1
|
Shirato T, Doryo K, Yamada S, Ozaki Y. Modulation transfer function of digital breast tomosynthesis: a comparison of various edge devices. Radiol Phys Technol 2024; 17:739-744. [PMID: 38780698 DOI: 10.1007/s12194-024-00815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The modulation transfer function (MTF) is a fundamental tool for assessing the sharpness of digital breast tomosynthesis (DBT) systems and is primarily measured using edge devices. We compared the MTF of a Senographe Pristina DBT system using four-edge devices. These devices were composed of stainless steel with a thickness of 0.6, 0.8, and 1.0 mm, and 1.0 mm tungsten, based on different international guidelines. We evaluated spatial frequencies at MTFs of 0.5 (MTF50%) and 0.1 (MTF10%). The collimator-equipped and non-collimator configurations of the DBT were compared. We found no appreciable differences between scan and chest wall-nipple directions. Both MTF50% (2.90-2.99 cycles/mm) and MTF10% (6.69-6.94 cycles/mm) demonstrated minimal variation across the different edge devices. The collimator-equipped system exhibited an MTF50% that was approximately 5% higher than that of the non-collimator configuration. The choice of the edge device did not appreciably impact the MTF.
Collapse
Affiliation(s)
- Takashi Shirato
- Department of Radiology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan.
| | - Kazuhiko Doryo
- Department of Radiology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Shiori Yamada
- Department of Radiology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Yutaka Ozaki
- Department of Radiology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| |
Collapse
|
2
|
Lozano FR, Rojo D, Martínez LC, Ramon C. PSF and MTF from a bar pattern in digital mammography. Biomed Phys Eng Express 2024; 10:045051. [PMID: 38821042 DOI: 10.1088/2057-1976/ad5296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
Background.The MTF has difficulties being determined (according to the provisions of the IEC standards) in the hospital setting due to the lack of resources.Purpose.The objective of this work is to propose a quantitative method for obtaining the point spread function (PSF) and the modulation transfer function (MTF) of a digital mammography system from an image of a bar pattern.Methods.The method is based on the measurement of the contrast transfer function (CTF) of the system over the image of the bar pattern. In addition, a theoretical model for thePSFis proposed, from which the theoreticalCTFof the system is obtained by means of convolution with a square wave (mathematical simulation of the bar pattern). Through an iterative process, the free parameters of thePSFmodel are varied until the experimentalCTFcoincides with the one calculated by convolution. Once thePSFof the system is obtained, we calculate theMTFby means of its Fourier transform. TheMTFcalculated from the modelPSFhave been compared with those calculated from an image of a 65μm diameter gold wire using an oversampling process.Results.TheCTFhas been calculated for three digital mammographic systems (DMS 1, DMS 2 and DMS 3), no differences of more than 5 % were found with the CTF obtained with the PSF model. The comparison of theMTFshows us the goodness of thePSFmodel.Conclusions.The proposed method for obtainingPSFandMTFis a simple and accessible method, which does not require a complex configuration or the use of phantoms that are difficult to access in the hospital world. In addition, it can be used to calculate other magnitudes of interest such as the normalized noise power spectrum (NNPS) and the detection quantum efficiency (DQE).
Collapse
Affiliation(s)
- F R Lozano
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Daniel Rojo
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | - L C Martínez
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | | |
Collapse
|
3
|
Day JA, Tanguay J. Monte-Carlo study of contrast-enhanced spectral mammography with cadmium telluride photon-counting x-ray detectors. Med Phys 2024; 51:2479-2498. [PMID: 37967277 DOI: 10.1002/mp.16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/09/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Contrast-enhanced spectral mammography (CESM) with photon-counting x-ray detectors (PCDs) can be used to improve the classification of breast cancers as benign or malignant. Commercially-available PCD-based mammography systems use silicon-based PCDs. Cadmium-telluride (CdTe) PCDs may provide a practical advantage over silicon-based PCDs because they can be implemented as large-area detectors that are more easily adaptable to existing mammography systems. PURPOSE The purpose of this work is to optimize CESM implemented with CdTe PCDs and to investigate the influence of the number of energy bins, electronic noise level, pixel size, and anode material on image quality. METHODS We developed a Monte Carlo model of the energy-bin-dependent modulation transfer functions (MTFs) and noise power spectra, including spatioenergetic noise correlations. We validated model predictions using a CdTe PCD with analog charge summing for charge-sharing suppression. Using the ideal-observer detectability, we optimized CESM for the task of detecting a 7-mm-diameter iodine nodule embedded in a breast with 50% glandularity. We optimized the tube voltage, beam filtration, and the location of energy thresholds for 50 and 100- μ $\mu$ m pixels, tungsten and molybdenum anodes, and two electronic noise levels. One of the electronic noise levels was that of the experimental system; the other was half that of the experimental system. Optimization was performed for CdTe PCDs with two or three energy bins. We also estimated the impact of anatomic noise due to background parenchymal enhancement and computed the minimum detectable iodine area density in the presence of quantum and anatomic noise. RESULTS Model predictions of the MTFs and noise power spectra agreed well with experiment. For optimized systems, adding a third energy bin increased quantum noise levels and reduced detectability by ∼55% compared to two-bin approaches that simply suppress contrast between fibroglandular and adipose tissue. Decreasing the electronic noise standard deviation from 3.4 to 1.7 keV increased iodine detectability by ∼5% and ∼30% for two-bin imaging and three-bin imaging, respectively. After optimizing for tube voltage, beam filtration, and the location of energy thresholds, there was ∼a 3% difference in iodine detectability between molybdenum and tungsten anodes for two-bin imaging, but for three-bin imaging, molybdenum anodes provided up to 14% increase in detectability relative to tungsten anodes. Anatomic noise decreased iodine detectability by 15% to 40%, with greater impact for lower electronic noise settings and larger pixel sizes. CONCLUSIONS For CESM implemented with CdTe PCDs, (1) quantitatively-accurate three-material decompositions using three energy bins are associated with substantial increases in quantum noise relative to two-energy-bin approaches that simply suppress contrast between fibroglandular and adipose tissues; (2) tungsten and molybdenum anodes can provide nearly equal iodine detectability for two-bin imaging, but molybdenum provides a modest detectability advantage for three-bin imaging provided that all other technique parameters are optimized; (3) reducing pixel sizes from 100 to 50 μ $\mu$ m can reduce detectability by up to 20% due to charge sharing; (4) anatomic noise due to background parenchymal enhancement is estimated to have a substantial impact on lesion visibility, reducing detectability by approximately 30%.
Collapse
Affiliation(s)
- James A Day
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Jesse Tanguay
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Maruyama S. Simulation Analysis on the Performance of a Circular-Edge Technique in Measurements of the Modulation Transfer Function. J Med Phys 2023; 48:90-97. [PMID: 37342601 PMCID: PMC10277299 DOI: 10.4103/jmp.jmp_54_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/23/2023] Open
Abstract
The modulation transfer function (MTF) plays an important role in characterizing medical imaging systems. For such characterization, the circular-edge technique has become a prevalent task-based methodology. When determining the MTF with complicated task-based measurements, error factors must be well understood to properly interpret the results. In this context, the aim of this work was to study the changes in measurement performance in the analysis of the MTF using a circular edge. To eliminate the systematic error related to the measurement and suitably manage the error factors, images were generated by Monte Carlo simulation. Further, a performance comparison with the conventional method was conducted; in addition, the influence of the edge size and contrast and the setting error of the center coordinates were investigated. The difference from the true value and the standard deviation relative to the average value were applied to the index as the accuracy and precision, respectively. The results demonstrated that the smaller the circular object used and the lower the contrast, the grater the deterioration in the measurement performance. Furthermore, this study clarified the underestimating of the MTF in proportion to the square of the distance with respect to the setting error of the center position, which is important for the synthesis of the edge profile. Evaluations in the backgrounds wherein there are multiple factors affecting the results are complex, and the system users must properly judge the validity of the characterization results. These findings provide meaningful insight in the context of MTF measurement techniques.
Collapse
Affiliation(s)
- Sho Maruyama
- Department of Radiological Technology, School of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, Japan
| |
Collapse
|
5
|
Marshall NW, Bosmans H. Performance evaluation of digital breast tomosynthesis systems: physical methods and experimental data. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9a35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Digital breast tomosynthesis (DBT) has become a well-established breast imaging technique, whose performance has been investigated in many clinical studies, including a number of prospective clinical trials. Results from these studies generally point to non-inferiority in terms of microcalcification detection and superior mass-lesion detection for DBT imaging compared to digital mammography (DM). This modality has become an essential tool in the clinic for assessment and ad-hoc screening but is not yet implemented in most breast screening programmes at a state or national level. While evidence on the clinical utility of DBT has been accumulating, there has also been progress in the development of methods for technical performance assessment and quality control of these imaging systems. DBT is a relatively complicated ‘pseudo-3D’ modality whose technical assessment poses a number of difficulties. This paper reviews methods for the technical performance assessment of DBT devices, starting at the component level in part one and leading up to discussion of system evaluation with physical test objects in part two. We provide some historical and basic theoretical perspective, often starting from methods developed for DM imaging. Data from a multi-vendor comparison are also included, acquired under the medical physics quality control protocol developed by EUREF and currently being consolidated by a European Federation of Organisations for Medical Physics working group. These data and associated methods can serve as a reference for the development of reference data and provide some context for clinical studies.
Collapse
|
6
|
Day JA, Tanguay J. The detective quantum efficiency of cadmium telluride photon-counting x-ray detectors in breast imaging applications. Med Phys 2021; 49:1481-1494. [PMID: 34905627 DOI: 10.1002/mp.15411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE In breast imaging applications, cadmium telluride (CdTe) photon counting x-ray detectors (PCDs) may reduce radiation dose and enable single-shot multi-energy x-ray imaging. The purpose of this work is to determine the upper limits of the detective quantum efficiency (DQE) of CdTe PCDs for x-ray mammography and to compare them with the published DQEs of energy-integrating detectors (EIDs) and other PCDs. METHODS We calibrated and validated a Monte Carlo (MC) model of the DQE of CdTe PCDs using an XCounter CdTe PCD. Our model accounted for charge sharing, electronic noise, and charge summation logic. We used a 28 kVp Mo/Mo spectrum hardened by 3.9 cm of Lucite to optimize the detector thickness and energy threshold for pixel sizes of 50, 85, and 100 μ m with and without inter-pixel charge summation logic. The figure of merit used for optimization was the integral of the DQE, which is equivalent to the detectability index for a delta function task function, which represents a high-frequency task. RESULTS For an electronic noise level equal to that of the XCounter, the optimal DQE(0) without charge summing was 0.74. Charge summing for charge-sharing correction reduced DQE(0) by 14% due to an increase in electronic noise. Reducing the electronic noise to ∼0.5 keV per pixel in combination with charge summing resulted in DQE(0) ≈ 0.78 for 85 μ m pixels, which is approximately equal to that of a-Se and slot-scanning silicon-strip PCDs. At higher spatial frequencies, and for matched pixel sizes, the DQE was inferior to that of a-Se EIDs and superior to that of slot-scanning silicon-strip PCDs in the scan direction but inferior in the slit direction. CONCLUSIONS (1) CdTe PCDs have the potential to provide a zero-frequency DQE equal to that of a-Se EIDs and slot-scanning silicon-strip PCDs, but this will require electronic noise levels ∼0.5 keV per pixel. (2) At mid-to-high spatial frequencies the DQE of CdTe PCDs may be (a) inferior to that of a-Se EIDs and slot-scanning silicon-strip PCDs in the slit direction, and (b) superior to slot-scanning silicon-strip PCDs in the scan direction.
Collapse
Affiliation(s)
- James A Day
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Jesse Tanguay
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Maruyama S. Assessment of Uncertainty Depending on Various Conditions in Modulation Transfer Function Calculation Using the Edge Method. J Med Phys 2021; 46:221-227. [PMID: 34703107 PMCID: PMC8491315 DOI: 10.4103/jmp.jmp_36_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/14/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022] Open
Abstract
In medical X-ray imaging, to perform optimal operations, it is essential for the user to understand whether a required image quality level which depends on a diagnostic task can be achieved with the imaging system used. This study focuses on the effects of noise on the modulation transfer function (MTF) using the edge method, the most widely used to evaluate the task dependence property. The purpose is to verify the uncertainty of the MTF value at each spatial frequency and examine the conditions under which the accuracy is ensured. By using a Monte Carlo simulation, edge images with various contrast-to-noise ratio (CNR) are acquired. MTFs are then calculated with different edge spread function (ESF) lengths. The uncertainties for each spatial frequency are estimated based on the independent MTF calculations obtained from the five edge data. The uncertainty of the MTF is inversely proportional to the CNR. In the frequency range up to the Nyquist frequency, the uncertainty in five calculations is <0.01 when the CNR is more than 60. In addition, it is observed that the uncertainty increases as the ESF length increases. This relationship depends on the frequency range, but it is proportional to the 0.3–0.5 power of the ESF length. The results in which the uncertainty is most likely to be large in the MTF calculation are clearly shown. Therefore, it is expected to provide an important barometer and useful insights for a proper image quality measurement.
Collapse
Affiliation(s)
- Sho Maruyama
- School of Radiological Sciences, Faculty of Health Science, Gunma Paz University, Takasaki, Gunma, Japan
| |
Collapse
|
8
|
Determination of DQE as a quantitative assessment of detectors in digital mammography: Measurements and calculation in practice. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2021. [DOI: 10.2478/pjmpe-2021-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Introduction: Advances in digital detector technology and methods of image presentation in digital mammography now offer the possibility of implementing mathematical assessment methods to quantitative image analysis. The aim of this work was to develop new software to simplify the application of the existing international standard for DQE in digital mammography and show in detail how it can be applied, using a Siemens Mammomat Inspiration as a model.
Material and methods: Consistent with the IEC standard a 2 mm Al filter at the tube exit and images in DICOM format as raw data, without applying any additional post-processing were used. Measurements were performed for W/Rh anode/filter combination and different tube voltage values (26 ÷ 34 kV) without any anti-scatter grid. To verify new software doses ranging from 20-600 µGy were used in measurements. Exposure (air kerma) was measured using a calibrated radiation meter (Piranha Black 457, RTI Electronics AB, Sweden). MTF was determined, using an edge test device constructed specifically for this work.
Results: It has been demonstrated that with the new software the DQE can be measured with the accuracy required by the international standard IEC 62220-1-2. DQE has been presented as a function of spatial frequency for W/Rh anode/filter combination and different tube voltage.
Conclusions: New software was used successfully to analyze image quality parameters for the Siemens Mammomat Inspiration detector. This was done on the basis of an internationally accepted methodology. In the next step, mammographs with different detector types can be compared.
Collapse
|
9
|
Maruyama S, Saito H, Shimosegawa M. Characterization of anti-scatter grids via a modulation transfer function improvement factor using an edge device. Biomed Phys Eng Express 2021; 7. [PMID: 33906178 DOI: 10.1088/2057-1976/abfc2f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 11/12/2022]
Abstract
In optimizing the imaging conditions, changes in image quality due to scattered radiation are important evaluation targets. This study focuses on the evaluation of the image quality improvement characteristics obtained using anti-scatter grids in digital x-ray imaging, and proposes a frequency-dependent modulation transfer function (MTF) improvement factor,MIFG(u),as a new evaluation index. Accordingly, the purpose of this study is to clarify the validity and the usefulness of this proposed index in the performance evaluation of grids. The proposedMIFG(u)method is applied to evaluate several types of grids with different grid densities and ratios, and the characteristics of grids exhibiting different performances are examined. The proposed index is calculated based on the MTF measurement by using an edge test device. The results show thatMIFG(u)changed according to grid type and scatter conditions. In particular, a remarkable difference was observed in the high scatter condition compared with the low condition.MIFG(u)in the vertical direction with regards to the absorbing strips shows a peak at 0.2-0.5 cycles/mm and be a constant value from approximately 1 cycle/mm; whileMIFG(u)in the parallel direction is a constant value with respect to changes in spatial frequency. It is shown thatMIFG(u)could be used to accurately describe the characteristics of a grid under different imaging conditions. We believe that the use of the proposed index could expand the options for optimizing imaging conditions when using grids.
Collapse
Affiliation(s)
- Sho Maruyama
- School of Radiological Sciences, Faculty of Health Science, Gunma Paz University, Gunma, Japan.,Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Gunma, Japan
| | - Hiroki Saito
- School of Radiological Sciences, Faculty of Health Science, Gunma Paz University, Gunma, Japan
| | - Masayuki Shimosegawa
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Gunma, Japan
| |
Collapse
|
10
|
Wigati KT, Marshall NW, Lemmens K, Binst J, Jacobs A, Cockmartin L, Zhang G, Vancoillie L, Petrov D, Vandenbroucke DAN, Soejoko DS, Bosmans H. On the relevance of modulation transfer function measurements in digital mammography quality control. J Med Imaging (Bellingham) 2021; 8:023505. [PMID: 33937435 DOI: 10.1117/1.jmi.8.2.023505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: The relevance of presampling modulation transfer function (MTF) measurements in digital mammography (DM) quality control (QC) is examined. Two studies are presented: a case study on the impact of a reduction in MTF on the technical image quality score and analysis of the robustness of routine QC MTF measurements. Approach: In the first study, two needle computed radiography (CR) plates with identical sensitivities were used with differences in the 50% point of the MTF ( f MTF 0.5 ) larger than the limiting value in the European guidelines ( > 10 % change between successive measurements). Technical image quality was assessed via threshold gold thickness of the CDMAM phantom and threshold microcalcification diameter of the L1 structured phantom. For the second study, presampling MTF results from 595 half-yearly QC tests of 55 DM systems (16 types, six manufacturers) were analyzed for changes from the baseline value and changes in f MTF 0.5 between successive tests. Results: A reduction of 20% in f MTF 0.5 of the two CR plates was observed. There was a tendency to a lower score for task-based metrics, but none were significant. Averaging over 55 systems, the absolute relative change in f MTF 0.5 between consecutive tests (with 95% confidence interval) was 3% (2.5% to 3.4%). Analysis of the maximum relative change from baseline revealed changes of up to - 10 % for one a-Se based system and - 15 % for a group of CsI-based systems. Conclusions: A limit of 10% is a relevant action level for investigation. If exceeded, then the impact on performance has to be verified with extra metrics.
Collapse
Affiliation(s)
- Kristina T Wigati
- KU Leuven, Department of Imaging and Pathology, Leuven, Belgium.,Universitas Indonesia, Department of Physics, Depok, Indonesia
| | - Nicholas W Marshall
- KU Leuven, Department of Imaging and Pathology, Leuven, Belgium.,UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Kim Lemmens
- UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Joke Binst
- UZ Leuven, Department of Radiology, Leuven, Belgium
| | | | - Lesley Cockmartin
- KU Leuven, Department of Imaging and Pathology, Leuven, Belgium.,UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Guozhi Zhang
- UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Liesbeth Vancoillie
- KU Leuven, Department of Imaging and Pathology, Leuven, Belgium.,UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Dimitar Petrov
- KU Leuven, Department of Imaging and Pathology, Leuven, Belgium.,UZ Leuven, Department of Radiology, Leuven, Belgium
| | | | | | - Hilde Bosmans
- KU Leuven, Department of Imaging and Pathology, Leuven, Belgium.,UZ Leuven, Department of Radiology, Leuven, Belgium
| |
Collapse
|
11
|
Maruyama S, Shimosegawa M. The effects of scattered radiation from a semitransparent edge on MTF measurement: verification of several factors by Monte Carlo simulation. Phys Eng Sci Med 2020; 43:547-556. [DOI: 10.1007/s13246-020-00855-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
|
12
|
Tanguay J, Lalonde R, Bjarnason TA, Yang CYJ. Cascaded systems analysis of anatomic noise in digital mammography and dual-energy digital mammography. Phys Med Biol 2019; 64:215002. [PMID: 31470440 DOI: 10.1088/1361-6560/ab3fcd] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In x-ray based imaging of the breast, contrast between fibroglandular (Fg) tissue and adipose (Ad) tissue is a source of anatomic noise. The goal of this work was to validate by simulation and experiment a mathematical framework for modelling the Fg component of anatomic noise in digital mammograpy (DM) and dual-energy (DE) DM. Our mathematical framework unifies and generalizes existing approaches. We compared mathematical predictions directly with empirical measurements of the anatomic noise power spectrum of the CIRS BR3D structured breast phantom using two clinical mammography systems and four beam qualities. Our simulation and experimental results showed agreement with mathematical predictions. As a demonstration of utility, we used our mathematical framework in a theoretical spectral optimization of DM for the task of detecting breast masses. Our theoretical optimization showed that the optimal tube voltage for DM may be higher than that based on predictions that do not account for anatomic noise, in agreement with recent theoretical findings. Additionally, our theoretical optimization predicts that filtering tungsten-anode x-ray spectra with rhodium has little influence on lesion detectability, in contrast with previous findings. The mathematical methods validated in this work can be incorporated easily into cascaded systems analysis of breast imaging systems and will be useful when optimizating novel techniques for x-ray-based imaging of the breast.
Collapse
Affiliation(s)
- Jesse Tanguay
- Department of Physics, Ryerson University, Toronto, Ontario, Canada. Author to whom correspondence should be addressed
| | | | | | | |
Collapse
|
13
|
Acciavatti RJ, Maidment ADA. Nonstationary model of oblique x-ray incidence in amorphous selenium detectors: II. Transfer functions. Med Phys 2019; 46:505-516. [PMID: 30488455 PMCID: PMC6502710 DOI: 10.1002/mp.13312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
PURPOSE One limitation of experimental techniques for quantifying resolution and noise in detectors is that the measurement is made in a region-of-interest (ROI). With theoretical modeling, these properties can be measured at a point, allowing for quantification of spatial anisotropy. This paper calculates nonstationary transfer functions for amorphous selenium (a-Se) detectors in breast imaging. We use this model to demonstrate the performance advantage of a "next-generation" tomosynthesis (NGT) system, which is capable of x-ray source motion with more degrees of freedom than a clinical tomosynthesis system. METHODS Using Swank's formulation, the optical transfer function (OTF) and presampled noise power spectra (NPS) are determined based on the point spread function derived in Part 1. The modulation transfer function (MTF) is found from the normalized modulus of the OTF. To take into account the presence of digitization, the presampled NPS is convolved with a two-dimensional comb function, for which the period along each direction is the reciprocal of the detector element size. The detective quantum efficiency (DQE) is then determined from combined knowledge of the OTF and NPS. RESULTS First, the model is used to demonstrate the loss of image quality due to oblique x-ray incidence. The MTF is calculated along various polar angles, corresponding to different orientations of the input frequency. The MTF is independent of the incidence angle if the polar angle is perpendicular to the ray incidence direction. However, along other polar angles, oblique incidence results in MTF degradation at high frequencies. The MTF degradation is most substantial along the ray incidence direction. Unlike the MTF, the normalized NPS (NNPS) is independent of the incidence angle. To measure the relative signal-to-noise, the DQE is also calculated. Oblique incidence yields high-frequency DQE degradation, which is more pronounced than the MTF degradation. This arises because the DQE is proportionate with the square of the MTF. Ultimately, this model is used to evaluate how the image quality varies over the detector area. For various projection images, we calculate the variation in the incidence angle over this area. With the NGT system, the source can be positioned in such a way that this variation is minimized, and hence the DQE exhibits less anisotropy. To achieve this improvement in the image quality, the source needs to have a component of motion in the posteroanterior (PA) direction, which is perpendicular to the conventional direction of source motion in tomosynthesis. CONCLUSIONS In a-Se detectors, the DQE at high frequencies is degraded due to oblique incidence. The DQE degradation is more pronounced than the MTF degradation. This model is used to quantify the spatial variation in DQE over the detector area. The use of PA source motion is a strategy for minimizing this variation and thus improving the image quality.
Collapse
Affiliation(s)
- Raymond J. Acciavatti
- Department of RadiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐4206USA
| | - Andrew D. A. Maidment
- Department of RadiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐4206USA
| |
Collapse
|
14
|
González-López A. Chirp phantom for MTF calculations. A study of its precision in noisy environments. Phys Med 2018; 48:65-71. [DOI: 10.1016/j.ejmp.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022] Open
|
15
|
Heggie JCP, Barnes P, Cartwright L, Diffey J, Tse J, Herley J, McLean ID, Thomson FJ, Grewal RK, Collins LT. Position paper: recommendations for a digital mammography quality assurance program V4.0. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:491-543. [PMID: 28914430 DOI: 10.1007/s13246-017-0583-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 12/21/2022]
Abstract
In 2001 the ACPSEM published a position paper on quality assurance in screen film mammography which was subsequently adopted as a basis for the quality assurance programs of both the Royal Australian and New Zealand College of Radiologists (RANZCR) and of BreastScreen Australia. Since then the clinical implementation of digital mammography has been realised and it has become evident that existing screen-film protocols were not appropriate to assure the required image quality needed for reliable diagnosis or to address the new dose implications resulting from digital technology. In addition, the advantages and responsibilities inherent in teleradiology are most critical in mammography and also need to be addressed. The current document is the result of a review of current overseas practice and local experience in these areas. At this time the technology of digital imaging is undergoing significant development and there is still a lack of full international consensus about some of the detailed quality control (QC) tests that should be included in quality assurance (QA) programs. This document describes the current status in digital mammography QA and recommends test procedures that may be suitable in the Australasian environment. For completeness, this document also includes a review of the QA programs required for the various types of digital biopsy units used in mammography. In the future, international harmonisation of digital quality assurance in mammography and changes in the technology may require a review of this document. Version 2.0 represented the first of these updates and key changes related to image quality evaluation, ghost image evaluation and interpretation of signal to noise ratio measurements. In Version 3.0 some significant changes, made in light of further experience gained in testing digital mammography equipment were introduced. In Version 4.0, further changes have been made, most notably digital breast tomosynthesis (DBT) testing and QC have been addressed. Some additional testing for conventional projection imaging has been added in order that sites may have the capability to undertake dose surveys to confirm compliance with diagnostic reference levels (DRLs) that may be established at the National or State level. A key recommendation is that dosimetry calculations are now to be undertaken using the methodology of Dance et al. Some minor changes to existing facility QC tests have been made to ensure the suggested procedures align with those most recently adopted by the Royal Australian and New Zealand College of Radiologists and BreastScreen Australia. Future updates of this document may be provided as deemed necessary in electronic format on the ACPSEM's website ( https://www.acpsem.org.au/whatacpsemdoes/standards-position-papers and see also http://www.ranzcr.edu.au/quality-a-safety/radiology/practice-quality-activities/mqap ).
Collapse
Affiliation(s)
| | - P Barnes
- I-Med Radiology Network, Head office Melbourne, Melbourne, Australia
| | - L Cartwright
- Medical Physics Department, Westmead Hospital, Westmead, Australia
| | - J Diffey
- Hunter New England Imaging, John Hunter Hospital, New Lambton Heights, Australia
| | - J Tse
- Medical Physics and Radiation Engineering, Canberra Hospital, Canberra, Australia
| | - J Herley
- Radiation Protection Services Pty Ltd, Brisbane, Australia
| | - I D McLean
- Medical Physics and Radiation Engineering, Canberra Hospital, Canberra, Australia
| | - F J Thomson
- Radiological Physics Consultants Ltd, Warrington, New Zealand
| | - R K Grewal
- Medical Physics Department, Westmead Hospital, Westmead, Australia
| | - L T Collins
- Medical Physics Department, Westmead Hospital, Westmead, Australia
| |
Collapse
|
16
|
Lee C, Baek J. Inverse filtering approach to measure directional in-plane modulation transfer function using a sphere phantom for a digital tomosynthesis system. OPTICS EXPRESS 2017; 25:17280-17293. [PMID: 28789221 DOI: 10.1364/oe.25.017280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
We propose a method to measure the directional in-plane modulation transfer function (MTF) of a digital tomosynthesis system using a sphere phantom. To assess the spatial resolution of an in-plane image of the tomosynthesis system, projection data of a sphere phantom were generated within a limited data acquisition range of 40°, and reconstructed by the FDK algorithm. To measure the in-plane MTF, we divided the Fourier transform of the reconstructed sphere phantom by that of the ideal sphere phantom, and then performed plane integral along the fz-direction. When dividing, small values in the denominator can introduce estimation errors, and these errors were reduced by the proposed method. To evaluate the performance of the proposed method, the in-plane MTF estimated by simulation and experimental data was compared to the ideal in-plane MTF generated by computer simulations using a point object. For quantitative evaluation, we measured frequency values at half-maximum and full-maximum of the directional in-plane MTF along the three different directions (i.e., f0° -, f30° -, and f60° -directions) and compared them with those of the ideal in-plane MTF. Although the sphere phantom has been regarded as an inappropriate object due to the anisotropic characteristics of tomosynthesis image, our results show that the proposed method has a reliable estimation performance, demonstrating the sphere phantom is still suitable for measuring the directional in-plane MTF for a digital tomosynthesis system.
Collapse
|
17
|
Scaduto DA, Tousignant O, Zhao W. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual‐energy contrast‐enhanced breast imaging. Med Phys 2017; 44:3965-3977. [PMID: 28543761 DOI: 10.1002/mp.12358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/29/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- David A. Scaduto
- Department of Radiology Stony Brook Medicine Stony Brook NY 11794‐8460 USA
| | | | - Wei Zhao
- Department of Radiology Stony Brook Medicine Stony Brook NY 11794‐8460 USA
| |
Collapse
|
18
|
Monnin P, Verdun FR, Bosmans H, Pérez SR, Marshall NW. A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation. Phys Med Biol 2017; 62:5691-5722. [DOI: 10.1088/1361-6560/aa75bc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Michael KT. The application of quantitative data analysis for the assessment of flat panel x-ray detectors in digital radiography as part of a quality assurance programme. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa6c75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Gislason-Lee AJ, Tunstall CM, Kengyelics SK, Cowen AR, Davies AG. Technical Note: Impact on detective quantum efficiency of edge angle determination method by International Electrotechnical Commission methodology for cardiac x-ray image detectors. Med Phys 2015; 42:4423-7. [PMID: 26233172 DOI: 10.1118/1.4923178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Cardiac x-ray detectors are used to acquire moving images in real-time for angiography and interventional procedures. Detective quantum efficiency (DQE) is not generally measured on these dynamic detectors; the required "for processing" image data and control of x-ray settings have not been accessible. By 2016, USA hospital physicists will have the ability to measure DQE and will likely utilize the International Electrotechnical Commission (IEC) standard for measuring DQE of dynamic x-ray imaging devices. The current IEC standard requires an image of a tilted tungsten edge test object to obtain modulation transfer function (MTF) for DQE calculation. It specifies the range of edge angles to use; however, it does not specify a preferred method to determine this angle for image analysis. The study aimed to answer the question "will my choice in method impact my results?" Four different established edge angle determination methods were compared to investigate the impact on DQE. METHODS Following the IEC standard, edge and flat field images were acquired on a cardiac flat-panel detector to calculate MTF and noise power spectrum, respectively, to determine DQE. Accuracy of the methods in determining the correct angle was ascertained using a simulated edge image with known angulations. Precision of the methods was ascertained using variability of MTF and DQE, calculated via bootstrapping. RESULTS Three methods provided near equal angles and the same MTF while the fourth, with an angular difference of 6%, had a MTF lower by 3% at 1.5 mm(-1) spatial frequency and 8% at 2.5 mm(-1); corresponding DQE differences were 6% at 1.5 mm(-1) and 17% at 2.5 mm(-1); differences were greater than standard deviations in the measurements. CONCLUSIONS DQE measurements may vary by a significant amount, depending on the method used to determine the edge angle when following the IEC standard methodology for a cardiac x-ray detector. The most accurate and precise methods are recommended for absolute assessments and reproducible measurements, respectively.
Collapse
Affiliation(s)
- Amber J Gislason-Lee
- LXi Research, Division of Biomedical Imaging, University of Leeds, Worsley Building, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | - Clare M Tunstall
- LXi Research, Division of Biomedical Imaging, University of Leeds, Worsley Building, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | - Stephen K Kengyelics
- LXi Research, Division of Biomedical Imaging, University of Leeds, Worsley Building, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | - Arnold R Cowen
- LXi Research, Division of Biomedical Imaging, University of Leeds, Worsley Building, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | - Andrew G Davies
- LXi Research, Division of Biomedical Imaging, University of Leeds, Worsley Building, Clarendon Way, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
21
|
Application of a variable filter for presampled modulation transfer function analysis with the edge method. Radiol Phys Technol 2015; 8:320-30. [PMID: 26088943 DOI: 10.1007/s12194-015-0325-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
|
22
|
A Monte Carlo study of the influence of focal spot size, intensity distribution, breast thickness and magnification on spatial resolution of an a-Se digital mammography system using the generalized MTF. Phys Med 2014; 30:286-95. [DOI: 10.1016/j.ejmp.2013.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/29/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022] Open
|
23
|
Zhou Z, Zhu Q, Zhao H, Zhang L, Ma W, Gao F. Techniques to Improve the Accuracy of Presampling MTF Measurement in Digital X-ray Imaging Based on Constrained Spline Regression. IEEE Trans Biomed Eng 2014; 61:1339-49. [DOI: 10.1109/tbme.2014.2304955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
On the effect of FineView, mean energy and anti-scatter grid on the DQE of a mammography system. RADIAT MEAS 2013. [DOI: 10.1016/j.radmeas.2013.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Perez-Ponce H, Daul C, Wolf D, Noel A. Validation of a digital mammographic unit model for an objective and highly automated clinical image quality assessment. Med Eng Phys 2013. [DOI: 10.1016/j.medengphy.2012.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
de las Heras H, Schöfer F, Tiller B, Chevalier M, Zwettler G, Semturs F. A phantom using titanium and Landolt rings for image quality evaluation in mammography. Phys Med Biol 2013; 58:L17-30. [PMID: 23528479 DOI: 10.1088/0031-9155/58/8/l17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Wilson JM, Christianson OI, Richard S, Samei E. A methodology for image quality evaluation of advanced CT systems. Med Phys 2013; 40:031908. [DOI: 10.1118/1.4791645] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
28
|
Lazos D, Williamson JF. Impact of flat panel-imager veiling glare on scatter-estimation accuracy and image quality of a commercial on-board cone-beam CT imaging system. Med Phys 2012; 39:5639-51. [PMID: 22957630 DOI: 10.1118/1.4747260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purposes of this study is to measure the low frequency drop (LFD) of the modulation transfer function (MTF), associated with the long tails of the detector point spread function (PSF) of an on-board flat panel imager and study its impact on cone-beam CT (CBCT) image quality and scatter measurement accuracy. METHODS Two different experimental methods were used to characterize LFD and its associated PSF of a Varian OBI flat-panel detector system: the edge response function (ERF) method and the disk transfer function (DTF) method. PSF was estimated by fitting parametric models to these measurements for four values of the applied voltage (kVp). The resultant PSF was used to demonstrate the effect of LFD on image contrast and CT number accuracy in CBCT images reconstructed from synthetic datasets, as well as, accuracy of scatter measurements with the beam-stop method. RESULTS The MTFs derived from the measured ERF data revealed LFDs varying from 8% (at 60 kVp) to 10.5% (at 120 kVp), while the intensity of the long PSF tails was found to increase with increasing kVp. The veiling glare line spread functions derived from the ERF and DTF methods were in excellent agreement. Uncorrected veiling glare reduced contrast and the image intensity in CBCT reconstruction, near the phantom periphery (by 67 Hounsfield units in a 20 cm-in-diameter water phantom) and (to a smaller degree) near inhomogeneities. Use of the bow-tie filter mitigated these effects. Veiling glare also resulted in about 10%-15% overestimation of the scatter-to-primary ratio when measured with the beam-stop or beam-stop array method. CONCLUSIONS The long tails of the detector PSF were found to have a modest dependence of beam spectrum, which is reflected on the MTF curve LFD. Our findings show that uncorrected veiling glare can affect quantitative accuracy and contrast in CBCT imaging, based on flat panel imager. In addition, it results in overestimation of the scatter-to-primary ratio, measured with the beam-stop methods.
Collapse
Affiliation(s)
- Dimitrios Lazos
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
29
|
Salvagnini E, Bosmans H, Struelens L, Marshall NW. Quantification of scattered radiation in projection mammography: four practical methods compared. Med Phys 2012; 39:3167-80. [PMID: 22755701 DOI: 10.1118/1.4711754] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Four different practical methodologies of quantifying scattered radiation for two different digital mammographic systems are compared. The study considered both grid in and grid out geometries for two different antiscatter grid types, a typical linear grid and a cellular grid design. The aim was to find quick and reproducible methods that could be used in place of the beam stop technique. METHODS The scatter to primary ratio (SPR) and the scatter fraction (SF) were used to quantify scattered radiation as a function of poly(methyl methacrylate) (PMMA) thickness, grid position, and beam quality. The four scatter estimation methods applied were (1) the beam stop method, (2) a hybrid method that combined measured detector (scatter-free) modulation transfer function (MTF) data and a Monte Carlo simulation of the scatter point spread function, (3) from the low frequency drop data taken from the system MTF, and (4) from the edge spread function (ESF) measured in the presence of PMMA. Repeatability error was assessed for all methods. RESULTS SPR results acquired with the beam stop method ranged from 0.052 to 0.187 for the system with linear grid and from 0.012 to 0.064 for the cellular grid system, as PMMA thickness was increased from 20 to 80 mm. With the grid removed, beam stop SPR was similar for both systems, ranging between 0.268 and 1.124, for corresponding MTF thicknesses. The direct MTF method had a maximum difference of 24% from the beam stop SPR and SF data for all conditions except the cellular grid in geometry, where maximum difference in SPR was 0.044 (164%). The ESF technique gave large differences from the beam stops for both grid geometries but agreement was within 21% for the grid out geometry. Repeatability error with beam stops was between 1% and 5% for the grid out geometries, while for the grid in cases it was 13% and 87% for the linear and cellular grids, respectively. Repeatability error for the direct MTF method applied to both systems and grid geometries ranged between 3% and 12%. CONCLUSIONS All three alternative methods to the beam stop technique gave reasonable estimates of SPR without grid, with a maximum difference of 24% (mean difference 8%). For the grid in geometry, the direct MTF method gave a maximum difference of 24% for the linear grid system, while maximum percentage difference was 119% (absolute difference of 0.042) for the system with the cellular grid, where SPR values were low. Except for cases where the SPR is very low, the direct MTF method offers a quick and reproducible alternative to the beam stop technique.
Collapse
Affiliation(s)
- Elena Salvagnini
- Department of Radiology, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
30
|
Urbanczyk H, McDonagh E, Marshall NW, Castellano I. Characterization of the effects of the FineView algorithm for full field digital mammography. Phys Med Biol 2012; 57:1987-2003. [DOI: 10.1088/0031-9155/57/7/1987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Yip M, Mackenzie A, Lewis E, Dance DR, Young KC, Christmas W, Wells K. Image resampling effects in mammographic image simulation. Phys Med Biol 2011; 56:N275-86. [DOI: 10.1088/0031-9155/56/22/n02] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Konstantinidis AC, Olivo A, Speller RD. Technical Note: Further development of a resolution modification routine for the simulation of the modulation transfer function of digital x-ray detectors. Med Phys 2011; 38:5916-20. [DOI: 10.1118/1.3644845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
33
|
Hu YH, Zhao W. The effect of angular dose distribution on the detection of microcalcifications in digital breast tomosynthesis. Med Phys 2011; 38:2455-66. [PMID: 21776781 DOI: 10.1118/1.3570580] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Substantial effort has been devoted to the clinical development of digital breast tomosynthesis (DBT). DBT is a three-dimensional (3D) x-ray imaging modality that reconstructs a number of thin image slices parallel to a stationary detector plane. Preliminary clinical studies have shown that the removal of overlapping breast tissue reduces image clutter and increases detectability of large, low contrast lesions. However, some studies, as well as anecdotal evidence, suggested decreased conspicuity of small, high contrast objects such as microcalcifications. Several investigators have proposed alternative imaging methods for improving microcalcification detection by delivering half of the total dose to the central view in addition to a separate DBT scan. Preliminary observer studies found possible improvement by either viewing the central projection alone or combining all views with a reconstruction algorithm. METHODS In this paper, we developed a generalized imaging theory based on a cascaded linear-system model for DBT to calculate the effect of variable angular dose distribution on the 3D modulation transfer function (MTF) and noise power spectrum (NPS). Using the ideal observer signal-to-noise ratio (SNR), d', as a figure-of-merit (FOM) for a signal embedded in a uniform background, we compared the detectability of objects with different sizes under different imaging conditions (e.g., angular dose distribution and reconstruction filters). Experimental investigation was conducted for three different angular dose schemes (ADS) using a Siemens Novation(TOMO) prototype unit. RESULTS Our results show excellent agreement between modeled and experimental measurements of 3D NPS with different angular dose distribution. The ideal observer detectability index for the detection of Gaussian objects with different angular dose distributions depends strongly on the applied reconstruction filter as well as the imaging task. For detection tasks of small calcifications with reconstruction filters used typically in a clinical setting, variable angular dose distribution with more dose delivered to the central views may lead to higher d' than a uniform angular dose distribution. CONCLUSIONS The conspicuity of the detection of small calcifications may be improved, under certain imaging conditions, by delivering higher dose toward the central views of a tomosynthesis scan, while also reducing the dose at peripheral angles to keep total administered radiation dose equivalent. The degree of improvement depends on the choice of reconstruction filters as well as the imaging task. The improvement is more substantial for high-frequency imaging tasks and when an aggressive slice-thickness (ST) filter is applied to reduced the high-frequency noise at peripheral angles.
Collapse
Affiliation(s)
- Yue-Houng Hu
- Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460, USA.
| | | |
Collapse
|
34
|
Computation of realistic virtual phantom images for an objective lesion detectability assessment in digital mammography. Med Eng Phys 2011; 33:1276-86. [PMID: 21741291 DOI: 10.1016/j.medengphy.2011.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 11/21/2022]
Abstract
Image quality assessment is required for an optimal use of mammographic units. On the one hand, there are objective image quality assessment methods based on the measurement of technical parameters such as modulation transfer function (MTF), noise power spectrum (NPS) or detection quantum efficiency (DQE) describing performances of digital detectors. These parameters are, however, without direct relationship with lesion detectability in clinical practice. On the other hand, there are image quality assessment methods involving time consuming procedures, but presenting a direct relationship with lesion detectability. This contribution describes an X-ray source/digital detector model leading to the simulation of virtual contrast-detail phantom (CDMAM) images. The virtual image computation method requires the acquisition of only few real images and allows for an objective image quality assessment presenting a direct relationship with lesion detectability. The transfer function of the proposed model takes as input physical parameters (MTF* and noise) measured under clinical conditions on mammographic units. As presented in this contribution, MTF* is a modified MTF taking into account the effects due to X-ray scatter in the breast and magnification. Results obtained with the structural similarity index prove that the simulated images are quite realistic in terms of contrast and noise. Tests using contrast detail curves highlight the fact that the simulated and real images lead to very similar data quality in terms of lesion detectability. Finally, various statistical tests show that quality factors computed for both the simulated images and the real images are very close for the two data sets.
Collapse
|
35
|
Marshall NW, Monnin P, Bosmans H, Bochud FO, Verdun FR. Image quality assessment in digital mammography: part I. Technical characterization of the systems. Phys Med Biol 2011; 56:4201-20. [DOI: 10.1088/0031-9155/56/14/002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Kuhls-Gilcrist A, Jain A, Bednarek DR, Rudin S. Measuring the presampled MTF from a reduced number of flat-field images using the Noise Response (NR) method. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2011; 7961. [PMID: 21731401 DOI: 10.1117/12.877890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We evaluate a new method for measuring the presampled modulation transfer function (MTF) using the noise power spectrum (NPS) obtained from a few flat-field images acquired at one exposure level. The NPS is the sum of structure, quantum, and additive instrumentation noise, which are proportional to exposure squared, exposure, and a constant, respectively, with the spatial-frequency dependence of the quantum noise depending partly on the detector MTF. Cascaded linear-systems theory was used to derive an exact and generic relationship that was used to isolate noise terms and enable determination of the MTF directly from the noise response, thereby circumventing the need for precision test objects (slit, edge, etc.) as required by standard techniques. Isolation of the quantum NPS by fitting the total NPS versus exposure obtained using 30 flat-field images each at six or more different exposure levels with a linear regression provides highly accurate MTFs. A subset of these images from indirect digital detectors was used to investigate the accuracy of measuring the MTF from 30 or fewer flat-field images obtained at a single exposure level. Analyzing as few as two images acquired at a single exposure resulted in no observable systematic error. Increasing the number of images analyzed resulted in an increase in accuracy. Fifteen images provided comparable accuracy with the most rigorous slope approach, with less than 5% variability, suggesting additional image acquisitions may be unnecessary. Reducing the number of images acquired for the noise response method further simplifies and facilitates routine MTF measurements.
Collapse
|
37
|
Marshall NW, Mackenzie A, Honey ID. Quality control measurements for digital x-ray detectors. Phys Med Biol 2011; 56:979-99. [PMID: 21248386 DOI: 10.1088/0031-9155/56/4/007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm(-1) ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10(-5) mm(2) (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm(-1), with a maximum cov of 10% at 2.9 mm(-1), while the average DQE was 0.56 at 0.5 mm(-1) for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and gave an in-depth assessment of performance for a range of digital x-ray detectors.
Collapse
Affiliation(s)
- N W Marshall
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
38
|
Smans K, Vandenbroucke D, Pauwels H, Struelens L, Vanhavere F, Bosmans H. Validation of an image simulation technique for two computed radiography systems: An application to neonatal imaging. Med Phys 2010; 37:2092-100. [DOI: 10.1118/1.3377772] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Kuhls-Gilcrist A, Bednarek DR, Rudin S. A method for the determination of the two-dimensional MTF of digital radiography systems using only the noise response. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2010; 7622:76224W-76244W9. [PMID: 21170177 DOI: 10.1117/12.843918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We present a new method that enables the determination of the two-dimensional MTF of digital radiography systems using the noise response measured from flat-field images. Unlike commonly-used methods that measure the one-dimensional MTF, this new method does not require precision-made test-objects (slits/edges) or precise tool alignment. Although standard methods are dependent upon data processing that can result in inaccuracies and inconsistencies, this method based on the intrinsic noise response of the imager is highly accurate and less susceptible to such problems. A cascaded-linear-systems analysis was used to derive an exact relationship between the noise power spectrum (NPS) and the presampled MTF of a generalized detector system. The NPS was then used to determine the two-dimensional MTF for three systems: a simulated detector in which the "true" MTF was known exactly, a commercial indirect flat-panel detector (FPD), and a new solid-state x-ray image intensifier (SSXII). For the simulated detector, excellent agreement was observed between the "true" MTF and that determined using the noise response method, with an averaged deviation of 0.3%. The FPD MTF was shown to increase on the diagonals and was measured at 2.5 cycles/mm to be 0.086±0.007, 0.12±0.01, and 0.087±0.007 at 0, 45, and 90°, respectively. No statistically significant variation was observed for the SSXII as a function of angle. Measuring the two-dimensional MTF should lead to more accurate characterization of the detector resolution response, incorporating any potential non-isotropy which may result from the physical characteristics of the sensor, including the active-area shape of the pixel array.
Collapse
Affiliation(s)
- Andrew Kuhls-Gilcrist
- University at Buffalo (State University of New York), Toshiba Stroke Research Center, 3435 Main St., Buffalo, NY USA 14214
| | | | | |
Collapse
|
40
|
Kuhls-Gilcrist A, Jain A, Bednarek DR, Hoffmann KR, Rudin S. Accurate MTF measurement in digital radiography using noise response. Med Phys 2010; 37:724-35. [PMID: 20229882 PMCID: PMC2821422 DOI: 10.1118/1.3284376] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/26/2009] [Accepted: 12/08/2009] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The authors describe a new technique to determine the system presampled modulation transfer function (MTF) in digital radiography using only the detector noise response. METHODS A cascaded-linear systems analysis was used to develop an exact relationship between the two-dimensional noise power spectrum (NPS) and the presampled MTF for a generalized detector system. This relationship was then utilized to determine the two-dimensional presampled MTF. For simplicity, aliasing of the correlated noise component of the NPS was assumed to be negligible. Accuracy of this method was investigated using simulated images from a simple detector model in which the "true" MTF was known exactly. Measurements were also performed on three detector technologies (an x-ray image intensifier, an indirect flat panel detector, and a solid state x-ray image intensifier), and the results were compared using the standard edge-response method. Flat-field and edge images were acquired and analyzed according to guidelines set forth by the International Electrotechnical Commission, using the RQA 5 spectrum. RESULTS The presampled MTF determined using the noise-response method for the simulated detector system was in close agreement with the true MTF with an averaged percent difference of 0.3% and a maximum difference of 1.1% observed at the Nyquist frequency (fN). The edge-response method of the simulated detector system also showed very good agreement at lower spatial frequencies (less than 0.5 fN) with an averaged percent difference of 1.6% but showed significant discrepancies at higher spatial frequencies (greater than 0.5 fN) with an averaged percent difference of 17%. Discrepancies were in part a result of noise in the edge image and phasing errors. For all three detector systems, the MTFs obtained using the two methods were found to be in good agreement at spatial frequencies less than 0.5 fN with an averaged percent difference of 3.4%. Above 0.5 fN, differences increased to an average of 20%. Deviations of the experimental results largely followed the trend seen in the simulation results, suggesting that differences between the two methods could be explained as resulting from the inherent inaccuracies of the edge-response measurement technique used in this study. Aliasing of the correlated noise component was shown to have a minimal effect on the measured MTF for the three detectors studied. Systems with significant aliasing of the correlated noise component (e.g., a-Se based detectors) would likely require a more sophisticated fitting scheme to provide accurate results. CONCLUSIONS Results indicate that the noise-response method, a simple technique, can be used to accurately measure the MTF of digital x-ray detectors, while alleviating the problems and inaccuracies associated with use of precision test objects, such as a slit or an edge.
Collapse
Affiliation(s)
- Andrew Kuhls-Gilcrist
- Toshiba Stroke Research Center University at Buffalo, State University of New York, Biomedical Research Building, Room 445, 3435 Main Street, Buffalo, New York 14214, USA.
| | | | | | | | | |
Collapse
|
41
|
Marshall NW. An examination of automatic exposure control regimes for two digital radiography systems. Phys Med Biol 2009; 54:4645-70. [DOI: 10.1088/0031-9155/54/15/002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Zhao B, Zhou J, Hu YH, Mertelmeier T, Ludwig J, Zhao W. Experimental validation of a three-dimensional linear system model for breast tomosynthesis. Med Phys 2009; 36:240-51. [PMID: 19235392 DOI: 10.1118/1.3040178] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered back-projection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 microm pixel size or 2 x 1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of +/- 20 degrees. The images were reconstructed using a slice thickness of 1 mm with 0.085 x 0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460, USA
| | | | | | | | | | | |
Collapse
|
43
|
Friedman SN, Cunningham IA. Normalization of the modulation transfer function: the open-field approach. Med Phys 2008; 35:4443-9. [PMID: 18975691 DOI: 10.1118/1.2977536] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The modulation transfer function (MTF) is widely used to describe the spatial resolution of x-ray imaging systems. The MTF is defined to have a zero-frequency value of unity, and it is common practice to ensure this by normalizing a measured MTF curve by the zero-frequency value. However, truncation of the line spread function (LSF) within a finite region of interest (ROI) results in spectral leakage and causes a reduction in the measured MTF zero-frequency value equal to the area of truncated LSF tails. Subsequent normalization by this value may result in inflated MTF values. We show that open-field normalization with the edge method produces accurate MTF values at all nonzero frequencies without need for further normalization by the zero-frequency value, regardless of ROI size. While both normalization techniques are equivalent for a sufficiently large ROI, a 5% inflation in MTF values was observed for a CsI-based flat-panel system when using a 10 cm ROI. Use of open-field normalization avoids potential inflation caused by zero-frequency normalization.
Collapse
Affiliation(s)
- S N Friedman
- Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8, Canada
| | | |
Collapse
|
44
|
Zanca F, Chakraborty DP, Van Ongeval C, Jacobs J, Claus F, Marchal G, Bosmans H. An improved method for simulating microcalcifications in digital mammograms. Med Phys 2008; 35:4012-8. [PMID: 18841852 DOI: 10.1118/1.2968334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The assessment of the performance of a digital mammography system requires an observer study with a relatively large number of cases with known truth which is often difficult to assemble. Several investigators have developed methods for generating hybrid abnormal images containing simulated microcalcifications. This article addresses some of the limitations of earlier methods. The new method is based on digital images of needle biopsy specimens. Since the specimens are imaged separately from the breast, the microcalcification attenuation profile scan is deduced without the effects of over and underlying tissues. The resulting templates are normalized for image acquisition specific parameters and reprocessed to simulate microcalcifications appropriate to other imaging systems, with different x-ray, detector and image processing parameters than the original acquisition system. This capability is not shared by previous simulation methods that have relied on extracting microcalcifications from breast images. The method was validated by five experienced mammographers who compared 59 pairs of simulated and real microcalcifications in a two-alternative forced choice task designed to test if they could distinguish the real from the simulated lesions. They also classified the shapes of the microcalcifications according to a standardized clinical lexicon. The observed probability of correct choice was 0.415, 95% confidence interval (0.284, 0.546), showing that the radiologists were unable to distinguish the lesions. The shape classification revealed substantial agreement with the truth (mean kappa = 0.70), showing that we were able to accurately simulate the lesion morphology. While currently limited to single microcalcifications, the method is extensible to more complex clusters of microcalcifications and to three-dimensional images. It can be used to objectively assess an imaging technology, especially with respect to its ability to adequately visualize the morphology of the lesions, which is a critical factor in the benign versus malignant classification of a lesion detected in screening mammography.
Collapse
Affiliation(s)
- Federica Zanca
- Department of Radiology, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
45
|
Validation of a Digital Mammography Image Simulation Chain with Automated Scoring of CDMAM Images. DIGITAL MAMMOGRAPHY 2008. [DOI: 10.1007/978-3-540-70538-3_57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Zhao B, Zhao W. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system. Med Phys 2008; 35:1978-87. [PMID: 18561674 DOI: 10.1118/1.2903425] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In breast tomosynthesis a rapid sequence of N images is acquired when the x-ray tube sweeps through different angular views with respect to the breast. Since the total dose to the breast is kept the same as that in regular mammography, the exposure used for each image of tomosynthesis is 1/N. The low dose and high frame rate pose a tremendous challenge to the imaging performance of digital mammography detectors. The purpose of the present work is to investigate the detector performance in different operational modes designed for tomosynthesis acquisition, e.g., binning or full resolution readout, the range of view angles, and the number of views N. A prototype breast tomosynthesis system with a nominal angular range of +/-25 degrees was used in our investigation. The system was equipped with an amorphous selenium (a-Se) full field digital mammography detector with pixel size of 85 microm. The detector can be read out in full resolution or 2 x 1 binning (binning in the tube travel direction). The focal spot blur due to continuous tube travel was measured for different acquisition geometries, and it was found that pixel binning, instead of focal spot blur, dominates the detector modulation transfer function (MTF). The noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector were measured with the exposure range of 0.4-6 mR, which is relevant to the low dose used in tomosynthesis. It was found that DQE at 0.4 mR is only 20% less than that at highest exposure for both detector readout modes. The detector temporal performance was categorized as lag and ghosting, both of which were measured as a function of x-ray exposure. The first frame lags were 8% and 4%, respectively, for binning and full resolution mode. Ghosting is negligible and independent of the frame rate. The results showed that the detector performance is x-ray quantum noise limited at the low exposures used in each view of tomosynthesis, and the temporal performance at high frame rate (up to 2 frames per second) is adequate for tomosynthesis.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Radiology, State University of New York at Stony Brook, L-4 Health Science Center, Stony Brook, New York 11794-8460, USA.
| | | |
Collapse
|
47
|
Koutalonis M, Delis H, Spyrou G, Costaridou L, Tzanakos G, Panayiotakis G. Monte Carlo studies on the influence of focal spot size and intensity distribution on spatial resolution in magnification mammography. Phys Med Biol 2008; 53:1369-84. [DOI: 10.1088/0031-9155/53/5/013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
McLean ID, Heggie JCP, Herley J, Thomson FJ, Grewal RK. Interim recommendations for a digital mammography quality assurance program. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2007; 30:65-100. [PMID: 17682397 DOI: 10.1007/bf03178412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In 2001 the ACPSEM published a position paper on quality assurance in screen film mammography which was subsequently adopted as a basis for the quality assurance programs of both the Royal Australian and New Zealand College of Radiologists (RANZCR) and of BreastScreen Australia. Since then the clinical implementation of digital mammography has been realised and it has become evident that existing screen-film protocols were not appropriate to assure the required image quality needed for reliable diagnosis or to address the new dose implications resulting from digital technology. In addition, the advantages and responsibilities inherent in teleradiology are most critical in mammography and also need to be addressed. The current document is the result of a review of current overseas practice and local experience in these areas. At this time the technology of digital imaging is undergoing significant development and there is still a lack of full international consensus about some of the detailed Quality Control tests that should be included in quality assurance (QA) programs. This document describes the current status in digital mammography QA and recommends test procedures that may be suitable in the Australasian environment. For completeness, this document also includes a review of the QA programs required for the various types of digital biopsy units used in mammography. In the future, international harmonisation of digital quality assurance in mammography and changes in the technology may require a review of this document. Accordingly, updates of this document will be provided as deemed necessary in electronic format on the ACPSEM's website (see http://www.acpsem.org.au/au/subgroup/radiology/RadiologySG_index.html).
Collapse
Affiliation(s)
- I D McLean
- Medical Physics Department, Westmead Hospital, Wentworthville, Australia.
| | | | | | | | | |
Collapse
|
49
|
Marshall NW. Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems. Phys Med Biol 2007; 52:5545-68. [PMID: 17804881 DOI: 10.1088/0031-9155/52/18/006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Quantitative image quality results in the form of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) are presented for nine full field digital mammography (FFDM) systems. These parameters are routinely measured as part of the quality assurance (QA) programme for the seven FFDM units covered by our centre. Just one additional image is required compared to the standard FFDM protocol; this is the image of an edge, from which the MTF is calculated. A variance image is formed from one of the flood images used to measure the detector response and this provides useful information on the condition of the detector with respect to artefacts. Finally, the NNPS is calculated from the flood image acquired at a target detector air kerma (DAK) of 100 microGy. DQE is then estimated from these data; however, no correction is currently made for effects of detector cover transmission on DQE. The coefficient of variation (cov) of the 50% point of the MTF for five successive MTF results was 1%, while the cov for the 50% MTF point for an a-Se system over a period of 17 months was approximately 3%. For four a-Se based systems, the cov for the NNPS at 1 mm(-1) for a target DAK of 100 microGy was approximately 4%; the same result was found for four CsI based FFDM units. With regard to the stability of NNPS over time, the cov for four NNPS results acquired over a period of 12 months was also approximately 4%. The effect of acquisition geometry on NNPS was also assessed for a CsI based system. NNPS data acquired with the antiscatter grid in place showed increased noise at low spatial frequency; this effect was more severe as DAK increased. DQE results for the three detector types (a-Se, CsI and CR) are presented as a function of DAK. Some reduction in DQE was found for both the a-Se and CsI based systems at a target DAK of 12.5 microGy when compared to DQE data acquired at 100 microGy. For the CsI based systems, DQE at 1 mm(-1) fell from 0.49 at 100 microGy to 0.38 at 12.5 microGy. For the a-Se units, there was a slightly greater reduction in average DQE at 1 mm(-1), from 0.53 at 100 microGy to 0.31 at 12.5 microGy. Somewhat different behaviour was seen for the CR unit; DQE (at 1 mm(-1)) increased from 0.40 at 100 microGy to 0.49 at 12.5 microGy; however, DQE fell to 0.30 at 420 microGy. DQE stability over time was assessed using the cov of DQE at 1 mm(-1) and a target DAK of 100 microGy; the cov for data acquired over a period of 17 months for an a-Se system was approximately 7%. For comparison with conventional testing methods, the cov was calculated for contrast-detail (cd) data acquired over the same period of time for this unit. The cov for the threshold contrast results (averaged for disc diameters between 0.1 mm and 2 mm) was 6%, indicating similar stability.
Collapse
Affiliation(s)
- N W Marshall
- Clinical Physics Group, Barts and the London NHS Trust, St Bartholomew's Hospital, London EC1A 6BE, UK
| |
Collapse
|
50
|
Mackenzie A, Honey ID. Characterization of noise sources for two generations of computed radiography systems using powder and crystalline photostimulable phosphors. Med Phys 2007; 34:3345-57. [PMID: 17879798 DOI: 10.1118/1.2750973] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The performances of two generations of computed radiography (CR) were tested and compared in terms of resolution and noise characteristics. The main aim was to characterize and quantify the noise sources in the images. The systems tested were (1) Agfa CR 25.0, a flying spot reader with powder phosphor image plates (MD 40.0); and (2) the Agfa DX-S, a line-scanning CR reader with needle crystal phosphor image plates (HD 5.0). For both systems, the standard metrics of presampled modulation transfer function (MTF), normalized noise power spectra (NNPS) and detective quantum efficiency (DQE) were measured using standard radiation quality RQA5 as defined by the International Electrotechnical Commission. The various noise sources contributing to the NNPS were separated by using knowledge of their relationship with air kerma, MTF, absorption efficiency and antialiasing filters. The DX-S MTF was superior compared with the CR 25.0. The maximum difference in MTF between the DX-S scan and CR 25.0 subscan directions was 0.13 at 1.3 mm(-1). For a nominal detector air kerma of 4 microGy, the peak DQE of the DX-S was 43 (+/-3)%, which was over double that of the CR 25.0 of 18 (+/-2)%. The additive electronic noise was negligible on the CR 25.0 but calculated to be constant 3.4 x 10(-7) (+/-0.4 x 10(-7)) mm2 at 3.9 microGy on the DX-S. The DX-S has improved image quality compared with a traditional flying spot reader. The separation of the noise sources indicates that the improvements in DQE of the DX-S are due not only to the higher quantum, efficiency and MTF, but also the lower structure, secondary quantum, and excess noise.
Collapse
Affiliation(s)
- Alistair Mackenzie
- KCARE, King College Hospital, Denmark Hill, London, SE5 9RS, United Kingdom.
| | | |
Collapse
|