory gating reduced both misregistration by 21.4 % (p < 0.001) and Vp by 14.2 % (p < 0.001). The SUVmax of gated images improved by 14.8 % (p < 0.001). The % change in misregistration, Vp, and SUVmax by respiratory gating tended to be larger in LL lesions than in UML lesions. The correlation with % change in SUVmax was stronger in % change in Vp (r = 0.57) than % change in misregistration (r = 0.35). There was no statistically significant correlation between lesion size and % change in SUVmax (r = -0.20). CONCLUSIONS Respiratory gating during whole-body scan in routine TOF PET/CT examinations is feasible and can reduce both misregistration and PET image blurring, and improve the SUVmax of lung lesions located primarily in the LL.
Collapse
|
50
|
Tong Y, Udupa JK, Ciesielski KC, Wu C, McDonough JM, Mong DA, Campbell RM. Retrospective 4D MR image construction from free-breathing slice Acquisitions: A novel graph-based approach. Med Image Anal 2016; 35:345-359. [PMID: 27567735 DOI: 10.1016/j.media.2016.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 07/05/2016] [Accepted: 08/09/2016] [Indexed: 11/20/2022]
Abstract
PURPOSE Dynamic or 4D imaging of the thorax has many applications. Both prospective and retrospective respiratory gating and tracking techniques have been developed for 4D imaging via CT and MRI. For pediatric imaging, due to radiation concerns, MRI becomes the de facto modality of choice. In thoracic insufficiency syndrome (TIS), patients often suffer from extreme malformations of the chest wall, diaphragm, and/or spine with inability of the thorax to support normal respiration or lung growth (Campbell et al., 2003, Campbell and Smith, 2007), as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort and interference with the breathing mechanism itself. Therefore (ventilator-supported) free-breathing MRI acquisition is currently the best choice for imaging these patients. This, however, raises a question of how to create a consistent 4D image from such acquisitions. This paper presents a novel graph-based technique for compiling the best 4D image volume representing the thorax over one respiratory cycle from slice images acquired during unencumbered natural tidal-breathing of pediatric TIS patients. METHODS In our approach, for each coronal (or sagittal) slice position, images are acquired at a rate of about 200-300ms/slice over several natural breathing cycles which yields over 2000 slices. A weighted graph is formed where each acquired slice constitutes a node and the weight of the arc between two nodes defines the degree of contiguity in space and time of the two slices. For each respiratory phase, an optimal 3D spatial image is constructed by finding the best path in the graph in the spatial direction. The set of all such 3D images for a given respiratory cycle constitutes a 4D image. Subsequently, the best 4D image among all such constructed images is found over all imaged respiratory cycles. Two types of evaluation studies are carried out to understand the behavior of this algorithm and in comparison to a method called Random Stacking - a 4D phantom study and 10 4D MRI acquisitions from TIS patients and normal subjects. The 4D phantom was constructed by 3D printing the pleural spaces of an adult thorax, which were segmented in a breath-held MRI acquisition. RESULTS Qualitative visual inspection via cine display of the slices in space and time and in 3D rendered form showed smooth variation for all data sets constructed by the proposed method. Quantitative evaluation was carried out to measure spatial and temporal contiguity of the slices via segmented pleural spaces. The optimal method showed smooth variation of the pleural space as compared to Random Stacking whose behavior was erratic. The volumes of the pleural spaces at the respiratory phase corresponding to end inspiration and end expiration were compared to volumes obtained from breath-hold acquisitions at roughly the same phase. The mean difference was found to be roughly 3%. CONCLUSIONS The proposed method is purely image-based and post-hoc and does not need breath holding or external surrogates or instruments to record respiratory motion or tidal volume. This is important and practically warranted for pediatric patients. The constructed 4D images portray spatial and temporal smoothness that should be expected in a consistent 4D volume. We believe that the method can be routinely used for thoracic 4D imaging.
Collapse
Affiliation(s)
- Yubing Tong
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104 United States
| | - Jayaram K Udupa
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104 United States.
| | - Krzysztof C Ciesielski
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104 United States; Department of Mathematics, West Virginia University, Morgantown, WV, 26505 United States
| | - Caiyun Wu
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104 United States
| | - Joseph M McDonough
- Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104 United States
| | - David A Mong
- Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104 United States
| | - Robert M Campbell
- Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 19104 United States
| |
Collapse
|