1
|
Panetta JV, Veltchev I, Price RA, Ma CMC. 2D IMRT QA passing rate dependency on coronal plane. Phys Med 2023; 110:102594. [PMID: 37116388 DOI: 10.1016/j.ejmp.2023.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Intensity modulated radiation therapy (IMRT) delivery involves a complex series of beam angles and multileaf collimator (MLC) arrangements, requiring quality assurance to be performed to validate delivery before treatment. The purpose of this work is to investigate the effect of dose gradient on quality assurance (QA) passing rate. Many (n = 40) IMRT plans were delivered and measured using a 2D planar array of ion chambers; additionally, eleven plans were measured at several coronal planes. For each measurement, dose gradient was assessed using a number of metrics and passing rate assessed at both 3%/3 mm and 3%/2 mm criteria. The passing rates of the various IMRT plans were shown to be generally correlated to gradient, with an average distance correlation of 0.54 ± 0.04 for the lateral dose gradient. The passing rate for an individual plan was shown to vary with coronal slice, though the correlation to dose gradient was not predictable. Even though the passing rate was strongly related to dose gradient for many of the plans, the signs of the correlations were not always negative, as hypothesized. The coronal plane at which QA is performed affects passing rate, though dose gradient may not easily be used to predict slices at which passing rate is higher.
Collapse
Affiliation(s)
- Joseph V Panetta
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Iavor Veltchev
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Robert A Price
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - C-M Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
2
|
Nishiyama S, Takemura A. A method for patient-specific DVH verification using a high-sampling-rate log file in an Elekta linac. J Appl Clin Med Phys 2023; 24:e13849. [PMID: 36443959 PMCID: PMC10018669 DOI: 10.1002/acm2.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
We have proposed a method for patient-specific dose-volume histogram (DVH) verification using a 40-ms high-sampling-rate log file (HLF) available in an Elekta linac. Ten prostate volumetric-modulated arc therapy plans were randomly selected, and systematic leaf position errors of ±0.2, ±0.4, or ±0.8 mm were added to the 10 plans, thereby producing a total of 70 plans. An RTP file was created by interpolating each leaf position in the HLF to obtain values at each control point, which is subsequently exported to a treatment planning system. The isocenter dose calculated by the HLF-based plan to a phantom (Delta4 Phantom+) was compared to that measured by the diode in the phantom in order to evaluate the accuracy of the HLF-based dose calculation. The D95 of the planning target volume (PTV) was also compared between the HLF-based plans and the original plans with the systematic leaf position errors, the latter being referred to as theory-based plans. Sensitivities of the DVH parameters in the target, the rectum, and the bladder were also calculated with the varied systematic leaf position errors. The relative differences in the isocenter doses between the HLF-based calculations and the measurements among the 70 plans were 0.21% ± 0.67% (SD). The maximum relative differences in PTV D95 between the HLF-based and the theory-based plans among the 70 cases were 0.11%. The patient-specific DVH verification method detected a change in the target DVH parameters of less than 1% when the systematic leaf position error was ±0.2 mm. It is therefore suggested that the proposed DVH verification method may simplify patient-specific dose quality assurance procedures without compromising accuracy and sensitivity.
Collapse
Affiliation(s)
- Shiro Nishiyama
- Department of RadiotechnologySaiseikai Kawaguchi General HospitalKawaguchiJapan
- Division of Health Sciences, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Akihiro Takemura
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| |
Collapse
|
3
|
Prentou G, Pappas EP, Prentou E, Yakoumakis N, Paraskevopoulou C, Koutsouveli E, Pantelis E, Papagiannis P, Karaiskos P. Impact of systematic MLC positional uncertainties on the quality of single-isocenter multi-target VMAT-SRS treatment plans. J Appl Clin Med Phys 2022; 23:e13708. [PMID: 35733367 PMCID: PMC9359048 DOI: 10.1002/acm2.13708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To study the impact of systematic MLC leaf positional uncertainties (stemming from mechanical inaccuracies or sub‐optimal MLC modeling) on the quality of intracranial single‐isocenter multi‐target VMAT‐SRS treatment plans. An estimation of appropriate tolerance levels is attempted. Methods Five patients, with three to four metastases and at least one target lying in close proximity to organs‐at‐risk (OARs) were included in this study. A single‐isocenter multi‐arc VMAT plan per patient was prepared, which served as the reference for dosimetric impact evaluation. A range of leaf offsets was introduced (±0.03 mm up to ±0.30 mm defined at the MLC plane) to both leaf banks, by varying the leaf offset MLC modeling parameter in Monaco for all the prepared plans, in order to simulate projected leaf offsets of ±0.09 mm up to ±0.94 mm at the isocenter plane, respectively. For all offsets simulated and cases studied, dose distributions were re‐calculated and compared with the corresponding reference ones. An experimental dosimetric procedure using the SRS mapCHECK diode array was also performed to support the simulation study results and investigate its suitability to detect small systematic leaf positional errors. Results Projected leaf offsets of ±0.09 mm were well‐tolerated with respect to both target dosimetry and OAR‐sparing. A linear relationship was found between D95% percentage change and projected leaf offset (slope: 12%/mm). Impact of projected offset on target dosimetry was strongly associated with target volume. In two cases, plans that could be considered potentially clinically unacceptable (i.e., clinical dose constraint violation) were obtained even for projected offsets as small as 0.19 mm. The performed experimental dosimetry check can detect potential small systematic leaf errors. Conclusions Plan quality indices and dose–volume metrics are very sensitive to systematic sub‐millimeter leaf positional inaccuracies, projected at the isocenter plane. Acceptable and tolerance levels in systematic MLC uncertainties need to be tailored to VMAT‐SRS spatial and dosimetric accuracy requirements.
Collapse
Affiliation(s)
- Georgia Prentou
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios P Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Prentou
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Evaggelos Pantelis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Barnes M, Pomare D, Doebrich M, Standen TS, Wolf J, Greer P, Simpson J. Insensitivity of machine log files to MLC leaf backlash and effect of MLC backlash on clinical dynamic MLC motion: An experimental investigation. J Appl Clin Med Phys 2022; 23:e13660. [PMID: 35678793 PMCID: PMC9512360 DOI: 10.1002/acm2.13660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Multi‐leaf‐collimator (MLC) leaf position accuracy is important for accurate dynamic radiotherapy treatment plan delivery. Machine log files have become widely utilized for quality assurance (QA) of such dynamic treatments. The primary aim is to test the sensitivity of machine log files in comparison to electronic portal imaging device (EPID)‐based measurements to MLC position errors caused by leaf backlash. The secondary aim is to investigate the effect of MLC leaf backlash on MLC leaf motion during clinical dynamic plan delivery. Methods The sensitivity of machine log files and two EPID‐based measurements were assessed via a controlled experiment, whereby the length of the “T” section of a series of 12 MLC leaf T‐nuts in a Varian Millennium MLC for a Trilogy C‐series type linac was reduced by sandpapering the top of the “T” to introduce backlash. The built‐in machine MLC leaf backlash test as well as measurements for two EPID‐based dynamic MLC positional tests along with log files were recorded pre‐ and post‐T‐nut modification. All methods were investigated for sensitivity to the T‐nut change by assessing the effect on measured MLC leaf positions. A reduced version of the experiment was repeated on a TrueBeam type linac with Millennium MLC. Results No significant differences before and after T‐nut modification were detected in any of the log file data. Both EPID methods demonstrated sensitivity to the introduced change at approximately the expected magnitude with a strong dependence observed with gantry angle. EPID‐based data showed MLC positional error in agreement with the micrometer measured T‐nut length change to 0.07 ± 0.05 mm (1 SD) using the departmental routine QA test. Backlash results were consistent between linac types. Conclusion Machine log files appear insensitive to MLC position errors caused by MLC leaf backlash introduced via the T‐nut. The effect of backlash on clinical MLC motions is heavily gantry angle dependent.
Collapse
Affiliation(s)
- Michael Barnes
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Dennis Pomare
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia
| | - Marcus Doebrich
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia
| | - Therese S Standen
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia
| | - Joshua Wolf
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia.,Icon Cancer Centre Maitland, Maitland Private Hospital, Maitland, New South Wales, Australia
| | - Peter Greer
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - John Simpson
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
5
|
Loebner HA, Volken W, Mueller S, Bertholet J, Mackeprang PH, Guyer G, Aebersold DM, Stampanoni M, Manser P, Fix MK. Development of a Monte Carlo based robustness calculation and evaluation tool. Med Phys 2022; 49:4780-4793. [PMID: 35451087 PMCID: PMC9545707 DOI: 10.1002/mp.15683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/09/2022] Open
Abstract
Background Evaluating plan robustness is a key step in radiotherapy. Purpose To develop a flexible Monte Carlo (MC)‐based robustness calculation and evaluation tool to assess and quantify dosimetric robustness of intensity‐modulated radiotherapy (IMRT) treatment plans by exploring the impact of systematic and random uncertainties resulting from patient setup, patient anatomy changes, and mechanical limitations of machine components. Methods The robustness tool consists of two parts: the first part includes automated MC dose calculation of multiple user‐defined uncertainty scenarios to populate a robustness space. An uncertainty scenario is defined by a certain combination of uncertainties in patient setup, rigid intrafraction motion and in mechanical steering of the following machine components: angles of gantry, collimator, table‐yaw, table‐pitch, table‐roll, translational positions of jaws, multileaf‐collimator (MLC) banks, and single MLC leaves. The Swiss Monte Carlo Plan (SMCP) is integrated in this tool to serve as the backbone for the MC dose calculations incorporating the uncertainties. The calculated dose distributions serve as input for the second part of the tool, handling the quantitative evaluation of the dosimetric impact of the uncertainties. A graphical user interface (GUI) is developed to simultaneously evaluate the uncertainty scenarios according to user‐specified conditions based on dose‐volume histogram (DVH) parameters, fast and exact gamma analysis, and dose differences. Additionally, a robustness index (RI) is introduced with the aim to simultaneously evaluate and condense dosimetric robustness against multiple uncertainties into one number. The RI is defined as the ratio of scenarios passing the conditions on the dose distributions. Weighting of the scenarios in the robustness space is possible to consider their likelihood of occurrence. The robustness tool is applied on IMRT, a volumetric modulated arc therapy (VMAT), a dynamic trajectory radiotherapy (DTRT), and a dynamic mixed beam radiotherapy (DYMBER) plan for a brain case to evaluate the robustness to uncertainties of gantry‐, table‐, collimator angle, MLC, and intrafraction motion. Additionally, the robustness of the IMRT, VMAT, and DTRT plan against patient setup uncertainties are compared. The robustness tool is validated by Delta4 measurements for scenarios including all uncertainty types available. Results The robustness tool performs simultaneous calculation of uncertainty scenarios, and the GUI enables their fast evaluation. For all evaluated plans and uncertainties, the planning target volume (PTV) margin prevented major clinical target volume (CTV) coverage deterioration (maximum observed standard deviation of D98%CTV was 1.3 Gy). OARs close to the PTV experienced larger dosimetric deviations (maximum observed standard deviation of D2%chiasma was 14.5 Gy). Robustness comparison by RI evaluation against patient setup uncertainties revealed better dosimetric robustness of the VMAT and DTRT plans as compared to the IMRT plan. Delta4 validation measurements agreed with calculations by >96% gamma‐passing rate (3% global/2 mm). Conclusions The robustness tool was successfully implemented. Calculation and evaluation of uncertainty scenarios with the robustness tool were demonstrated on a brain case. Effects of patient and machine‐specific uncertainties and the combination thereof on the dose distribution are evaluated in a user‐friendly GUI to quantitatively assess and compare treatment plans and their robustness.
Collapse
Affiliation(s)
- H A Loebner
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - S Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - J Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - P-H Mackeprang
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - G Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - D M Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Mfm Stampanoni
- Institute for Biomedical Engineering, ETH Zürich and PSI, Villigen, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Szeverinski P, Kowatsch M, Künzler T, Meinschad M, Clemens P, DeVries AF. Evaluation of 4-Hz log files and secondary Monte Carlo dose calculation as patient-specific quality assurance for VMAT prostate plans. J Appl Clin Med Phys 2021; 22:235-244. [PMID: 34151502 PMCID: PMC8292700 DOI: 10.1002/acm2.13315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022] Open
Abstract
Purpose In this study, 4‐Hz log files were evaluated with an independent secondary Monte Carlo dose calculation algorithm to reduce the workload for patient‐specific quality assurance (QA) in clinical routine. Materials and Methods A total of 30 randomly selected clinical prostate VMAT plans were included. The used treatment planning system (TPS) was Monaco (Elekta, Crawley), and the secondary dose calculation software was SciMoCa (Scientific‐RT, Munich). Monaco and SciMoCa work with a Monte Carlo algorithm. A plausibility check of Monaco and SciMoCa was performed using an ionization chamber in the BodyPhantom (BP). First, the original Monaco RT plans were verified with SciMoCa (pretreatment QA). Second, the corresponding 4‐Hz log files were converted into RT log file plans and sent to SciMoCa as on‐treatment QA. MLC shift errors were introduced for one prostate plan to determine the sensitivity of on‐treatment QA. For pretreatment and on‐treatment QA, a gamma analysis (2%/1mm/20%) was performed and dosimetric values of PTV and OARs were ascertained in SciMoCa. Results Plausibility check of TPS Monaco vs. BP measurement and SciMoCa vs. BP measurement showed valid accuracy for clinical VMAT QA. Using SciMoCa, there was no significant difference in PTV Dmean between RT plan and RT log file plan. Between pretreatment and on‐treatment QA, PTV metrics, femur right and left showed no significant dosimetric differences as opposed to OARs rectum and bladder. The overall gamma passing rate (GPR) ranged from 96.10% to 100% in pretreatment QA and from 93.50% to 99.80% in on‐treatment QA. MLC shift errors were identified for deviations larger than −0.50 mm and +0.75 mm using overall gamma criterion and PTV Dmean. Conclusion SciMoCa calculations of Monaco RT plans and RT log file plans are in excellent agreement to each other. Therefore, 4‐Hz log files and SciMoCa can replace labor‐intensive phantom‐based measurements as patient‐specific QA.
Collapse
Affiliation(s)
- Philipp Szeverinski
- Institute of Medical Physics, Academic Teaching Hospital Feldkirch, Feldkirch, Austria.,Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Matthias Kowatsch
- Institute of Medical Physics, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Thomas Künzler
- Institute of Medical Physics, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Marco Meinschad
- Institute of Medical Physics, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Patrick Clemens
- Department of Radio-Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Alexander F DeVries
- Department of Radio-Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| |
Collapse
|
7
|
Rohani SA, Mahdavi SR, Mostaar A, Rahimi S, Mohammadi R, Geraily G. Commissioning and quality assurance of Euromechanics add-on multileaf collimator. Biomed Phys Eng Express 2020; 7. [PMID: 34037543 DOI: 10.1088/2057-1976/abbd23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/30/2020] [Indexed: 11/11/2022]
Abstract
In this study, the beam characteristics of a Euromechanics add-on MLC that has been installed on a Varian CLINAC 2100 C/D linear accelerator are presented. This was the first installation of 60-leaf PMLC from Euromechanics Company worldwide and all mechanical and dosimetric parameters were measured before clinical use of this kind of MLC. Mechanical tests were executed for different gantry and collimator angles. Leaf position accuracy and leaf gap reproducibility were checked with four different tests. The leaf transmissions, collimator (Sc), phantom (Sp), total (Sc,p) scatter factors, output of the machine, beam profiles for off-axis ratios, central axis depth dose, flatness, symmetry and penumbra have been measured for different field sizes pre and post MLC installation in 6 and 18 MV-mode. To evaluate the effect of new data on clinical plans, different beam setup configurations conformed with MLC and custom blocks were planned on CT images of thorax a CIRS phantom model 002LFC in the same treatment planning system. Leaf position in picket fence test found to be in range between 4.89-5.02 cm instead of nominal 5 cm, however the results of this test with EPIDs image and PIPSpro software showed the higher deviation rather than the results reported from the tests with EBT3 films. The measured data showed that on average Sc,p and Sc were increased 0.22% (P = 0.86) and 0.34% (P = 0.86) for 6 MV and 0.37% (P = 0.84) and 0.42% (P = 0.88) for 18 MV beams for different field sizes, respectively. Good agreement was observed between the PDD and profile curves pre and post MLC installation that was expected based on no changes in beam energy and geometry of the collimators. Based on the mechanical and dosimetry results which have been achieved from our different standard tests, it was found no significant differences between pre and post MLC installation values. This indicates, installation and using this system is clinically acceptable.
Collapse
Affiliation(s)
| | - Seied Rabi Mahdavi
- Medical Physics Department, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran.,Radiation Biology Research Center, Iran Department of Medical Physics, School of Medicine, Tehran, Iran
| | - Ahmad Mostaar
- Radiation Biology Research Center, Iran Department of Medical Physics, School of Medicine, Tehran, Iran.,Department of Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Mohammadi
- Medical Physics Department, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
8
|
Chuang KC, Giles W, Adamson J. On the use of trajectory log files for machine & patient specific QA. Biomed Phys Eng Express 2020; 7. [PMID: 34037535 DOI: 10.1088/2057-1976/abc86c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 11/12/2022]
Abstract
Purpose:Trajectory log files are increasingly being utilized clinically for machine and patient specific QA. The process of converting the DICOM-RT plan to a deliverable trajectory by the linac control software introduces some uncertainty that is inherently incorporated into measurement-based patient specific QA but is not necessarily included for trajectory log file-based methods. Roughly half of prior studies have included this uncertainty in the analysis while the remaining studies have ignored it, and it has yet to be quantified in the literature.Methods:We collected DICOM-RT files from the treatment planning system and the trajectory log files from four TrueBeam linear accelerators for 25 IMRT and 10 VMAT plans. We quantified the DICOM-RT Conversion to Trajectory Residual (DCTR, difference between 'planned' MLC position from TPS DICOM-RT file and 'expected' MLC position (the deliverable MLC positions calculated by the linac control software) from trajectory log file) and compared it to the discrepancy between actual and expected machine parameters recorded in trajectory log files.Results:RMS of the DCTR was 0.0845 mm (range of RMS per field/arc: 0.0173-0.1825 mm) for 35 plans (114 fields/arcs) and was independent of treatment technique, with a maximum observed discrepancy at any control point of 0.7255 mm. DCTR was correlated with MLC velocity and was consistent over the course of treatment and over time, with a slight change in magnitude observed after a linac software upgrade. For comparison, the RMS of trajectory log file reported delivery error for moving MLCs was 0.0205 mm, thus DCTR is about four times the recorded delivery error in the trajectory log file.Conclusion:The uncertainty introduced from the conversion process by the linac control software from DICOM-RT plan to a deliverable trajectory is 3-4 times larger than the discrepancy between actual and expected machine parameters recorded in trajectory log files. This uncertainty should be incorporated into the analysis when using trajectory log file-based methods for analyzing MLC performance or patient-specific QA.
Collapse
Affiliation(s)
- Kai-Cheng Chuang
- Medical Physics Graduate Program, Duke University, Durham, NC, United States of America.,Medical Physics Graduate Program, Duke Kunshan University, Kunshan, People's Republic of China
| | - William Giles
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Justus Adamson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
9
|
Glenn MC, Peterson CB, Howell RM, Followill DS, Pollard‐Larkin JM, Kry SF. Sensitivity of IROC phantom performance to radiotherapy treatment planning system beam modeling parameters based on community-driven data. Med Phys 2020; 47:5250-5259. [PMID: 32677052 PMCID: PMC7689833 DOI: 10.1002/mp.14396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Treatment planning system (TPS) dose calculations have previously been shown to be sensitive to modeling errors, especially when treating with complex strategies like intensity-modulated radiation therapy (IMRT). This work investigates the dosimetric impact of several dosimetric and nondosimetric beam modeling parameters, based on their distribution in the radiotherapy community, in two commercial TPSs in order to understand the realistic potential for dose deviations and their clinical effects. METHODS AND MATERIALS Beam models representing standard 120-leaf Varian Clinac-type machines were developed in Eclipse 13.5 (AAA algorithm) and RayStation 9A (v8.99, collapsed-cone algorithm) based upon median values of dosimetric measurements from Imaging and Radiation Oncology Core (IROC) Houston site visit data and community beam modeling parameter survey data in order to represent a baseline linear accelerator. Five clinically acceptable treatment plans (three IMRT, two VMAT) were developed for the IROC head and neck phantom. Dose distributions for each plan were recalculated after individually modifying parameters of interest (e.g., MLC transmission, percent depth doses [PDDs], and output factors) according to the 2.5th to 97.5th percentiles of community survey and machine performance data to encompass the realistic extent of variance in the radiotherapy community. The resultant dose distributions were evaluated by examining relative changes in average dose for thermoluminescent dosimeter (TLD) locations across the two target volumes and organ at risk (OAR). Interplay was also examined for parameters generating changes in target dose greater than 1%. RESULTS For Eclipse, dose calculations were sensitive to changes in the dosimetric leaf gap (DLG), which resulted in differences from -5% to +3% to the targets relative to the baseline beam model. Modifying the MLC transmission factor introduced differences up to ± 1%. For RayStation, parameters determining MLC behaviors likewise contributed substantially; the MLC offset introduced changes in dose from -4% to +7%, and the MLC transmission caused changes of -4% to +2%. Among the dosimetric qualities examined, changes in PDD implementation resulted in the most substantial changes, but these were only up to ±1%. Other dosimetric factors had <1% impact on dose accuracy. Interplay between impactful parameters was found to be minimal. CONCLUSION Factors related to the modeling of the MLC, particularly relating to the leaf offset, can cause clinically significant changes in the calculated dose for IMRT and VMAT plans. This should be of concern to the radiotherapy community because the clinical effects of poor TPS commissioning were based on reported data from clinically implemented beam models. These results further reinforce that dose errors caused by poor TPS calculations are often involved in IROC phantom failures.
Collapse
Affiliation(s)
- Mallory C. Glenn
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Christine B. Peterson
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Rebecca M. Howell
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - David S. Followill
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Julianne M. Pollard‐Larkin
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Stephen F. Kry
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| |
Collapse
|
10
|
Osman AFI, Maalej NM, Jayesh K. Prediction of the individual multileaf collimator positional deviations during dynamic IMRT delivery
priori
with artificial neural network. Med Phys 2020; 47:1421-1430. [DOI: 10.1002/mp.14014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alexander F. I. Osman
- Department of Radiation Oncology American University of Beirut Medical Center Riad El‐Solh 1107 2020 Beirut Lebanon
- Department of Medical Physics Al‐Neelain University Khartoum 11121Sudan
| | - Nabil M. Maalej
- Department of Physics King Fahd University of Petroleum and Minerals Dhahran 31261Saudi Arabia
| | - Kunnanchath Jayesh
- Department of Radiation Oncology American Hospital Dubai Dubai United Arab Emirates
| |
Collapse
|
11
|
Koger B, Price R, Wang D, Toomeh D, Geneser S, Ford E. Impact of the MLC leaf-tip model in a commercial TPS: Dose calculation limitations and IROC-H phantom failures. J Appl Clin Med Phys 2020; 21:82-88. [PMID: 31961036 PMCID: PMC7021005 DOI: 10.1002/acm2.12819] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/05/2019] [Accepted: 12/18/2019] [Indexed: 11/12/2022] Open
Abstract
Purpose Treatment planning system (TPS) dose calculation is sensitive to multileaf collimator (MLC) modeling, especially when treating with intensity‐modulated radiation therapy (IMRT) or VMAT. This study investigates the dosimetric impact of the MLC leaf‐tip model in a commercial TPS (RayStation v.6.1). The detectability of modeling errors was assessed through both measurements with an anthropomorphic head‐and‐neck phantom and patient‐specific IMRT QA using a 3D diode array. Methods and Materials An Agility MLC (Elekta Inc.) was commissioned in RayStation. Nine IMRT and VMAT plans were optimized to treat the head‐and‐neck phantom from the Imaging and Radiation Oncology Core Houston branch (IROC‐H). Dose distributions for each plan were re‐calculated on 27 beam models, varying leaf‐tip width (2.0, 4.5, and 6.5 mm) and leaf‐tip offset (−2.0 to +2.0 mm) values. Doses were compared to phantom TLD measurements. Patient‐specific IMRT QA was performed, and receiver‐operating characteristic (ROC) analysis was performed to determine the detectability of modeling errors. Results Dose calculations were very sensitive to leaf‐tip offset values. Offsets of ±1.0 mm resulted in dose differences up to 10% and 15% in the PTV and spinal cord TLDs respectively. Offsets of ±2.0 mm caused dose deviations up to 50% in the spinal cord TLD. Patient‐specific IMRT QA could not reliably detect these deviations, with an ROC area under the curve (AUC) value of 0.537 for a ±1.0 mm change in leaf‐tip offset, corresponding to >7% dose deviation. Leaf‐tip width had a modest dosimetric impact with <2% and 5.6% differences in the PTV and spinal cord TLDs respectively. Conclusions Small changes in the MLC leaf‐tip offset in this TPS model can cause large changes in the calculated dose for IMRT and VMAT plans that are difficult to identify through either dose curves or standard patient‐specific IMRT QA. These results may, in part, explain the reported high failure rate of IROC‐H phantom tests.
Collapse
Affiliation(s)
- Brandon Koger
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ryan Price
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Da Wang
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Dolla Toomeh
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Sarah Geneser
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Eric Ford
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
12
|
Evaluating the dosimetric consequences of MLC leaf positioning errors in dynamic IMRT treatments. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396918000705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractPurposeThe purpose of this study was to evaluate the dosimetric impact of multileaf collimator (MLC) positional errors on dynamic intensity-modulated radiotherapy (IMRT) treatments through planning simulation. Secondly the sensitivity of IMRT MatriXX device for detecting the MLC leaf positional errors was also evaluated.Materials and methodsIn this study five dynamic IMRT plans, each for brain and head–neck (HN), were retrospectively included. An in-house software was used to introduce random errors (uniform distribution between −2·0 and +2·0 mm) and systematic errors [±0·5, ±0·75, ±1·0 and ±2·0 mm (+: open MLC error and −: close MLC error)]. The error-introduced MLC files were imported into the treatment planning system and new dose distributions were calculated. Furthermore, the dose–volume histogram files of all plans were exported to in-house software for equivalent uniform dose (EUD), tumour control probability and normal tissue complication probability calculations. The error-introduced plans were also delivered on LINAC, and the planar fluences were measured by IMRT MatriXX. Further, 3%/3 mm and 2%/2 mm γ-criteria were used for analysis.ResultsIn planning simulation study, the impact of random errors was negligible and ΔEUD was <0·5±0·7%, for both brain and HN. The impact of systematic errors was substantial, and on average, the maximum change in EUD for systematic errors (close 2 mm) was −10·7±3·1% for brain and −15·5±2·6% for HN.ConclusionsIt can be concluded that the acceptable systematic error was 0·4 mm for brain and 0·3 mm for HN. Furthermore, IMRT MatriXX device was able to detect the MLC errors ≥2 mm in HN and >3 mm errors in brain with 2%/2 mm γ-criteria.
Collapse
|
13
|
SBRT for pancreatic cancer: In regard of Bohoudi et al. Radiother Oncol 2018; 127:509-510. [DOI: 10.1016/j.radonc.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
|
14
|
Deshpande S, Blake SJ, Xing A, Metcalfe PE, Holloway LC, Vial P. A simple model for transit dosimetry based on a water equivalent EPID. Med Phys 2018; 45:1266-1275. [DOI: 10.1002/mp.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/10/2017] [Accepted: 12/18/2017] [Indexed: 01/20/2023] Open
Affiliation(s)
- S. Deshpande
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
| | - S. J. Blake
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
- School of Physics; Institute of Medical Physics; University of Sydney; Sydney NSW 2006 Australia
| | - A. Xing
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
| | - P. E. Metcalfe
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
| | - L. C. Holloway
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
- School of Physics; Institute of Medical Physics; University of Sydney; Sydney NSW 2006 Australia
- School of Medicine; South West Sydney Clinical School; University of NSW; Liverpool NSW 2052 Australia
| | - P. Vial
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute; Liverpool NSW 2170 Australia
- School of Physics; Institute of Medical Physics; University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
15
|
Christophides D, Davies A, Fleckney M. Automatic detection of MLC relative position errors for VMAT using the EPID-based picket fence test. Phys Med Biol 2016; 61:8340-8359. [PMID: 27811392 DOI: 10.1088/0031-9155/61/23/8340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multi-leaf collimators (MLCs) ensure the accurate delivery of treatments requiring complex beam fluences like intensity modulated radiotherapy and volumetric modulated arc therapy. The purpose of this work is to automate the detection of MLC relative position errors ⩾0.5 mm using electronic portal imaging device-based picket fence tests and compare the results to the qualitative assessment currently in use. Picket fence tests with and without intentional MLC errors were measured weekly on three Varian linacs. The picket fence images analysed covered a time period ranging between 14-20 months depending on the linac. An algorithm was developed that calculated the MLC error for each leaf-pair present in the picket fence images. The baseline error distributions of each linac were characterised for an initial period of 6 months and compared with the intentional MLC errors using statistical metrics. The distributions of median and one-sample Kolmogorov-Smirnov test p-value exhibited no overlap between baseline and intentional errors and were used retrospectively to automatically detect MLC errors in routine clinical practice. Agreement was found between the MLC errors detected by the automatic method and the fault reports during clinical use, as well as interventions for MLC repair and calibration. In conclusion the method presented provides for full automation of MLC quality assurance, based on individual linac performance characteristics. The use of the automatic method has been shown to provide early warning for MLC errors that resulted in clinical downtime.
Collapse
Affiliation(s)
- Damianos Christophides
- Radiotherapy Physics, Level 1 Bexley Wing, St. James's Institute of Oncology, Beckett Street, Leeds LS9 7TF, UK. University of Leeds, Leeds Institute of Cancer and Pathology, Leeds, UK
| | | | | |
Collapse
|
16
|
Zwan BJ, Barnes MP, Fuangord T, Stanton CJ, O'Connor DJ, Keall PJ, Greer PB. An EPID-based system for gantry-resolved MLC quality assurance for VMAT. J Appl Clin Med Phys 2016; 17:348-365. [PMID: 27685132 PMCID: PMC5874117 DOI: 10.1120/jacmp.v17i5.6312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/19/2016] [Accepted: 05/13/2016] [Indexed: 11/23/2022] Open
Abstract
Multileaf collimator (MLC) positions should be precisely and independently mea-sured as a function of gantry angle as part of a comprehensive quality assurance (QA) program for volumetric-modulated arc therapy (VMAT). It is also ideal that such a QA program has the ability to relate MLC positional accuracy to patient-specific dosimetry in order to determine the clinical significance of any detected MLC errors. In this work we propose a method to verify individual MLC trajectories during VMAT deliveries for use as a routine linear accelerator QA tool. We also extend this method to reconstruct the 3D patient dose in the treatment planning sys-tem based on the measured MLC trajectories and the original DICOM plan file. The method relies on extracting MLC positions from EPID images acquired at 8.41fps during clinical VMAT deliveries. A gantry angle is automatically tagged to each image in order to obtain the MLC trajectories as a function of gantry angle. This analysis was performed for six clinical VMAT plans acquired at monthly intervals for three months. The measured trajectories for each delivery were compared to the MLC positions from the DICOM plan file. The maximum mean error detected was 0.07 mm and a maximum root-mean-square error was 0.8 mm for any leaf of any delivery. The sensitivity of this system was characterized by introducing random and systematic MLC errors into the test plans. It was demonstrated that the system is capable of detecting random and systematic errors on the range of 1-2mm and single leaf calibration errors of 0.5 mm. The methodology developed in the work has potential to be used for efficient routine linear accelerator MLC QA and pretreatment patient-specific QA and has the ability to relate measured MLC positional errors to 3D dosimetric errors within a patient volume.
Collapse
|
17
|
Zhen H, Ouyang L, Bao Q, Qin N, Stojadinovic S, Pompos A. The step-and-shoot IMRT overshooting phenomenon: a novel method to mitigate patient overdosage. J Appl Clin Med Phys 2016; 17:214-222. [PMID: 27455482 PMCID: PMC5690057 DOI: 10.1120/jacmp.v17i4.6101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/31/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022] Open
Abstract
The goal of this work is to evaluate the dosimetric impact of an overshooting phenomenon in step‐and‐shoot IMRT delivery, and to demonstrate a novel method to mitigate the issue. Five pelvis IMRT patients treated on Varian 2100C EX linacs with larger than +4.5% phantom ion chamber point‐dose difference relative to planned dose were investigated. For each patient plan, 5 fractions were delivered. DynaLog files were recorded and centi‐MU pulses from dose integrator board for every control point (CP) were counted using a commercial pulse counter. The counter recorded CP MU agrees with DynaLog records, both showing an ~0.6 MU overshoot of the first segment of every beam. The 3D patient dose was recalculated from the counter records and compared to the planned dose, showing that the overshoot resulted in on average 2.05% of PTV D95 error, and 2.49%, 2.61% and 2.45% of D1cc error for rectum, bladder, and bowel, respectively. The initial plans were then modified by inserting a specially designed MLC segment to the start of every beam. The modified plans were also delivered five times. The dose from the modified delivery was calculated using counter recorded CP MU. The corresponding Dx parameters were all within 0.31% from the original plan. IMRT QA results also show a 2.2% improvement in ion chamber point‐dose agreement. The results demonstrate that the proposed plan modification method effectively eliminates the overdosage from the overshooting phenomenon. PACS number(s): 87.55.Qr, 87.55.km
Collapse
|
18
|
Huq MS, Fraass BA, Dunscombe PB, Gibbons JP, Ibbott GS, Mundt AJ, Mutic S, Palta JR, Rath F, Thomadsen BR, Williamson JF, Yorke ED. The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management. Med Phys 2016; 43:4209. [PMID: 27370140 PMCID: PMC4985013 DOI: 10.1118/1.4947547] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for "intensity modulated radiation therapy (IMRT)" as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy safer and more efficient.
Collapse
Affiliation(s)
- M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, Pennsylvania 15232
| | - Benedick A Fraass
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Peter B Dunscombe
- Department of Oncology, University of Calgary, Calgary T2N 1N4, Canada
| | | | - Geoffrey S Ibbott
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas 77030
| | - Arno J Mundt
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California 92093-0843
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jatinder R Palta
- Department of Radiation Oncology, Virginia Commonwealth University, P.O. Box 980058, Richmond, Virginia 23298
| | - Frank Rath
- Department of Engineering Professional Development, University of Wisconsin, Madison, Wisconsin 53706
| | - Bruce R Thomadsen
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705-2275
| | - Jeffrey F Williamson
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298-0058
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Center, New York, New York 10065
| |
Collapse
|
19
|
Luo W, Meacham A, Xie X, Li J, Aryal P, McGarry R, Molloy J. Monte Carlo dose verification for lung SBRT with CMS/XiO superposition algorithm. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/1/015020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Xin-Ye N, Ren L, Yan H, Yin FF. Sensitivity of 3D Dose Verification to Multileaf Collimator Misalignments in Stereotactic Body Radiation Therapy of Spinal Tumor. Technol Cancer Res Treat 2015; 15:NP25-NP34. [PMID: 26525748 DOI: 10.1177/1533034615610251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 08/17/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022] Open
Abstract
PURPOSE This study aimed to detect the sensitivity of Delt 4 on ordinary field multileaf collimator misalignments, system misalignments, random misalignments, and misalignments caused by gravity of the multileaf collimator in stereotactic body radiation therapy. METHODS (1) Two field sizes, including 2.00 cm (X) × 6.00 cm (Y) and 7.00 cm (X) × 6.00 cm (Y), were set. The leaves of X1 and X2 in the multileaf collimator were simultaneously opened. (2) Three cases of stereotactic body radiation therapy of spinal tumor were used. The dose of the planning target volume was 1800 cGy with 3 fractions. The 4 types to be simulated included (1) the leaves of X1 and X2 in the multileaf collimator were simultaneously opened, (2) only X1 of the multileaf collimator and the unilateral leaf were opened, (3) the leaves of X1 and X2 in the multileaf collimator were randomly opened, and (4) gravity effect was simulated. The leaves of X1 and X2 in the multileaf collimator shifted to the same direction. The difference between the corresponding 3-dimensional dose distribution measured by Delt 4 and the dose distribution in the original plan made in the treatment planning system was analyzed with γ index criteria of 3.0 mm/3.0%, 2.5 mm/2.5%, 2.0 mm/2.0%, 2.5 mm/1.5%, and 1.0 mm/1.0%. RESULTS (1) In the field size of 2.00 cm (X) × 6.00 cm (Y), the γ pass rate of the original was 100% with 2.5 mm/2.5% as the statistical standard. The pass rate decreased to 95.9% and 89.4% when the X1 and X2 directions of the multileaf collimator were opened within 0.3 and 0.5 mm, respectively. In the field size of 7.00 (X) cm × 6.00 (Y) cm with 1.5 mm/1.5% as the statistical standard, the pass rate of the original was 96.5%. After X1 and X2 of the multileaf collimator were opened within 0.3 mm, the pass rate decreased to lower than 95%. The pass rate was higher than 90% within the 3 mm opening. (2) For spinal tumor, the change in the planning target volume V18 under various modes calculated using treatment planning system was within 1%. However, the maximum dose deviation of the spinal cord was high. In the spinal cord with a gravity of -0.25 mm, the maximum dose deviation minimally changed and increased by 6.8% than that of the original. In the largest opening of 1.00 mm, the deviation increased by 47.7% than that of the original. Moreover, the pass rate of the original determined through Delt 4 was 100% with 3 mm/3% as the statistical standard. The pass rate was 97.5% in the 0.25 mm opening and higher than 95% in the 0.5 mm opening A, 0.25 mm opening A, whole gravity series, and 0.20 mm random opening. Moreover, the pass rate was higher than 90% with 2.0 mm/2.0% as the statistical standard in the original and in the 0.25 mm gravity. The difference in the pass rates was not statistically significant among the -0.25 mm gravity, 0.25 mm opening A, 0.20 mm random opening, and original as calculated using SPSS 11.0 software with P > .05. CONCLUSIONS Different analysis standards of Delt 4 were analyzed in different field sizes to improve the detection sensitivity of the multileaf collimator position on the basis of 90% throughout rate. In stereotactic body radiation therapy of spinal tumor, the 2.0 mm/2.0% standard can reveal the dosimetric differences caused by the minor multileaf collimator position compared with the 3.0 mm/3.0% statistical standard. However, some position derivations of the misalignments that caused high dose amount to the spinal cord cannot be detected. However, some misalignments were not detected when a large number of multileaf collimator were administered into the spinal cord.
Collapse
Affiliation(s)
- Ni Xin-Ye
- Department of Radiation Oncology, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, China
| | - Lei Ren
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Hui Yan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
21
|
Glitzner M, Crijns SPM, de Senneville BD, Kontaxis C, Prins FM, Lagendijk JJW, Raaymakers BW. On-line MR imaging for dose validation of abdominal radiotherapy. Phys Med Biol 2015; 60:8869-83. [DOI: 10.1088/0031-9155/60/22/8869] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Handsfield LL, Jones R, Wilson DD, Siebers JV, Read PW, Chen Q. Phantomless patient-specific TomoTherapy QA via delivery performance monitoring and a secondary Monte Carlo dose calculation. Med Phys 2015; 41:101703. [PMID: 25281942 DOI: 10.1118/1.4894721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To describe the validation and implementation of a novel quality assurance (QA) system for TomoTherapy using a Monte Carlo (MC)-based secondary dose calculation and CT detector-based multileaf collimator (MLC) leaf opening time measurement QA verification. This system is capable of detecting plan transfer and delivery errors and evaluating the dosimetric impact of those errors. METHODS The authors' QA process, MCLogQA, utilizes an independent pretreatment MC secondary dose calculation and postdelivery TomoTherapy exit detector-based MLC sinogram comparison and log file examination to confirm accurate dose calculation, accurate dose delivery, and to verify machine performance. MC radiation transport simulations are performed to estimate patient dose utilizing prestored treatment machine-specific phase-space information, the patient's planning CT, and MLC sinogram data. Sinogram data are generated from both the treatment planning system (MC_TPS) and from beam delivery log files (MC_Log). TomoTherapy treatment planning dose (DTPS) is compared with DMC_TPS and DMC_Log via dose-volume metrics and mean region of interest dose statistics. For validation, in-phantom ionization chamber dose measurements (DIC) for ten sample patient plans are compared with the computed values. RESULTS Dose comparisons to in-phantom ion chamber measurements validate the capability of the MCLogQA method to detect delivery errors. DMC_Log agreed with DIC within 1%, while DTPS values varied by 2%-5% compared to DIC. The authors demonstrated that TomoTherapy treatments can be vulnerable to MLC deviations and interfraction output variations during treatment delivery. Interfractional Linac output variations for each patient were approximately 2% and average output was 1%-1.5% below the gold standard. While average MLC leaf opening time error from patient to patient varied from -0.6% to 1.6%, the MLC leaf errors varied little between fractions for the same patient plan, excluding one patient. CONCLUSIONS MCLogQA is a new TomoTherapy QA process that validates the planned dose before delivery and analyzes the delivered dose using the treatment exit detector and log file data. The MCLogQA procedure is an effective and efficient alternative to traditional phantom-based TomoTherapy plan-specific QA because it allows for comprehensive 3D dose verification, accounts for tissue heterogeneity, uses patient CT density tables, reduces total QA time, and provides for a comprehensive QA methodology for each treatment fraction.
Collapse
Affiliation(s)
- Lydia L Handsfield
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Ryan Jones
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - David D Wilson
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Jeffery V Siebers
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Paul W Read
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Quan Chen
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
23
|
Sumida I, Yamaguchi H, Kizaki H, Aboshi K, Tsujii M, Yamada Y, Yagi M, Ogawa K. Incorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy. JOURNAL OF RADIATION RESEARCH 2015; 56:594-605. [PMID: 25742866 PMCID: PMC4426932 DOI: 10.1093/jrr/rrv008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/15/2015] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal.
Collapse
Affiliation(s)
- Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hajime Yamaguchi
- Department of Radiation Oncology, NTT West Osaka Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka, 543-8922, Japan
| | - Hisao Kizaki
- Department of Radiation Oncology, NTT West Osaka Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka, 543-8922, Japan
| | - Keiko Aboshi
- Department of Radiation Oncology, NTT West Osaka Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka, 543-8922, Japan
| | - Mari Tsujii
- Department of Radiation Oncology, NTT West Osaka Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka, 543-8922, Japan
| | - Yuji Yamada
- Department of Radiation Oncology, NTT West Osaka Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka, 543-8922, Japan
| | - Masashi Yagi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
24
|
Towards effective and efficient patient-specific quality assurance for spot scanning proton therapy. Cancers (Basel) 2015; 7:631-47. [PMID: 25867000 PMCID: PMC4491675 DOI: 10.3390/cancers7020631] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/21/2015] [Accepted: 03/25/2015] [Indexed: 01/11/2023] Open
Abstract
An intensity-modulated proton therapy (IMPT) patient-specific quality assurance (PSQA) program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D) measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR) system in the QA mode and the accelerator control system (ACS) in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS). The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer) is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic.
Collapse
|
25
|
Hernandez V, Abella R, Calvo JF, Jurado-Bruggemann D, Sancho I, Carrasco P. Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques. Med Phys 2015; 42:1911-6. [DOI: 10.1118/1.4915541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Khan F, Craft D. Three-dimensional conformal planning with low-segment multicriteria intensity modulated radiation therapy optimization. Pract Radiat Oncol 2015; 5:e103-11. [PMID: 25413405 PMCID: PMC4355263 DOI: 10.1016/j.prro.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 11/15/2022]
Abstract
PURPOSE The purpose of this study was to evaluate automated multicriteria optimization (MCO), which is designed for intensity modulated radiation therapy (IMRT) but invoked with limited segmentation, to efficiently produce high-quality 3-dimensional (3D) conformal radiation therapy (3D-CRT) plans. METHODS AND MATERIALS Treatment for 10 patients previously planned with 3D-CRT to various disease sites (brain, breast, lung, abdomen, pelvis) was replanned with a low-segment inverse MCO technique. The MCO-3D plans used the same beam geometry of the original 3D plans but were limited to an energy of 6 MV. The MCO-3D plans were optimized with fluence-based MCO IMRT and then, after MCO navigation, segmented with a low number of segments. The 3D and MCO-3D plans were compared by evaluating mean dose for all structures, D95 (dose that 95% of the structure receives) and homogeneity indexes for targets, D1 and clinically appropriate dose-volume objectives for individual organs at risk (OARs), monitor units, and physician preference. RESULTS The MCO-3D plans reduced the mean doses to OARs (41 of a total of 45 OARs had a mean dose reduction; P << .01) and monitor units (7 of 10 plans had reduced monitor units; the average reduction was 17% [P = .08]) while maintaining clinical standards for coverage and homogeneity of target volumes. All MCO-3D plans were preferred by physicians over their corresponding 3D plans. CONCLUSIONS High-quality 3D plans can be produced by use of MCO-IMRT optimization, resulting in automated field-in-field-type plans with good monitor unit efficiency. Adoption of this technology in a clinic could improve plan quality and streamline treatment plan production by using a single system applicable to both IMRT and 3D planning.
Collapse
Affiliation(s)
- Fazal Khan
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Craft
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
27
|
Sumida I, Yamaguchi H, Kizaki H, Aboshi K, Yamada Y, Yoshioka Y, Ogawa K. Three-dimensional dose prediction based on two-dimensional verification measurements for IMRT. J Appl Clin Med Phys 2014; 15:4874. [PMID: 25207574 PMCID: PMC5711089 DOI: 10.1120/jacmp.v15i5.4874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/27/2014] [Accepted: 04/14/2014] [Indexed: 12/04/2022] Open
Abstract
Dose verifications for intensity‐modulated radiation therapy (IMRT) are generally performed once before treatment. A 39‐fraction treatment course for prostate cancer delivers a dose prescription of 78 Gy in eight weeks. Any changes in multileaf collimator leaf position over the treatment course may affect the dosimetry. To evaluate the magnitude of deviations from the predicted dose over an entire treatment course with MLC leaf calibrations performed every two weeks, we tracked weekly changes in relative dose error distributions measured with two‐dimensional (2D) beam‐by‐beam analysis. We compared the dosimetric results from 20 consecutive patient‐specific IMRT quality assurance (QA) tests using beam‐by‐beam analysis and a 2D diode detector array to the dose plans calculated by the treatment planning system (TPS). We added back the resulting relative dose error measured weekly into the original dose grid for each beam. To validate the prediction method, the predicted doses and dose distributions were compared to the measurements using an ionization chamber and film. The predicted doses were in good agreement, within 2% of the measured doses, and the predicted dose distributions also presented good agreement with the measured distributions. Dose verification results measured once as a pretreatment QA test were not completely stable, as results of weekly beam‐by‐beam analysis showed some variation. Because dosimetric errors throughout the treatment course were averaged, the overall dosimetric impact to patients was small. PACS numbers: 87.55.D‐, 87.55.dk, 87.55.km, 87.55.Qr
Collapse
Affiliation(s)
- Iori Sumida
- Department of Radiation Oncology Osaka University Graduate School of Medicine 2-2 Yamada-oka, Suita, Osaka, 565-0871 Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kerns JR, Childress N, Kry SF. A multi-institution evaluation of MLC log files and performance in IMRT delivery. Radiat Oncol 2014; 9:176. [PMID: 25112533 PMCID: PMC4251954 DOI: 10.1186/1748-717x-9-176] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/21/2014] [Indexed: 11/24/2022] Open
Abstract
Background The multileaf collimator (MLC) is a critical component to accurate intensity-modulated radiotherapy (IMRT) delivery. This study examined MLC positional accuracy via MLC logs from Varian machines from six institutions and three delivery techniques to evaluate typical positional accuracy and treatment and mechanical parameters that affect accuracy. Typical accuracy achieved was compared against TG-142 recommendations for MLC performance; more appropriate recommendations are suggested. Methods Over 85,000 Varian MLC treatment logs were collected from six institutions and analyzed with FractionCHECK. Data were binned according to institution and treatment type to determine overall root mean square (RMS) and 95th percentile error values, and then to look for correlations between those errors and with mechanical and treatment parameters including mean and maximum leaf speed, gantry angle, beam-on time, mean leaf error, and number of segments. Results Results of treatment logs found that leaf RMS error and 95th percentile leaf error were consistent between institutions, but varied by treatment type. The step and shoot technique had very small errors: the mean RMS leaf error was 0.008 mm. For dynamic treatments the mean RMS leaf error was 0.32 mm, while volumetric-modulated arc treatment (VMAT) showed an RMS leaf error of 0.46 mm. Most MLC leaf errors were found to be well below TG-142 recommended tolerances. For the dynamic and VMAT techniques, the mean and maximum leaf speeds were significantly linked to the leaf RMS error. Additionally, for dynamic delivery, the mean leaf error was correlated with RMS error, whereas for VMAT the average gantry speed was correlated. For all treatments, the RMS error and the 95th percentile leaf error were correlated. Conclusions Restricting the maximum leaf speed can help improve MLC performance for dynamic and VMAT deliveries. Furthermore, the tolerances of leaf RMS and error counts for all treatment types should be tightened from the TG-142 values to make them more appropriate for clinical performance. Values of 1 mm for the 95th percentile of leaf RMS error and 1.5 mm for the 95th percentile leaf error are suggested as action levels for all treatment types.
Collapse
Affiliation(s)
- James R Kerns
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
29
|
Manikandan A, Sarkar B, Nandy M, Sureka CS, Gossman MS, Sujatha N, Rajendran VT. Detector system dose verification comparisons for arc therapy: couch vs. gantry mount. J Appl Clin Med Phys 2014; 15:4495. [PMID: 24892330 PMCID: PMC5711059 DOI: 10.1120/jacmp.v15i3.4495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 12/11/2013] [Accepted: 01/04/2014] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to assess the performance of a gantry‐mounted detector system and a couch set detector system using a systematic multileaf collimator positional error manually introduced for volumetric‐modulated arc therapy. Four head and neck and esophagus VMAT plans were evaluated by measurement using an electronic portal imaging device and an ion chamber array. Each plan was copied and duplicated with a 1 mm systematic MLC positional error in the left leaf bank. Direct comparison of measurements for plans with and without the error permitted observational characteristics for quality assurance performance between detectors. A total of 48 different plans were evaluated for this testing. The mean percentage planar dose differences required to satisfy a 95% match between plans with and without the MLCPE were 5.2% ± 0.5% for the chamber array with gantry motion, 8.12% ± 1.04% for the chamber array with a static gantry at 0°, and 10.9% ± 1.4% for the EPID with gantry motion. It was observed that the EPID was less accurate due to overresponse of the MLCPE in the left leaf bank. The EPID always images bank‐A on the ipsilateral side of the detector, whereas for a chamber array or for a patient, that bank changes as it crosses the ‐90° or +90° position. A couch set detector system can reproduce the TPS calculated values most consistently. We recommend it as the most reliable patient specific QA system for MLC position error testing. This research is highlighted by the finding of up to 12.7% dose variation for H/N and esophagus cases for VMAT delivery, where the mere source of error was the stated clinically acceptability of 1 mm MLC position deviation of TG‐142. PACS numbers: 87.56.‐v, 87.55.‐x, 07.57.KP, 29.40.‐n, 85.25.Pb
Collapse
|
30
|
Calvo-Ortega JF, Teke T, Moragues S, Pozo M, Casals-Farran J. A Varian DynaLog file-based procedure for patient dose-volume histogram-based IMRT QA. J Appl Clin Med Phys 2014; 15:4665. [PMID: 24710455 PMCID: PMC5875466 DOI: 10.1120/jacmp.v15i2.4665] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/02/2013] [Accepted: 10/16/2013] [Indexed: 11/23/2022] Open
Abstract
In the present study, we describe a method based on the analysis of the dynamic MLC log files (DynaLog) generated by the controller of a Varian linear accelerator in order to perform patient‐specific IMRT QA. The DynaLog files of a Varian Millennium MLC, recorded during an IMRT treatment, can be processed using a MATLAB‐based code in order to generate the actual fluence for each beam and so recalculate the actual patient dose distribution using the Eclipse treatment planning system. The accuracy of the DynaLog‐based dose reconstruction procedure was assessed by introducing ten intended errors to perturb the fluence of the beams of a reference plan such that ten subsequent erroneous plans were generated. In‐phantom measurements with an ionization chamber (ion chamber) and planar dose measurements using an EPID system were performed to investigate the correlation between the measured dose changes and the expected ones detected by the reconstructed plans for the ten intended erroneous cases. Moreover, the method was applied to 20 cases of clinical plans for different locations (prostate, lung, breast, and head and neck). A dose‐volume histogram (DVH) metric was used to evaluate the impact of the delivery errors in terms of dose to the patient. The ionometric measurements revealed a significant positive correlation (R2=0.9993) between the variations of the dose induced in the erroneous plans with respect to the reference plan and the corresponding changes indicated by the DynaLog‐based reconstructed plans. The EPID measurements showed that the accuracy of the DynaLog‐based method to reconstruct the beam fluence was comparable with the dosimetric resolution of the portal dosimetry used in this work (3%/3 mm). The DynaLog‐based reconstruction method described in this study is a suitable tool to perform a patient‐specific IMRT QA. This method allows us to perform patient‐specific IMRT QA by evaluating the result based on the DVH metric of the planning CT image (patient DVH‐based IMRT QA). PACS number: 87.55.Qr
Collapse
|
31
|
Peng J, Zhang Z, Zhou L, Zhao J, Wang J, Kong L, Hu W. A study on investigating the delivery parameter error effect on the variation of patient quality assurance during RapidArc treatment. Med Phys 2013; 40:031703. [PMID: 23464298 DOI: 10.1118/1.4789631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The purpose of this study is to evaluate delivery parameter errors (DPEs) and their impact on clinical dose variation with the Varian RapidArc technique. METHODS The dynalog files of 16 head-and-neck patients were retrospectively analyzed to characterize three RapidArc DPEs: dose MU, gantry angle, and MLC gap errors. A total of 64 reconstructed plans were created by creating four variants of each of the original 16 plans (three with the DPEs applied individually and one with the three DPEs combined). These reconstructed plans were compared to the original plans to evaluate the impact of the DPEs on the clinical dose distribution. RESULTS The mean dose MU, gantry angle, and MLC gap error for all patients were 0.00 ± 0.00 MU, -0.36 ± 0.03°, and 0.00 ± 0.01 mm, respectively. The DPEs had no obvious dosimetric impact on any of the studied dosimetric endpoints except the parotid dose. The gantry angle error, MLC gap error, and combined DPEs changed the parotid Dmean (mean dose) and parotid V30 (volume receiving at least 30 Gy) by 1%-2%. CONCLUSIONS It is feasible to use dose distributions reconstructed from dynalog file data as a quality assurance tool. The dose MU, gantry angle, and MLC errors have only minor effects on the accuracy of the delivered dose.
Collapse
Affiliation(s)
- Jiayuan Peng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Agnew CE, Irvine DM, Hounsell AR, McGarry CK. Improvement in clinical step and shoot intensity modulated radiation therapy delivery accuracy on an integrated linear accelerator control system. Pract Radiat Oncol 2013; 4:43-9. [PMID: 24621422 DOI: 10.1016/j.prro.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/05/2013] [Accepted: 07/01/2013] [Indexed: 02/03/2023]
Abstract
PURPOSE The dose delivery accuracy of 30 clinical step and shoot intensity modulated radiation therapy plans was investigated using the single integrated multileaf collimator controller of the Varian Truebeam linear accelerator (linac) (Varian Medical Systems, Palo Alto, CA) and compared with the dose delivery accuracy on a previous generation Varian 2100CD C-Series linac. METHODS AND MATERIALS Ten prostate, 10 prostate and pelvic node, and 10 head-and-neck cases were investigated in this study. Dose delivery accuracy on each linac was assessed using Farmer ionization chamber point dose measurements, 2-dimensional planar ionization chamber array measurements, and the corresponding Varian dynamic log files. Absolute point dose measurements, fluence delivery accuracy, leaf position accuracy, and the overshoot effect were assessed for each plan. RESULTS Absolute point dose delivery accuracy increased by 1.5% on the Truebeam compared with the 2100CD linac. No improvement in fluence delivery accuracy between the linacs, at a gamma criterion of 3%/3 mm was measured using the 2-dimensional ionization chamber array, with median (interquartile range) gamma passing rates of 98.99% (97.70%-99.72%) and 99.28% (98.26%-99.75%) for the Truebeam and 2100CD linacs, respectively. Varian log files also showed no improvement in fluence delivery between the linacs at 3%/3 mm, with median gamma passing rates of 99.97% (99.93%-99.99%) and 99.98% (99.94%-100%) for the Truebeam and 2100CD linacs, respectively. However, log files revealed improved leaf position accuracy and fluence delivery at 1%/1 mm criterion on the Truebeam (99.87%; 99.78%-99.94%) compared with the 2100CD linac (97.87%; 91.93%-99.49%). The overshoot effect, characterized on the 2100CD linac, was not observed on the Truebeam. CONCLUSIONS The integrated multileaf collimator controller on the Varian Truebeam improves clinical treatment delivery accuracy of step and shoot intensity modulated radiation therapy fields compared with delivery on a Varian C-series linac.
Collapse
Affiliation(s)
- C E Agnew
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom.
| | - D M Irvine
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - A R Hounsell
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom; Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, United Kingdom
| | - C K McGarry
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom; Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
33
|
Zhen H, Nelms BE, Tomé WA. On the use of biomathematical models in patient-specific IMRT dose QA. Med Phys 2013; 40:071702. [DOI: 10.1118/1.4805105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
34
|
Park JY, Lee JW, Chung JB, Choi KS, Kim YL, Park BM, Kim Y, Kim J, Choi J, Kim JS, Hong S, Suh TS. Radiobiological model-based bio-anatomical quality assurance in intensity-modulated radiation therapy for prostate cancer. JOURNAL OF RADIATION RESEARCH 2012; 53:978-988. [PMID: 22915778 PMCID: PMC3483850 DOI: 10.1093/jrr/rrs049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
A bio-anatomical quality assurance (QA) method employing tumor control probability (TCP) and normal tissue complication probability (NTCP) is described that can integrate radiobiological effects into intensity-modulated radiation therapy (IMRT). We evaluated the variations in the radiobiological effects caused by random errors (r-errors) and systematic errors (s-errors) by evaluating TCP and NTCP in two groups: patients with an intact prostate (G(intact)) and those who have undergone prostatectomy (G(tectomy)). The r-errors were generated using an isocenter shift of ±1 mm to simulate a misaligned patient set-up. The s-errors were generated using individual leaves that were displaced inwardly and outwardly by 1 mm on multileaf collimator field files. Subvolume-based TCP and NTCP were visualized on computed tomography (CT) images to determine the radiobiological effects on the principal structures. The bio-anatomical QA using the TCP and NTCP maps differentiated the critical radiobiological effects on specific volumes, particularly at the anterior rectal walls and planning target volumes. The s-errors showed a TCP variation of -40-25% in G(tectomy) and -30-10% in G(intact), while the r-errors were less than 1.5% in both groups. The r-errors for the rectum and bladder showed higher NTCP variations at ±20% and ±10%, respectively, and the s-errors were greater than ±65% for both. This bio-anatomical method, as a patient-specific IMRT QA, can provide distinct indications of clinically significant radiobiological effects beyond the minimization of probable physical dose errors in phantoms.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
- Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul 137-701, Korea
| | - Jeong-Woo Lee
- Research Institute of Health Science, College of Health Science, Korea University, Seoul 136-703, Korea
- Department of Radiation Oncology, Konkuk University Medical Center, Seoul 143-729, Korea
| | - Jin-Beom Chung
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Kyoung-Sik Choi
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
- Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul 137-701, Korea
- Department of Radiation Oncology, Anyang SAM Hospital, Anyang 430-733, Korea
| | - Yon-Lae Kim
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
- Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul 137-701, Korea
- Department of Radiology, Choonhae College of Health Science, Ulsan 689-784, Korea
| | - Byung-Moon Park
- Department of Radiation Oncology, Konkuk University Medical Center, Seoul 143-729, Korea
| | - Youhyun Kim
- Department of Radiologic Science, College of Health Science, Korea University, Seoul 136-703, Korea
| | - Jungmin Kim
- Department of Radiologic Science, College of Health Science, Korea University, Seoul 136-703, Korea
| | - Jonghak Choi
- Department of Radiologic Science, College of Health Science, Korea University, Seoul 136-703, Korea
| | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Semie Hong
- Department of Radiation Oncology, Konkuk University Medical Center, Seoul 143-729, Korea
| | - Tae-Suk Suh
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
- Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
35
|
Agnew CE, King RB, Hounsell AR, McGarry CK. Implementation of phantom-less IMRT delivery verification using Varian DynaLog files and R/V output. Phys Med Biol 2012; 57:6761-77. [DOI: 10.1088/0031-9155/57/21/6761] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Betzel GT, Yi BY, Niu Y, Yu CX. Is RapidArc more susceptible to delivery uncertainties than dynamic IMRT? Med Phys 2012; 39:5882-90. [PMID: 23039627 PMCID: PMC3461049 DOI: 10.1118/1.4749965] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 08/19/2012] [Accepted: 08/20/2012] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Rotational IMRT has been adopted by many clinics for its promise to deliver treatments in a shorter amount of time than other conventional IMRT techniques. In this paper, the authors investigate whether RapidArc is more susceptible to delivery uncertainties than dynamic IMRT using fixed fields. METHODS Dosimetric effects of delivery uncertainties in dose rate, gantry angle, and MLC leaf positions were evaluated by incorporating these uncertainties into RapidArc and sliding window IMRT (SW IMRT) treatment plans for five head-and-neck and five prostate cases. Dose distributions and dose-volume histograms of original and modified plans were recalculated and compared using Gamma analysis and dose indices of planned treatment volumes (PTV) and organs at risk (OAR). Results of Gamma analyses using passing criteria ranging from 1%-1 mm up to 5%-3 mm were reported. RESULTS Systematic shifts in MLC leaf bank positions of SW-IMRT cases resulted in 2-4 times higher average percent differences than RapidArc cases. Uniformly distributed random variations of 2 mm for active MLC leaves had a negligible effect on all dose distributions. Sliding window cases were much more sensitive to systematic shifts in gantry angle. Dose rate variations during RapidArc must be much larger than typical machine tolerances to affect dose distributions significantly; dynamic IMRT is inherently not susceptible to such variations. CONCLUSIONS RapidArc deliveries were found to be more tolerant to variations in gantry position and MLC leaf position than SW IMRT. This may be attributed to the fact that the average segmental field size or MLC leaf opening is much larger for RapidArc. Clinically acceptable treatments may be delivered successfully using RapidArc despite large fluctuations in dose rate and gantry position.
Collapse
Affiliation(s)
- Gregory T Betzel
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
37
|
Rowshanfarzad P, Sabet M, Barnes MP, O'Connor DJ, Greer PB. EPID-based verification of the MLC performance for dynamic IMRT and VMAT. Med Phys 2012; 39:6192-207. [DOI: 10.1118/1.4752207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Lin MH, Li J, Wang L, Koren S, Fan J, Forkal E, Ma CM. 4D patient dose reconstruction using online measured EPID cine images for lung SBRT treatment validation. Med Phys 2012; 39:5949-58. [DOI: 10.1118/1.4748505] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
39
|
Sun B, Rangaraj D, Boddu S, Goddu M, Yang D, Palaniswaamy G, Yaddanapudi S, Wooten O, Mutic S. Evaluation of the efficiency and effectiveness of independent dose calculation followed by machine log file analysis against conventional measurement based IMRT QA. J Appl Clin Med Phys 2012; 13:3837. [PMID: 22955649 PMCID: PMC5718232 DOI: 10.1120/jacmp.v13i5.3837] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/25/2012] [Accepted: 05/30/2012] [Indexed: 11/23/2022] Open
Abstract
Experimental methods are commonly used for patient-specific IMRT delivery verification. There are a variety of IMRT QA techniques which have been proposed and clinically used with a common understanding that not one single method can detect all possible errors. The aim of this work was to compare the efficiency and effectiveness of independent dose calculation followed by machine log file analysis to conventional measurement-based methods in detecting errors in IMRT delivery. Sixteen IMRT treatment plans (5 head-and-neck, 3 rectum, 3 breast, and 5 prostate plans) created with a commercial treatment planning system (TPS) were recalculated on a QA phantom. All treatment plans underwent ion chamber (IC) and 2D diode array measurements. The same set of plans was also recomputed with another commercial treatment planning system and the two sets of calculations were compared. The deviations between dosimetric measurements and independent dose calculation were evaluated. The comparisons included evaluations of DVHs and point doses calculated by the two TPS systems. Machine log files were captured during pretreatment composite point dose measurements and analyzed to verify data transfer and performance of the delivery machine. Average deviation between IC measurements and point dose calculations with the two TPSs for head-and-neck plans were 1.2 ± 1.3% and 1.4 ± 1.6%, respectively. For 2D diode array measurements, the mean gamma value with 3% dose difference and 3 mm distance-to-agreement was within 1.5% for 13 of 16 plans. The mean 3D dose differences calculated from two TPSs were within 3% for head-and-neck cases and within 2% for other plans. The machine log file analysis showed that the gantry angle, jaw position, collimator angle, and MUs were consistent as planned, and maximal MLC position error was less than 0.5 mm. The independent dose calculation followed by the machine log analysis takes an average 47 ± 6 minutes, while the experimental approach (using IC and 2D diode array measurements) takes an average about 2 hours in our clinic. Independent dose calculation followed by machine log file analysis can be a reliable tool to verify IMRT treatments. Additionally, independent dose calculations have the potential to identify several problems (heterogeneity calculations, data corruptions, system failures) with the primary TPS, which generally are not identifiable with a measurement-based approach. Additionally, machine log file analysis can identify many problems (gantry, collimator, jaw setting) which also may not be detected with a measurement-based approach. Machine log file analysis could also detect performance problems for individual MLC leaves which could be masked in the analysis of a measured fluence.
Collapse
Affiliation(s)
- Baozhou Sun
- Department of Radiation OncologyWashington University School of MedicineSt. LouisMO
| | - Dharanipathy Rangaraj
- Department of Radiation OncologyWashington University School of MedicineSt. LouisMO
- Department of Radiation OncologyScott & White Healthcare SystemTempleTX
| | - Sunita Boddu
- Department of Radiation OncologyUniversity of California DavisSacramentoCAUSA
| | - Murty Goddu
- Department of Radiation OncologyWashington University School of MedicineSt. LouisMO
| | - Deshan Yang
- Department of Radiation OncologyWashington University School of MedicineSt. LouisMO
| | | | - Sridhar Yaddanapudi
- Department of Radiation OncologyWashington University School of MedicineSt. LouisMO
| | - Omar Wooten
- Department of Radiation OncologyWashington University School of MedicineSt. LouisMO
| | - Sasa Mutic
- Department of Radiation OncologyWashington University School of MedicineSt. LouisMO
| |
Collapse
|
40
|
Sumida I, Yamaguchi H, Kizaki H, Koizumi M, Ogata T, Takahashi Y, Yoshioka Y. Quality assurance of MLC leaf position accuracy and relative dose effect at the MLC abutment region using an electronic portal imaging device. JOURNAL OF RADIATION RESEARCH 2012; 53:798-806. [PMID: 22843372 PMCID: PMC3430416 DOI: 10.1093/jrr/rrs038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 06/01/2023]
Abstract
We investigated an electronic portal image device (EPID)-based method to see whether it provides effective and accurate relative dose measurement at abutment leaves in terms of positional errors of the multi-leaf collimator (MLC) leaf position. A Siemens ONCOR machine was used. For the garden fence test, a rectangular field (0.2 20 cm) was sequentially irradiated 11 times at 2-cm intervals. Deviations from planned leaf positions were calculated. For the nongap test, relative doses at the MLC abutment region were evaluated by sequential irradiation of a rectangular field (2 20 cm) 10 times with a MLC separation of 2 cm without a leaf gap. The integral signal in a region of interest was set to position A (between leaves) and B (neighbor of A). A pixel value at position B was used as background and the pixel ratio (A/B 100) was calculated. Both tests were performed at four gantry angles (0, 90, 180 and 270°) four times over 1 month. For the nongap test the difference in pixel ratio between the first and last period was calculated. Regarding results, average deviations from planned positions with the garden fence test were within 0.5 mm at all gantry angles, and at gantry angles of 90 and 270° tended to decrease gradually over the month. For the nongap test, pixel ratio tended to increase gradually in all leaves, leading to a decrease in relative doses at abutment regions. This phenomenon was affected by both gravity arising from the gantry angle, and the hardware-associated contraction of field size with this type of machine.
Collapse
Affiliation(s)
- Iori Sumida
- Department of Oral and Maxillofacial Radiology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871 Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Voxel-Based Dose Reconstruction for Total Body Irradiation With Helical TomoTherapy. Int J Radiat Oncol Biol Phys 2012; 82:1575-83. [DOI: 10.1016/j.ijrobp.2011.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 11/24/2022]
|
42
|
Goetzfried T, Rickhey M, Treutwein M, Koelbl O, Bogner L. Monte Carlo simulations to replace film dosimetry in IMRT verification. Z Med Phys 2012; 21:19-25. [PMID: 20888202 DOI: 10.1016/j.zemedi.2010.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/01/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022]
Abstract
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase.
Collapse
Affiliation(s)
- Thomas Goetzfried
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
43
|
Korevaar EW, Wauben DJL, van der Hulst PC, Langendijk JA, Van't Veld AA. Clinical introduction of a linac head-mounted 2D detector array based quality assurance system in head and neck IMRT. Radiother Oncol 2011; 100:446-52. [PMID: 21963288 DOI: 10.1016/j.radonc.2011.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 09/07/2011] [Accepted: 09/10/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE IMRT QA is commonly performed in a phantom geometry but the clinical interpretation of the results in a 2D phantom plane is difficult. The main objective of our work is to move from film measurement based QA to 3D dose reconstruction in a patient CT scan. In principle, this could be achieved using a dose reconstruction method from 2D detector array measurements as available in the COMPASS system (IBA Dosimetry). The first step in the clinical introduction of this system instead of the currently used film QA procedures is to test the reliability of the dose reconstruction. In this paper we investigated the validation of the method in a homogeneous phantom with the film QA procedure as a reference. We tested whether COMPASS QA results correctly identified treatment plans that did or did not fulfil QA requirements in head and neck (H&N) IMRT. MATERIALS AND METHODS A total number of 24 treatments were selected from an existing database with more than 100 film based H&N IMRT QA results. The QA results were classified as either good, just acceptable or clinically rejected (mean gamma index <0.4, 0.4-0.5 or >0.5, respectively with 3%/3mm criteria). Film QA was repeated and compared to COMPASS QA with a MatriXX detector measurement performed on the same day. RESULTS Good agreement was found between COMPASS reconstructed dose and film measured dose in a phantom (mean gamma 0.83±0.09, 1SD with 1%/1mm criteria, 0.33±0.04 with 3%/3mm criteria). COMPASS QA results correlated well with film QA, identifying the same patients with less good QA results. Repeated measurements with film and COMPASS showed changes in delivery after a modified MLC calibration, also visible in a standard MLC check in COMPASS. The time required for QA reduced by half by using COMPASS instead of film. CONCLUSIONS Agreement of COMPASS QA results with film based QA supports its clinical introduction for a phantom geometry. A standard MLC calibration check is sensitive to <1mm changes that could be significant in H&N IMRT. These findings offer opportunities to further investigate the method based on a 2D detector array to 3D dose reconstruction in a patient anatomy.
Collapse
Affiliation(s)
- Erik W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Oliver M, Bush K, Zavgorodni S, Ansbacher W, Beckham WA. Understanding the impact of RapidArc therapy delivery errors for prostate cancer. J Appl Clin Med Phys 2011; 12:3409. [PMID: 21844850 PMCID: PMC5718657 DOI: 10.1120/jacmp.v12i3.3409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 01/27/2023] Open
Abstract
The purpose of this study is to simulate random and systematic RapidArc delivery errors for external beam prostate radiotherapy plans in order to determine the dose sensitivity for each error type. Ten prostate plans were created with a single 360° arc. The DICOM files for these treatment plans were then imported into an in‐house computer program that introduced delivery errors. Random and systematic gantry position (0.25°, 0.5°, 1°), monitor unit (MU) (1.25%, 2.5%, 5%), and multileaf collimator (MLC) position (0.5, 1, 2 mm) errors were introduced. The MLC errors were either random or one of three types of systematic errors, where the MLC banks moved in the same (MLC gaps remain unchanged) or opposing directions (increasing or decreasing the MLC gaps). The generalized equivalent uniform dose (gEUD) was calculated for the original plan and all treatment plans with errors introduced. The dose sensitivity for the cohort was calculated using linear regression for the gantry position, MU, and MLC position errors. Because there was a large amount of variability for systematic MLC position errors, the dose sensitivity of each plan was calculated and correlated with plan MU, mean MLC gap, and the percentage of MLC leaf gaps less than 1 and 2 cm for each individual plan. We found that random and systematic gantry position errors were relatively insignificant (< 0.1% gEUD change) for gantry errors up to 1°. Random MU errors were also insignificant, and systematic MU increases caused a systematic increase in gEUD. For MLC position errors, random MLC errors were relatively insignificant up to 2 mm as had been determined in previous IMRT studies. Systematic MLC shift errors caused a decrease of approximately −1% in the gEUD per mm. For systematic MLC gap open errors, the dose sensitivity was 8.2%/mm and for MLC gap close errors the dose sensitivity was −7.2%/mm. There was a large variability for MLC gap open/close errors for the ten RapidArc plans which correlated strongly with MU, mean gap width, and percentage of MLC gaps less than 1 or 2 cm. This study evaluates the magnitude of various simulated RapidArc delivery errors by calculating gEUED on various prostate plans. PACS numbers: 87.55.x, 87.55.D, 87.55.de, 87.55.dk
Collapse
Affiliation(s)
- Michael Oliver
- Department of Medical Physics, British Columbia Cancer Agency, Victoria, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
45
|
He W, Vazquez LA, Shi C, Papanikolaou N. Sensitivity study to evaluate the dosimetric impact of off-axis ratio profiles misalignment on TomoTherapy second dose validation. Technol Cancer Res Treat 2010; 9:515-22. [PMID: 20815423 DOI: 10.1177/153303461000900510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accurate dose planning and delivery are very important in the intensity modulated radiation therapy. For helical TomoTherapy dose validation, a TomoTherapy second check software, called MU-Tomo, has been developed using archived patient documents, initial coordinates and planned dose of the point of calculation, and common dosimetric functions. Based on this software, sensitivity studies on 50 patient cases have been evaluated to show the impact of off-axis ratio profile misalignment on point dose calculation. Off-axis ratio is defined as the dose profile normalized to its maximum dose value. Sensitivity studies were done for three scenarios: oscillating the fluctuation regions of two off-axis profiles, shifting the profiles, and rotating the profiles. The result of the oscillation trial is linear along the change of longitudinal off-axis ratio (OARy), while oscillating the lateral off-axis ratio (OARx) has little influence on the dose calculation. For shifting, the variation in the percentage difference from the non-shifting value is about 15 times larger in OARy modification than in OARx modification. Rotating OARx by +/- 6' gave less than 1.5% +/- 0.20% difference compared to the non-rotating value. Rotating OARy by +/- 1' changes the result more than 5% +/- 2.69%. Therefore, for helical TomoTherapy dose validation, commissioned OARy profiles are more sensitive than OARx to oscillation, shifting and rotating. As a result, different tolerances for OARx and OARy may be required for annual quality assurance.
Collapse
Affiliation(s)
- Weihong He
- 7979 Wurzbach Rd Ste 240, Cancer Therapy and Research Center, Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
46
|
Rangel A, Palte G, Dunscombe P. The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors. Med Phys 2010; 37:3862-7. [DOI: 10.1118/1.3453576] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
Affiliation(s)
- Jin Sheng Li
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | |
Collapse
|
48
|
Teke T, Bergman AM, Kwa W, Gill B, Duzenli C, Popescu IA. Monte Carlo based, patient-specific RapidArc QA using Linac log files. Med Phys 2009; 37:116-23. [DOI: 10.1118/1.3266821] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Gains From Real-Time Tracking of Prostate Motion During External Beam Radiation Therapy. Int J Radiat Oncol Biol Phys 2009; 75:1613-20. [DOI: 10.1016/j.ijrobp.2009.05.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 05/07/2009] [Accepted: 05/13/2009] [Indexed: 01/12/2023]
|
50
|
Rangel A, Dunscombe P. Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC. Med Phys 2009; 36:3304-9. [DOI: 10.1118/1.3134244] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|