1
|
Margaroni V, Karaiskos P, Iosif A, Episkopakis A, Koutsouveli E, Pappas EP. On the correction factors for small field dosimetry in 1.5T MR-linacs. Phys Med Biol 2025; 70:025011. [PMID: 39761634 DOI: 10.1088/1361-6560/ada682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Objective. Clinical dosimetry in the presence of a 1.5 T magnetic field is challenging, let alone in case small fields are involved. The scope of this study is to determine a set of relevant correction factors for a variety of MR-compatible detectors with emphasis on small fields. Two dosimetry formalisms adopted from the literature are considered.Approach. Six small-cavity ionization chambers (from three manufacturers), four active solid-state detectors and a thermoluminescence dosimeter microcube were modeled in the EGSnrc Monte Carlo code. Phase space files for field sizes down to 1 × 1 cm2of the Unity 1.5 T/7 MV MR-linac (Elekta, UK) were used as source models. Simulations were performed to calculate thekQB,QfB,f(also known askB,Q),kQmsrB,fmsrandkQclin,QmsrB,fclin,fmsrrelevant to two different dosimetry formalisms. Two detector orientations with respect to the magnetic field were considered. Moreover, the effect of the ionization chamber's stem length (a construction parameter) on the correction factor was investigated. Simulations were also carried out to determine whether correction factors obtained in water can be applied in dosimetry procedures involving water-equivalent solid phantoms.Main results. Under thekQB,QfB,f-based formalism, the required corrections to ionization chamber responses did not exceed 1.5% even for the smallest field size considered. A much wider range ofkQB,QfB,fvalues was obtained for the active solid-state detectors included in the simulations. This is the first study to reportkQclin,QmsrB,fclin,fmsrvalues for ionization chambers. The impact of the stem on correction factors is not significant for lengths ⩾0.75 cm. Correction factors determined in water are also valid in dosimetry protocols employing solid phantoms.Significance. This work substantially expands the range of available detectors that can be used in small field dosimetry, enabling more options for commissioning, beam modeling and quality assurance procedures in 1.5 T MR-Linacs. However, more studies are needed to establish a complete and reliable dataset.
Collapse
Affiliation(s)
- Vasiliki Margaroni
- Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 115 27 Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 115 27 Athens, Greece
| | - Andreas Iosif
- Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 115 27 Athens, Greece
| | - Anastasios Episkopakis
- Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 115 27 Athens, Greece
- Global Clinical Operations, Elekta Ltd, Fleming Way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Efi Koutsouveli
- Medical Physics Department, Hygeia Hospital, Kifisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens, Greece
| | - Eleftherios P Pappas
- Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 115 27 Athens, Greece
| |
Collapse
|
2
|
Thrapsanioti Z, Peppa V, Hourdakis CJ, Karaiskos P, Lekatou A, Pantelis E. Beam quality correction factors for dose measurements around 192Ir brachytherapy sources. J Appl Clin Med Phys 2025; 26:e14575. [PMID: 39601314 PMCID: PMC11713369 DOI: 10.1002/acm2.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
PURPOSE To provide beam quality correction factors (k Q , Q o ${k}_{Q,Qo}$ ) for detectors used in 192Ir brachytherapy dosimetry measurements. MATERIALS AND METHODS Ten detectors were studied, including the PTW 30013 and Exrading12 Farmer large cavity chambers, seven medium (0.1-0.3 cm3) and small (< 0.1 cm3) cavity chambers, and a synthetic microdiamond detector. The kQ,Qo correction factors were calculated at distances from 1 to 10 cm away from an 192Ir source, using the EGSnrc Monte Carlo (MC) code. All detectors were calibrated in a 60Co 10 × 10 cm2 reference field provided by standard calibration laboratories. The impact of the central electrode, stem and wall on the detectors' responses in 192Ir photon energies was investigated. An experimental procedure was additionally applied for dose measurements around a microSelectron-v2 192Ir high dose rate (HDR) brachytherapy source using a motorized water phantom. RESULTS Farmer chambers underestimated the dose near the source due to signal volume averaging effects, resulting in kQ,Qo values ranging from 1.177 and 1.317 at 1 cm, decreasing with distance to between 0.980 and 1.005 at 10 cm. Small cavity volume detectors should be used close to the source. The kQ,Qo for the studied small and medium cavity volume detectors were found to be close to unity (within 1.3%), showing also a small dependence on source-to-detector distance, except for ion chambers containing high-Z materials in their construction. The presence of high-Z materials caused an overresponse in these detectors, resulting in kQ,Qo values ranging from 0.950 at 1 cm to 0.729 at 10 cm away from the source. A dose rate constant of (1.114 ± 0.023)cGyh-1U-1 was found in agreement with the literature (within 0.5%). CONCLUSIONS kQ,Qo values were calculated for dose measurements around 192Ir brachytherapy sources. Farmer chambers should be preferred for measurements at increased distances, whereas small or medium cavity volume detectors, not containing high-Z materials, should be used close to the source.
Collapse
Affiliation(s)
- Zoi Thrapsanioti
- Medical Physics LaboratoryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
- Ionizing Radiation UnitGreek Atomic Energy Commission (EEAE)Agia ParaskeviGreece
| | | | - Costas J. Hourdakis
- Ionizing Radiation UnitGreek Atomic Energy Commission (EEAE)Agia ParaskeviGreece
| | - Pantelis Karaiskos
- Medical Physics LaboratoryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Aristea Lekatou
- Medical Physics LaboratoryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Evaggelos Pantelis
- Medical Physics LaboratoryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
3
|
Oliver PAK, Yip E, Tari SY, Wachowicz K, Reynolds M, Burke B, Warkentin B, Fallone BG. Skin dose investigations on a 0.5 T parallel rotating biplanar linac-MR using Monte Carlo simulations and measurements. Med Phys 2024; 51:6317-6331. [PMID: 38873942 DOI: 10.1002/mp.17246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The Alberta rotating biplanar linac-MR has a 0.5 T magnetic field parallel to the beamline. When developing a new linac-MR system, interactions of charged particles with the magnetic field necessitate careful consideration of skin dose and tissue interface effects. PURPOSE To investigate the effect of the magnetic field on skin dose using measurements and Monte Carlo (MC) simulations. METHODS We develop an MC model of our linac-MR, which we validate by comparison with ion chamber measurements in a water tank. Additionally, MC simulation results are compared with radiochromic film surface dose measurements on solid water. Variations in surface dose as a function of field size are measured using a parallel plate ion chamber in solid water. Using an anthropomorphic computational phantom with a 2 mm-thick skin layer, we investigate dose distributions resulting from three beam arrangements. Magnetic field on and off scenarios are considered for all measurements and simulations. RESULTS For a 20 × 20 cm2 field size,D 0.2 c c ${D_{0.2cc}}$ (the minimum dose to the hottest contiguous 0.2 cc volume) for the top 2 mm of a simple water phantom is 72% when the magnetic field is on, compared to 34% with magnetic field off (values are normalized to the central axis dose maximum). Parallel plate ion chamber measurements demonstrate that the relative increase in surface dose due to the magnetic field decreases with increasing field size. For the anthropomorphic phantom,D ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ (minimum skin dose in the hottest 1 × 1 × 1 cm3 cube) shows relative increases of 20%-28% when the magnetic field is on compared to when it is off. With magnetic field off, skinD ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ is 71%, 56%, and 21% for medial-lateral tangents, anterior-posterior beams, and a five-field arrangement, respectively. For magnetic field on, the corresponding skinD ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ values are 91%, 67%, and 25%. CONCLUSIONS Using a validated MC model of our linac-MR, surface doses are calculated in various scenarios. MC-calculated skin dose varies depending on field sizes, obliquity, and the number of beams. In general, the parallel linac-MR arrangement results in skin dose enhancement due to charged particles spiraling along magnetic field lines, which impedes lateral motion away from the central axis. Nonetheless, considering the results presented herein, treatment plans can be designed to minimize skin dose by, for example, avoiding oblique beams and using a larger number of fields.
Collapse
Affiliation(s)
- Patricia A K Oliver
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Dept. of Medical Physics, Nova Scotia Health and Dept. of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eugene Yip
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
| | - Shima Y Tari
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
| | - Keith Wachowicz
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Reynolds
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Ben Burke
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
| | - Brad Warkentin
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
| | - B Gino Fallone
- Dept. of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Dept. of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- MagnetTx Oncology Solutions, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Episkopakis A, Margaroni V, Karaiskos P, Koutsouveli E, Marinos N, Pappas EP. Relative profile measurements in 1.5T MR-linacs: investigation of central axis deviations. Phys Med Biol 2024; 69:175015. [PMID: 39137816 DOI: 10.1088/1361-6560/ad6ed7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective. In 1.5 T MR-linacs, the absorbed dose central axis (CAX) deviates from the beam's CAX due to inherent profile asymmetry. In addition, a measured CAX deviation may be biased due to potential lateral (to the beam) effective point of measurement (EPOML) shifts of the detector employed. By investigating CAX deviations, the scope of this study is to determine a set ofEPOMLshifts for profile measurements in 1.5 T MR-linacs.Approach. The Semiflex 3D ion chamber and microDiamond detector (PTW, Germany) were considered in the experimental study while three more detectors were included in the Monte Carlo (MC) study. CAX deviations in the crossline and inline profiles were calculated based on inflection points of the 10×10 cm2field, at five centers. In MC simulations, the experimental setup was reproduced. A small water voxel was simulated to calculate CAX deviation without the impact of the detector-specificEPOMLshift.Main results. All measurements were consistent among the five centers. MC-based and experimental measurements were in agreement within uncertainties. Placing the microDiamond in the vertical orientation does not appear to affect the detector'sEPOML, which is on its central longitudinal axis. For the Semiflex 3D in the crossline direction, the CAX deviation was 2.3 mm, i.e. 1 mm larger than the ones measured using the microDiamond and simulated considering the ideal water detector. Thus, anEPOMLshift of 1 mm is recommended for crossline profile measurements under both Semiflex 3D orientations. For the inline profile, anEPOMLshift of -0.5 mm was determined only for the parallel configuration. In the MC study, CAX deviations were found detector- and orientation-dependent. The dead volume is responsible for theEPOMLshift only in the inline profile and under the parallel orientation.Significance. This work contributes to data availability on the correction or mitigation of the magnetic field-induced changes in the detectors' response.
Collapse
Affiliation(s)
- Anastasios Episkopakis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
- Global Clinical Operations, Elekta Ltd, Fleming Way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Vasiliki Margaroni
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | - Efi Koutsouveli
- Medical Physics Department, Hygeia Hospital, Kifisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens, Greece
| | - Nikolas Marinos
- Global Clinical Operations, Elekta Ltd, Fleming Way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Eleftherios P Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| |
Collapse
|
5
|
Failing T, Hensley FW, Keil B, Zink K. Investigations on the beam quality correction factor for ionization chambers in high-energy brachytherapy dosimetry. Phys Med Biol 2024; 69:165002. [PMID: 39009012 DOI: 10.1088/1361-6560/ad638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Objective. To enhance the investigations on MC calculated beam quality correction factors of thimble ionization chambers from high-energy brachytherapy sources and to develop reliable reference conditions in source and detector setups in water.Approach. The response of five different ionization chambers from PTW-Freiburg and Standard Imaging was investigated for irradiation by a high dose rate Ir-192 Flexisource in water. For a setup in a Beamscan water phantom, Monte Carlo simulations were performed to calculate correction factors for the chamber readings. After exact positioning of source and detector the absorbed dose rate at the TG-43 reference point at one centimeter nominal distance from the source was measured using these factors and compared to the specification of the calibration certificate. The Monte Carlo calculations were performed using the restricted cema formalism to gain further insight into the chamber response. Calculations were performed for the sensitive volume of the chambers, determined by the methods currently used in investigations of dosimetry in magnetic fields.Main results. Measured dose rates and values from the calibration certificate agreed within the combined uncertainty (k= 2) for all chambers except for one case in which the full air cavity was simulated. The chambers showed a distinct directional dependence. With the restricted cema formalism calculations it was possible to examine volume averaging and energy dependence of the perturbation factors contributing to the beam quality correction factor also differential in energy.Significance. This work determined beam quality correction factors to measure the absorbed dose rate from a brachytherapy source in terms of absorbed dose to water for a variety of ionization chambers. For the accurate dosimetry of brachytherapy sources with ionization chambers it is advisable to use correction factors based on the sensitive volume of the chambers and to take account for the directional dependence of chamber response.
Collapse
Affiliation(s)
- T Failing
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
| | - F W Hensley
- Department for Radiotherapy and Radiooncology, University Medical Center Heidelberg, Heidelberg, Germany
| | - B Keil
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
- Department for Diagnostic and Interventional Radiology, Philipps-University Marburg, Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - K Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
- Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany
- Marburg Iontherapy Center (MIT), Marburg, Germany
| |
Collapse
|
6
|
Yip E, Tari SY, Reynolds MW, Sinn D, Murray BR, Fallone BG, Oliver PA. Clinical reference dosimetry for the 0.5 T inline rotating biplanar Linac-MR. Med Phys 2024; 51:2933-2940. [PMID: 38308821 DOI: 10.1002/mp.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 12/26/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The world's first clinical 0.5 T inline rotating biplanar Linac-MR system is commissioned for clinical use. For reference dosimetry, unique features to device, including an SAD = 120 cm, bore clearance of 60 cm × 110 cm, as well as 0.5 T inline magnetic field, provide some challenges to applying a standard dosimetry protocol (i.e., TG-51). PURPOSE In this work, we propose a simple and practical clinical reference dosimetry protocol for the 0.5T biplanar Linac-MR and validated its results. METHODS Our dosimetry protocol for this system is as follows: tissue phantom ratios at 20 and 10 cm are first measured and converted into %dd10x beam quality specifier using equations provided and Kalach and Rogers. The converted %dd10x is used to determine the ion chamber correction factor, using the equations in the TG-51 addendum for the Exradin A12 farmer chamber used, which is cross-calibrated with one calibrated at a standards laboratory. For a 0.5 T parallel field, magnetic field effect on chamber response is assumed to have no effect and is not explicitly corrected for. Once the ion chamber correction factor for a non-standard SAD (kQ,msr) is determined, TG-51 is performed to obtain dose at a depth of 10 cm at SAD = 120 cm. The dosimetry protocol is repeated with the magnetic field ramped down. To validate our dosimetry protocol, Monte Carlo (EGSnrc) simulations are performed to confirm the determined kQ,msr values. MC Simulations and magnetic Field On versus Field Off measurements are performed to confirm that the magnetic field has no effect. To validate our overall dosimetry protocol, external dose audits, based on optical simulated luminescent dosimeters, thermal luminescent dosimeters, and alanine dosimeters are performed on the 0.5 T Linac-MR system. RESULTS Our EGSnrc results confirm our protocol-determined kQ,msr values, as well as our assumptions about magnetic field effects (kB = 1) within statistical uncertainty for the A-12 chamber. Our external dosimetry procedures also validated our overall dosimetry protocol for the 0.5 T biplanar Linac-MR hybrid. Ramping down the magnetic field has resulted in a dosimetric difference of 0.1%, well within experimental uncertainty. CONCLUSION With the 0.5 T parallel magnetic field having minimal effect on the ion chamber response, a TPR20,10 approach to determine beam quality provides an accurate method to perform clinical dosimetry for the 0.5 T biplanar Linac-MR.
Collapse
Affiliation(s)
- Eugene Yip
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Shima Y Tari
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Michael W Reynolds
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Radiation Oncology, BC Cancer - Victoria, Victoria, British Columbia, Canada
| | - David Sinn
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Radiaiton Oncology, The Queen's Medical Centre, Honolulu, Hawaii, USA
| | - Brad R Murray
- MagnetTx Oncology Solutions, Edmonton, Alberta, Canada
| | - B Gino Fallone
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- MagnetTx Oncology Solutions, Edmonton, Alberta, Canada
| | - Patricia Ak Oliver
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Medical Physics, Nova Scotia Health, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Galea R, Moore K. Primary standardization and half-life determination of 225Ac at NRC. Appl Radiat Isot 2024; 203:111105. [PMID: 37949013 DOI: 10.1016/j.apradiso.2023.111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
A solution of 225Ac was standardized by NRC using the triple-to-double coincidence ratio (TDCR) method. The counting efficiencies were calculated assuming a counting efficiency of 100% for alpha decays and those calculated using the MICELLE2 Monte Carlo code for beta decays and was approximately 500% for the NRC TDCR system. The relative uncertainty for the activity concentration was determined to be 0.25%. This agreed with measurements performed using gamma spectroscopy and a predicted calibration factor for the Vinten 671 ionization chamber as calculated using an EGSnrc model, implementing radioactive decay. Finally, the half-life of 225Ac was determined from long-term measurements using ionization chambers and liquid scintillation counting. The NRC measured half-life for 225Ac was found to be 9.914(4) days and is consistent within an expanded uncertainty coverage of k = 2 with the most recent (Kossert et al., 2020; Pommé et al., 2012) measurements of this decay parameter.
Collapse
Affiliation(s)
- R Galea
- National Research Council of Canada, 1200 Montreal Road, Ottawa, K1A0R6, ON, Canada.
| | - K Moore
- National Research Council of Canada, 1200 Montreal Road, Ottawa, K1A0R6, ON, Canada
| |
Collapse
|
8
|
Alissa M, Zink K, Röser A, Flatten V, Schoenfeld AA, Czarnecki D. Monte Carlo calculated beam quality correction factors for high energy electron beams. Phys Med 2024; 117:103179. [PMID: 38042061 DOI: 10.1016/j.ejmp.2023.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023] Open
Abstract
PURPOSE As the dosimetry protocol TRS 398 is being revised and the ICRU report 90 provides new recommendations for density correction as well as the mean ionization energies of water and graphite, updated beam quality correction factors kQ are calculated for reference dosimetry in electron beams and for independent validation of previously determined values. METHODS Monte Carlo simulations have been performed using EGSnrc to calculate the absorbed dose to water and the dose to the active volumes of ionization chambers SNC600c, SNC125c and SNC350p (all Sun Nuclear, A Mirion Medical Company, Melbourne, FL). Realistic clinical electron beam spectra were used to cover the entire energy range of therapeutic electron accelerators. The Monte Carlo simulations were validated by measurements on a clinical linear accelerator. With regards to the cylindrical chambers, the simulations were performed according to the setup recommendations of TRS 398 and AAPM TG 51, i.e. with and without consideration of a reference point shift by rcav/2. RESULTS kQ values as a function of the respective beam quality specifier R50 were fitted by recommended equations for electron beam dosimetry in the range of 5 MeV to 18 MeV. The fitting curves to the calculated values showed a root mean square deviation between 0.0016 and 0.0024. CONCLUSION Electron beam quality correction factors kQ were calculated by Monte Carlo simulations for the cylindrical ionization chambers SNC600c and SNC125c as well as the plane parallel ionization chamber SNC350p to provide updated data for the TRS 398 and TG 51 dosimetry protocols.
Collapse
Affiliation(s)
- Mohamad Alissa
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Wiesenstraße 14, Giessen, 35390, Germany
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Wiesenstraße 14, Giessen, 35390, Germany; Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Baldingerstraße, Marburg, 35043, Germany
| | - Arnd Röser
- Helios Universitätsklinikum Wuppertal, Heusnerstraße 40, Wuppertal, 42283, Germany
| | - Veronika Flatten
- Sun Nuclear, A Mirion Medical Company, 3275 Suntree Blvd, Melbourne, 32940, FL, USA
| | - Andreas A Schoenfeld
- Sun Nuclear, A Mirion Medical Company, 3275 Suntree Blvd, Melbourne, 32940, FL, USA
| | - Damian Czarnecki
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Wiesenstraße 14, Giessen, 35390, Germany.
| |
Collapse
|
9
|
Frick S, Schneider M, Kapsch RP, Thorwarth D. Experimental characterization of four ionization chamber types in magnetic fields including intra-type variation. Phys Imaging Radiat Oncol 2024; 29:100561. [PMID: 38463218 PMCID: PMC10924196 DOI: 10.1016/j.phro.2024.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Background and purpose For dosimetry in magnetic resonance (MR) guided radiotherapy, assessing the magnetic field correction factors of air-vented ionization chambers is crucial. Novel MR-optimized chambers reduce MR-imaging artefacts, enhancing their quality assurance utility. This study aimed to characterize two new MR-optimized ionization chambers with sensitive volumes of 0.07 and 0.016 cm3 regarding magnetic field correction factors and intra-type variation and compare them to their conventional counterparts. Material and methods Five chambers of each type were evaluated in a water phantom, using a clinical linear accelerator and an electromagnet, as well as a 1.5 T MR-linac system. The magnetic field correction factor k B → , Q , addressing the change of response caused by a magnetic field, was assessed together with its intra-type variation. MR-optimized and conventional chambers were compared using a Mann-Whitney U-Test. Results Considering 1.5 T and a perpendicular chamber orientation, we observed significant differences in the magnetic field-induced change in chamber reading between the two 0.016 cm3 chamber versions (p = 0.03). For a 7 MV beam, MR-optimized chambers (0.016/0.07 cm3) showed k B → , Q values of 1.0426(66) and 1.0463(44), compared to 1.0319(53) and 1.0480(41) of their conventional counterparts. In anti-parallel orientation, k B → , Q was 1.0012(69) and 0.9863(49) for the MR-optimized chambers. The average intra-type variation of k B → , Q over all chamber types was 0.3%. Conclusion Magnetic field correction factors were successfully determined for four ionization chamber types, including two new MR-optimized versions, allowing their use in MR-linac absolute dosimetry. Evaluation of the intra-type variation enabled the assessment of their contribution to the uncertainty of tabulated k B → , Q .
Collapse
Affiliation(s)
- Stephan Frick
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Moritz Schneider
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | | | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner site Tübingen, A Partnership between DKFZ and University Hospital Tübingen, Germany
| |
Collapse
|
10
|
Episkopakis A, Margaroni V, Kanellopoulou S, Marinos N, Koutsouveli E, Karaiskos P, Pappas EP. Dose-response dependencies of OSL dosimeters in conventional linacs and 1.5T MR-linacs: an experimental and Monte Carlo study. Phys Med Biol 2023; 68:225002. [PMID: 37857285 DOI: 10.1088/1361-6560/ad051e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Objective. This work focuses on the optically stimulated luminescence dosimetry (OSLD) dose-response characterization, with emphasis on 1.5T MR-Linacs.Approach. Throughout this study, the nanoDots OSLDs (Landauer, USA) were considered. In groups of three, the mean OSLD response was measured in a conventional linac and an MR-Linac under various irradiation conditions to investigate (i) dose-response linearity with and without the 1.5T magnetic field, (ii) signal fading rate and its dependencies, (iii) beam quality, detector orientation and dose rate dependencies in a conventional linac, (iii) potential MR imaging related effects on OSLD response and (iv) detector orientation dependence in an MR-Linac. Monte Carlo calculations were performed to further quantify angular dependence after rotating the detector around its central axis parallel to the magnetic field, and determine the magnetic field correction factors,kB,Q,for all cardinal detector orientations.Main results. OSLD dose-response supralinearity in an MR-Linac setting was found to agree within uncertainties with the corresponding one in a conventional linac, for the axial detector orientation investigated. Signal fading rate does not depend on irradiation conditions for the range of 3-30 d considered. OSLD angular (orientation) dependence is more pronounced under the presence of a magnetic field. OSLDs irradiated with and without real-time T2w MR imaging enabled during irradiation yielded the same response within uncertainties.kB,Qvalues were determined for all three cardinal orientations. Corrections needed reached up to 6.4%. However, if OSLDs are calibrated in the axial orientation and then irradiated in an MR-Linac placed again in the axial orientation (perpendicular to the magnetic field), then simulations suggest thatkB,Qcan be considered unity within uncertainties, irrespective of the incident beam angle.Significance. This work contributes towards OSLD dose-response characterization and relevant correction factors availability. OSLDs are suitable for QA checks in MR-based beam gating applications andin vivodosimetry in MR-Linacs.
Collapse
Affiliation(s)
- Anastasios Episkopakis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
- Global Clinical Operations, Elekta Ltd., Fleming way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Vasiliki Margaroni
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | | | - Nikolas Marinos
- Global Clinical Operations, Elekta Ltd., Fleming way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Efi Koutsouveli
- Medical Physics Department, Hygeia Hospital, Kifissias Avenue & 4 Erythrou Stavrou, Marousi, 151 23 Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | - Eleftherios P Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| |
Collapse
|
11
|
Alissa M, Zink K, Czarnecki D. Investigation of Monte Carlo simulations of the electron transport in external magnetic fields using Fano cavity test. Z Med Phys 2023; 33:499-510. [PMID: 36030166 PMCID: PMC10751718 DOI: 10.1016/j.zemedi.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Monte Carlo simulations are crucial for calculating magnetic field correction factors kB for the dosimetry in external magnetic fields. As in Monte Carlo codes the charged particle transport is performed in straight condensed history (CH) steps, the curved trajectories of these particles in the presence of external magnetic fields can only be approximated. In this study, the charged particle transport in presence of a strong magnetic field B→ was investigated using the Fano cavity test. The test was performed in an ionization chamber and a diode detector, showing how the step size restrictions must be adjusted to perform a consistent charged particle transport within all geometrical regions. METHODS Monte Carlo simulations of the charged particle transport in a magnetic field of 1.5 T were performed using the EGSnrc code system including an additional EMF-macro for the transport of charged particle in electro-magnetic fields. Detailed models of an ionization chamber and a diode detector were placed in a water phantom and irradiated with a so called Fano source, which is a monoenergetic, isotropic electron source, where the number of emitted particles is proportional to the local density. RESULTS The results of the Fano cavity test strongly depend on the energy of charged particles and the density within the given geometry. By adjusting the maximal length of the charged particle steps, it was possible to calculate the deposited dose in the investigated regions with high accuracy (<0.1%). The Fano cavity test was performed in all regions of the detailed detector models. Using the default value for the step size in the external magnetic field, the maximal deviation between Monte Carlo based and analytical dose value in the sensitive volume of the ion chamber and diode detector was 8% and 0.1%, respectively. CONCLUSIONS The Fano cavity test is a crucial validation method for the modeled detectors and the transport algorithms when performing Monte Carlo simulations in a strong external magnetic field. Special care should be given, when calculating dose in volumes of low density. This study has shown that the Fano cavity test is a useful method to adapt particle transport parameters for a given simulation geometry.
Collapse
Affiliation(s)
- Mohamad Alissa
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany; Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg, Germany.
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany; Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg, Germany; Marburg Ionbeam Therapycenter (MIT) Marburg, Germany
| | - Damian Czarnecki
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany
| |
Collapse
|
12
|
Rossi G, Failing T, Gainey M, Kollefrath M, Hensley F, Zink K, Baltas D. Determination of the dose rate around a HDR 192Ir brachytherapy source with the microDiamond and the microSilicon detector. Z Med Phys 2023; 33:463-478. [PMID: 36038432 PMCID: PMC10751698 DOI: 10.1016/j.zemedi.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE To employ the microDiamond and the microSilicon detector (mDD and mSD, both PTW-Freiburg, Germany) to determine the dose rate around a HDR 192Ir brachytherapy source (model mHDR-v2r, Elekta AB, Sweden). METHODS The detectors were calibrated with a 60Co beam at the PTW Calibration Laboratory. Measurements around the 192Ir source were performed inside a PTW MP3 water phantom. The detectors were placed at selected points of measurement at radial distances r, ranging from 0.5 to 10 cm, keeping the polar angle θ = 90°. Additional measurements were performed with the mSD at fixed distances r = 1, 3 and 5 cm, with θ varying from 0 to 150°, 0 to 166°, and 0 to 168°, respectively. The corresponding mDD readings were already available from a previous work (Rossi et al., 2020). The beam quality correction factor of both detectors, as well as a phantom effect correction factor to account for the difference between the experimental geometry and that assumed in the TG-43 formalism, were determined using the Monte Carlo (MC) toolkit EGSnrc. The beam quality correction factor was factorized into energy dependence and volume-averaging correction factors. Using the abovementioned MC-based factors, the dose rate to water at the different points of measurement in TG-43 conditions was obtained from the measured readings, and was compared to the dose rate calculated according to the TG-43 formalism. RESULTS The beam quality correction factor was considerably closer to unity for the mDD than for the mSD. The energy dependence of the mDD showed a very weak radial dependence, similar to the previous findings showing a weak angular dependence as well (Rossi et al., 2020). Conversely, the energy dependence of the mSD decreased significantly with increasing distances, and also showed a considerably more pronounced angular dependence, especially for the smallest angles. The volume-averaging showed a similar radial dependence for both detectors: the correction had a maximal impact at 0.5 cm and then approached unity for larger distances, as expected. Concerning the angular dependence, the correction for the mSD was also similar to the one previously determined for the mDD (Rossi et al., 2020): a maximal impact was observed at θ = 0°, with values tending to unity for larger angles. In general, the volume-averaging was less pronounced for the mSD due to the smaller sensitive volume radius. After the application of the MC-based factors, differences between mDD dose rate measurements and TG-43 dose rate calculations ranged from -2.6% to +4.3%, with an absolute average difference of 1.0%. For the mSD, the differences ranged from -3.1% to +5.2%, with an absolute average difference of 1.0%. For both detectors, all differences but one were within the combined uncertainty (k = 2). The differences of the mSD from the mDD ranged from -3.9% to +2.6%, with the vast majority of them being within the combined uncertainty (k = 2). For θ ≠ 0°, the mDD was able to provide sufficiently accurate results even without the application of the MC-based beam quality correction factor, with differences to the TG-43 dose rate calculations from -1.9% to +3.4%, always within the combined uncertainty (k = 2). CONCLUSION The mDD and the mSD showed consistent results and appear to be well suitable for measuring the dose rate around HDR 192Ir brachytherapy sources. MC characterization of the detectors response is needed to determine the beam quality correction factor and to account for energy dependence and/or volume-averaging, especially for the mSD. Our findings support the employment of the mDD and mSD for source QA, TPS verification and TG-43 parameters determination.
Collapse
Affiliation(s)
- Giulio Rossi
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Thomas Failing
- University of Applied Sciences Giessen, Institute of Medical Physics and Radiation Protection, Giessen, Germany; University Medical Center Göttingen, Department of Radiation Oncology, Göttingen, Germany
| | - Mark Gainey
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Kollefrath
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Hensley
- University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg, Germany
| | - Klemens Zink
- University of Applied Sciences Giessen, Institute of Medical Physics and Radiation Protection, Giessen, Germany; University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiation Oncology, Marburg, Germany; Marburg Ionbeam Therapycenter (MIT), Marburg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Gunasekara D, Wilkins R, Tessier F, Beaton-Green L. Monte Carlo modelling of experimental setup used for biodosimetry intercomparison. RADIATION PROTECTION DOSIMETRY 2023; 199:1551-1556. [PMID: 37721067 PMCID: PMC10788615 DOI: 10.1093/rpd/ncad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 09/19/2023]
Abstract
When using biodosimetry techniques to assess absorbed dose from an ionising radiation exposure, a calibration curve is required. At Health Canada (HC), these curves are generated for a variety of radiation qualities and assays to translate biological damage into absorbed dose. They are produced by irradiating biological samples in custom-designed water-equivalent phantoms inside a cabinet X-ray machine. In the HC lab, two different phantoms can be used for irradiation that differs in material composition and internal geometry. To ensure consistency, the impact of using the phantoms interchangeably was investigated. This was done through lab measurements and the development of a Monte Carlo (MC) model. Differences up to 6.7% were found between the two experimental setups, indicating the need for careful consideration if using these setups interchangeably in the laboratory. Once validated, the MC model can be used to investigate different aspects of the experimental setup without the need for laboratory measurements.
Collapse
Affiliation(s)
- Dinindu Gunasekara
- Environmental and Radiation Health Sciences Directorate, Health Canada 775 Brookfield Rd, Ottawa K1A 1C1, Canada
| | - Ruth Wilkins
- Environmental and Radiation Health Sciences Directorate, Health Canada 775 Brookfield Rd, Ottawa K1A 1C1, Canada
| | - Frédéric Tessier
- Ionizing Radiation Standards, National Research Council Canada 1200 Montréal Rd, Ottawa K1A 0R6, Canada
| | - Lindsay Beaton-Green
- Environmental and Radiation Health Sciences Directorate, Health Canada 775 Brookfield Rd, Ottawa K1A 1C1, Canada
| |
Collapse
|
14
|
Martinov MP, Fletcher EM, Thomson RM. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy I: Cellular dose enhancement in microscopic models. Med Phys 2023; 50:5853-5864. [PMID: 37211878 DOI: 10.1002/mp.16454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND The introduction of Gold NanoParticles (GNPs) in radiotherapy treatments necessitates considerations such as GNP size, location, and quantity, as well as patient geometry and beam quality. Physics considerations span length scales across many orders of magnitude (nanometer-to-centimeter), presenting challenges that often limit the scope of dosimetric studies to either micro- or macroscopic scales. PURPOSE To investigate GNP dose-enhanced radiation Therapy (GNPT) through Monte Carlo (MC) simulations that bridge micro-to-macroscopic scales. The work is presented in two parts, with Part I (this work) investigating accurate and efficient MC modeling at the single cell level to calculate nucleus and cytoplasm Dose Enhancement Factors (n,cDEFs), considering a broad parameter space including GNP concentration, GNP intracellular distribution, cell size, and incident photon energy. Part II then evaluates cell dose enhancement factors across macroscopic (tumor) length scales. METHODS Different methods of modeling gold within cells are compared, from a contiguous volume of either pure gold or gold-tissue mixture to discrete GNPs in a hexagonal close-packed lattice. MC simulations with EGSnrc are performed to calculate n,cDEF for a cell with radiusr cell = 7.35 $r_{\rm cell}=7.35$ µm and nucleusr nuc = 5 $r_{\rm nuc} = 5$ µm considering 10 to 370 keV incident photons, gold concentrations from 4 to 24 mgAu /gtissue , and three different GNP configurations within the cell: GNPs distributed around the surface of the nucleus (perinuclear) or GNPs packed into one (or four) endosome(s). Select simulations are extended to cells with different cell (and nucleus) sizes: 5 µm (2, 3, and 4 µm), 7.35 µm (4 and 6 µm), and 10 µm (7, 8, and 9 µm). RESULTS n,cDEFs are sensitive to the method of modeling gold in the cell, with differences of up to 17% observed; the hexagonal lattice of GNPs is chosen (as the most realistic model) for all subsequent simulations. Across cell/nucleus radii, source energies, and gold concentrations, both nDEF and cDEF are highest for GNPs in the perinuclear configuration, compared with GNPs in one (or four) endosome(s). Across all simulations of the (rcell , rnuc ) = (7.35, 5) µm cell, nDEFs and cDEFs range from unity to 6.83 and 3.87, respectively. Including different cell sizes, nDEFs and cDEFs as high as 21.5 and 5.5, respectively, are observed. Both nDEF and cDEF are maximized at photon energies above the K- or L-edges of gold by 10 to 20 keV. CONCLUSIONS Considering 5000 unique simulation scenarios, this work comprehensively investigates many physics trends on DEFs at the cellular level, including demonstrating that cellular DEFs are sensitive to gold modeling approach, intracellular GNP configuration, cell/nucleus size, gold concentration, and incident source energy. These data should prove especially useful in research as well as treatment planning, allowing one to optimize or estimate DEF using not only GNP uptake, but also account for average tumor cell size, incident photon energy, and intracellular configuration of GNPs. Part II will expand the investigation, taking the Part I cell model and applying it in cm-scale phantoms.
Collapse
Affiliation(s)
- Martin P Martinov
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Canada
| | - Elizabeth M Fletcher
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Canada
| |
Collapse
|
15
|
Yasui K, Nakajima Y, Suda Y, Arai Y, Takizawa T, Sakai K, Fujita Y. Experimental investigation of the effective point of measurement for plane-parallel chambers used in electron beam dosimetry. J Appl Clin Med Phys 2023:e14059. [PMID: 37307247 DOI: 10.1002/acm2.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
In this study, the effective point of measurement (EPOM) for plane-parallel ionization chambers in clinical high-energy electron beams was determined experimentally. Previous studies have reported that the EPOM of plane-parallel chambers is shifted several tens of millimeters downstream from the inner surface of the entrance window to the cavity. These findings were based on the Monte Carlo (MC) simulation, and few experimental studies have been performed. Thus, additional experimental validations of the reported EPOMs were required. In this study, we investigated the EPOMs of three plane-parallel chambers (NACP-02, Roos and Advanced Markus) for clinical electron beams. The EPOMs were determined by comparing the measured percentage depth-dose (PDD) of the plane-parallel chambers and the PDD obtained using the microDiamond detector. The optimal shift to the EPOM was energy-dependent. The determined EPOM showed no chamber-to-chamber variation, thereby allowing the use of a single value. The mean optimal shifts were 0.104 ± 0.011, 0.040 ± 0.012, and 0.012 ± 0.009 cm for NACP-02, Roos, and Advanced Markus, respectively. These values are valid in the R50 range from 2.40 to 8.82 cm, which correspond to 6-22 MeV. Roos and Advanced Markus exhibited similar results to those of the previous studies, but NACP-02 showed a larger shift. This is probably due to the uncertainty of the entrance window of NACP-02. Therefore, it is necessary to carefully consider where the optimal EPOM is located when using this chamber.
Collapse
Affiliation(s)
- Kohki Yasui
- Department of Radiological Sciences, Komazawa University Graduate School, Setagaya-ku, Tokyo, Japan
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yujiro Nakajima
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Radiological Sciences, Komazawa University, Setagaya-ku, Tokyo, Japan
| | - Yuhi Suda
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yu Arai
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Takuto Takizawa
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Kaito Sakai
- Department of Radiological Sciences, Komazawa University Graduate School, Setagaya-ku, Tokyo, Japan
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yukio Fujita
- Department of Radiological Sciences, Komazawa University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
16
|
Margaroni V, Pappas EP, Episkopakis A, Pantelis E, Papagiannis P, Marinos N, Karaiskos P. Dosimetry in 1.5 T MR-Linacs: Monte Carlo determination of magnetic field correction factors and investigation of the air gap effect. Med Phys 2023; 50:1132-1148. [PMID: 36349535 DOI: 10.1002/mp.16082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Magnetic Resonance-Linac (MR-Linac) dosimetry formalisms, a new correction factor, kB,Q , has been introduced to account for corresponding changes to detector readings under the beam quality, Q, and the presence of magnetic field, B. PURPOSE This study aims to develop and implement a Monte Carlo (MC)-based framework for the determination of kB,Q correction factors for a series of ionization chambers utilized for dosimetry protocols and dosimetric quality assurance checks in clinical 1.5 T MR-Linacs. Their dependencies on irradiation setup conditions are also investigated. Moreover, to evaluate the suitability of solid phantoms for dosimetry checks and end-to-end tests, changes to the detector readings due to the presence of small asymmetrical air gaps around the detector's tip are quantified. METHODS Phase space files for three irradiation fields of the ELEKTA Unity 1.5 T/7 MV flattening-filter-free MR-Linac were provided by the manufacturer and used as source models throughout this study. Twelve ionization chambers (three farmer-type and nine small-cavity detectors, from three manufacturers) were modeled (including their dead volume) using the EGSnrc MC code package. kB,Q values were calculated for the 10 × 10 cm2 irradiation field and for four cardinal orientations of the detectors' axes with respect to the 1.5 T magnetic field. Potential dependencies of kB,Q values with respect to field size, depth, and phantom material were investigated by performing additional simulations. Changes to the detectors' readings due to the presence of small asymmetrical air gaps (0.1 up to 1 mm) around the chambers' sensitive volume in an RW3 solid phantom were quantified for three small-cavity chambers and two orientations. RESULTS For both parallel (to the magnetic field) orientations, kB,Q values were found close to unity. The maximum correction needed was 1.1%. For each detector studied, the kB,Q values calculated for the two parallel orientations agreed within uncertainties. Larger corrections (up to 5%) were calculated when the detectors were oriented perpendicularly to the magnetic field. Results were compared with corresponding ones found in the literature, wherever available. No considerable dependence of kB,Q with respect to field size (down to 3 × 3 cm2 ), depth, or phantom material was noticed, for the detectors investigated. As compared to the perpendicular one, in the parallel to the magnetic field orientation, the air gap effect is minimized but is still considerable even for the smallest air gap considered (0.1 mm). CONCLUSION For the 10 × 10 cm2 field, magnetic field correction factors for 12 ionization chambers and four orientations were determined. For each detector, the kB,Q value may be also applied for dosimetry procedures under different irradiation parameters provided that the orientation is taken into account. Moreover, if solid phantoms are used, even the smallest asymmetrical air gap may still bias small-cavity chamber response. This work substantially expands the availability and applicability of kB,Q correction factors that are detector- and orientation-specific, enabling more options in MR-Linac dosimetry checks, end-to-end tests, and quality assurance protocols.
Collapse
Affiliation(s)
- Vasiliki Margaroni
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios P Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Episkopakis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Global Clinical Operations, Elekta Ltd, Crawley, West Sussex, UK
| | - Evaggelos Pantelis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Marinos
- Global Clinical Operations, Elekta Ltd, Crawley, West Sussex, UK
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Failing T, Hartmann GH, Hensley FW, Keil B, Zink K. Enhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles. Z Med Phys 2022; 32:417-427. [PMID: 35643800 PMCID: PMC9948836 DOI: 10.1016/j.zemedi.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Simulation of absorbed dose deposition in a detector is one of the key tasks of Monte Carlo (MC) dosimetry methodology. Recent publications (Hartmann and Zink, 2018; Hartmann and Zink, 2019; Hartmann et al., 2021) have shown that knowledge of the charged particle fluence differential in energy contributing to absorbed dose is useful to provide enhanced insight on how response depends on detector properties. While some EGSnrc MC codes provide output of charged particle spectra, they are often restricted in setup options or limited in calculation efficiency. For detector simulations, a promising approach is to upgrade the EGSnrc code egs_chamber which so far does not offer charged particle calculations. METHODS Since the user code cavity offers charged particle fluence calculation, the underlying algorithm was embedded in egs_chamber. The modified code was tested against two EGSnrc applications and DOSXYZnrc which was modified accordingly by one of the authors. Furthermore, the gain in efficiency achieved by photon cross section enhancement was determined quantitatively. RESULTS Electron and positron fluence spectra and restricted cema calculated by egs_chamber agreed well with the compared applications thus demonstrating the feasibility of the new code. Additionally, variance reduction techniques are now applicable also for fluence calculations. Depending on the simulation setup, considerable gains in efficiency were obtained by photon cross section enhancement. CONCLUSION The enhanced egs_chamber code represents a valuable tool to investigate the response of detectors with respect to absorbed dose and fluence distribution and the perturbation caused by the detector in a reasonable computation time. By using intermediate phase space scoring, egs_chamber offers parallel calculation of charged particle fluence spectra for different detector configurations in one single run.
Collapse
Affiliation(s)
- Thomas Failing
- Department for Radiotherapy and Radiooncology, University Medical Center Göttingen, Göttingen 37075, Germany; Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen 35390, Germany.
| | | | - Frank W Hensley
- Department for Radiotherapy and Radiooncology, University Medical Center Heidelberg, Heidelberg 69120, Germany
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen 35390, Germany; Diagnostic and Interventional Radiology, Philipps-University Marburg, Marburg 35043, Germany
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen 35390, Germany; Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg 35043, Germany; Marburg Iontherapy Center (MIT), Marburg 35043, Germany
| |
Collapse
|
18
|
Nusrat BRM, Sarfehnia A, Renaud J. Monte Carlo optimization and experimental validation of a prototype ionization chamber for accurate magnetic resonance image guided radiation therapy (MRgRT) daily output constancy measurements in solid phantoms. Med Phys 2022; 49:5483-5490. [PMID: 35536047 DOI: 10.1002/mp.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To optimize the design, develop and test a prototype ionization chamber for accurate daily output constancy measurements in solid phantoms in clinical MRgRT radiotherapy beams. Up to 4 % variations in response using commercial ionization chambers have been previously reported; the prototype ionization chamber developed here aims to minimize these variations. METHODS Monte Carlo simulations with the EGSnrc code system are used to optimize an ionization chamber design by increasing the thickness of a brass (high-density, non-ferromagnetic, easy-to-machine) wall until results consistent with no air gap are produced for simulations with a 1.5 T and 0.35 T magnetic field, with a 0.2 mm air gap and varying the placement of the chamber model within the air gap. Based on the results of these simulations, prototype ionization chambers are manufactured and tested in conventional linac beams and in a 7 MV Elekta Unity MR-linac. The chambers are rotated about their axes, both parallel and perpendicular to the 1.5 T magnetic field, through 360 degrees in a plastic phantom with measurements made at each cardinal angle. This reveals any variation in chamber response by varying the thickness of the air gap between the chamber and the phantom. RESULTS Monte Carlo simulations demonstrate that the optimal thickness of the chamber wall to mitigate the effect of an asymmetric air gap between the chamber and the plastic phantom is 1.1 mm of brass. With this thickness, the differences between simulations with and without an air gap and with asymmetric placement of the chamber within the air gap are less than 0.2 %. A prototype chamber constructed with a 1.1 mm brass wall thickness exhibits less than 0.3 % variation in response when rotated about its axis in the plastic phantom in a beam from an MR-linac, independent of whether its axis is parallel or perpendicular to the magnetic field. CONCLUSION The optimized ionization chamber design and validated prototype for accurate MR-linac daily output constancy measurements allows utilization of conventional phantoms and procedures in MRgRT systems. This can minimize disruption to clinical workflow for MR-linac QA measurements. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Arman Sarfehnia
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - James Renaud
- NRC Metrology Research Centre, National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
19
|
López-Sánchez M, Pérez-Fernández M, Pardo E, Fandiño JM, Teijeiro A, Gómez-Fernández N, Gómez F, González-Castaño DM. Small static radiosurgery field dosimetry with small volume ionization chambers. Phys Med 2022; 97:66-72. [DOI: 10.1016/j.ejmp.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/15/2022] [Accepted: 04/09/2022] [Indexed: 11/28/2022] Open
|
20
|
Duchaine J, Markel D, Bouchard H. Efficient dose-rate correction of silicon diode relative dose measurements. Med Phys 2022; 49:4056-4070. [PMID: 35315526 DOI: 10.1002/mp.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 12/21/2021] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Silicon diodes are often the detector of choice for relative dose measurements, particularly in the context of radiotherapy involving small photon beams. However, a major drawback lies in their dose-rate dependency. Although ionization chambers are often too large for small field output factor measurements, they are valuable instruments to provide reliable percent-depth dose curves in reference beams. The aim of this work is to propose a practical and accurate method for the characterization of silicon diode dose-rate dependence correction factors using ionization chamber measurements as a reference. METHODS The robustness of ionization chambers for percent-depth dose measurements is used to quantify the dose-rate dependency of a diode detector. A mathematical formalism, which exploits the error induced in percent-depth ionization curves for diodes by their dose-rate dependency, is developed to derive a dose-rate correction factor applicable to diode relative measurements. The method is based on the definition of the recombination correction factor given in the addendum to TG 51 and is applied to experimental measurements performed on a CyberKnife M6 radiotherapy unit using a PTW 60012 diode detector. A measurement-based validation is provided by comparing corrected percent-depth ionization curves to measurements performed with a PTW 60019 diamond detector which does not exhibit dose-rate dependence. RESULTS Results of dose-rate correction factors for percent-depth ionization curves, off-axis ratios, tissue-phantom ratios and small field output factors are coherent with the expected behavior of silicon diode detectors. For all considered setups and field sizes, the maximum correction and the maximum impact of the uncertainties induced by the correction are obtained for off-axis ratios for the 60 mm collimator, with a correction of 2.5% and an uncertainty of 0.34%. For output factors, corrections range from 0.33% to 0.82% for all field sizes considered, and increase with the reduction of the field size. Comparison of percent-depth ionization curves corrected for dose-rate and for in-depth beam quality variations illustrate excellent agreement with measurements performed using the diamond detector. CONCLUSIONS The proposed method allows the efficient and precise correction of the dose-rate dependence of silicon diode detectors in the context of clinical relative dosimetry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jasmine Duchaine
- Département de physique, Université de Montréal, Campus MIL, 1375 Av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
| | - Daniel Markel
- Département de radio-oncologie, Centre hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montréal, QC, H2X 3E4, Canada
| | - Hugo Bouchard
- Département de physique, Université de Montréal, Campus MIL, 1375 Av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, QC, H2X 0A9, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montréal, QC, H2X 3E4, Canada
| |
Collapse
|
21
|
Duchaine J, Wahl M, Markel D, Bouchard H. A probabilistic approach for determining Monte Carlo beam source parameters: II. Impact of beam modeling uncertainties on dosimetric functions and treatment plans. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac4efb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. The Monte Carlo method is recognized as a valid approach for the evaluation of dosimetric functions for clinical use. This procedure requires the accurate modeling of the considered linear accelerator. In Part I, we propose a new method to extract the probability density function of the beam model physical parameters. The aim of this work is to evaluate the impact of beam modeling uncertainties on Monte Carlo evaluated dosimetric functions and treatment plans in the context of small fields. Approach. Simulations of output factors, output correction factors, dose profiles, percent-depth doses and treatment plans are performed using the CyberKnife M6 model developed in Part I. The optimized pair of electron beam energy and spot size, and eight additional pairs of beam parameters representing a 95% confidence region are used to propagate the uncertainties associated to the source parameters to the dosimetric functions. Main results. For output factors, the impact of beam modeling uncertainties increases with the reduction of the field size and confidence interval half widths reach 1.8% for the 5 mm collimator. The impact on output correction factors cancels in part, leading to a maximum confidence interval half width of 0.44%. The impact is less significant for percent-depth doses in comparison to dose profiles. For these types of measurement, in absolute terms and in comparison to the reference dose, confidence interval half widths less than or equal to 1.4% are observed. For simulated treatment plans, the impact is more significant for the treatment delivered with a smaller field size with confidence interval half widths reaching 2.5% and 1.4% for the 5 and 20 mm collimators, respectively. Significance. Results confirm that AAPM TG-157's tolerances cannot apply to the field sizes studied. This study provides an insight on the reachable dose calculation accuracy in a clinical setup.
Collapse
|
22
|
Duchaine J, Markel D, Bouchard H. A probabilistic approach for determining Monte Carlo beam source parameters: I. Modeling of a CyberKnife M6 unit. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac4ef7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/26/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. During Monte Carlo modeling of external radiotherapy beams, models must be adjusted to reproduce the experimental measurements of the linear accelerator being considered. The aim of this work is to propose a new method for the determination of the energy and spot size of the electron beam incident on the target of a linear accelerator using a maximum likelihood estimation. Approach. For that purpose, the method introduced by Francescon et al (2008 Med. Phys.
35 504–13) is expanded upon in this work. Simulated tissue-phantom ratios and uncorrected output factors using a set of different detector models are compared to experimental measurements. A probabilistic formalism is developed and a complete uncertainty budget, which includes a detailed simulation of positioning errors, is evaluated. The method is applied to a CyberKnife M6 unit using four detectors (PTW 60012, PTW 60019, Exradin A1SL and IBA CC04), with simulations being performed using the EGSnrc suite. Main results. The likelihood distributions of the electron beam energy and spot size are evaluated, leading to
E
ˆ
=
7.42
±
0.17
MeV
and
F
ˆ
=
2.15
±
0.06
mm
. Using these results and a 95% confidence region, simulations reproduce measurements in 13 out of the 14 considered setups. Significance. The proposed method allows an accurate beam parameter optimization and uncertainty evaluation during the Monte Carlo modeling of a radiotherapy unit.
Collapse
|
23
|
King EJ, Viscariello NN, DeWerd LA. Development of Standard X-Ray Beams for Calibration of Radiobiology Cabinet and Conformal Irradiators. Radiat Res 2022; 197:113-121. [PMID: 34634111 DOI: 10.1667/rade-21-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022]
Abstract
This work seeks to develop standard X-ray beams that are matched to radiobiology X-ray irradiators. The calibration of detectors used for dose determination of these irradiators is performed with a set of standard X rays that are more heavily filtered and/or lower energy, which leads to a higher uncertainty in the dose measurement. Models of the XRad320, SARRP, and the X-ray tube at the University of Wisconsin Medical Radiation Research Center (UWMRRC) were created using the BEAMnrc user code of the EGSnrc Monte Carlo code system. These models were validated against measurements, and the resultant modeled spectra were used to determine the amount of added filtration needed to match the X-ray beams at the UWMRRC to those of the XRad320 and SARRP. The depth profiles and half-value layer (HVL) simulations performed using BEAMnrc agreed to measurements within 3% and 3.6%, respectively. A primary measurement device, a free-air chamber, was developed to measure air kerma in the medium energy range of X rays. The resultant spectra of the matched beams had HVL's that matched the HVL's of the radiobiology irradiators well within the 3% criteria recommended by the International Atomic Energy Agency (IAEA) and the average energies agreed within 2.4%. In conclusion, three standard X-ray beams were developed at the UWMRRC with spectra that more closely match the spectra of the XRad320 and SARRP radiobiology irradiators, which will aid in a more accurate dose determination during calibration of these irradiators.
Collapse
Affiliation(s)
- Emily J King
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Larry A DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
24
|
Yano M, Araki F, Ohno T. Monte Carlo study of small-field dosimetry for an ELEKTA Unity MR-Linac system. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Alissa M, Zink K, Tessier F, Schoenfeld AA, Czarnecki D. Monte Carlo calculated beam quality correction factors for two cylindrical ionization chambers in photon beams. Phys Med 2021; 94:17-23. [PMID: 34972070 DOI: 10.1016/j.ejmp.2021.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/04/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Although several studies provide data for reference dosimetry, the SNC600c and SNC125c ionization chambers (Sun Nuclear Corporation, Melbourne, FL) are in clinical use worldwide for which no beam quality correction factors kQ are available. The goal of this study was to calculate beam quality correction factors kQ for these ionization chambers according to dosimetry protocols TG-51, TRS 398 and DIN 6800-2. METHODS Monte Carlo simulations using EGSnrc have been performed to calculate the absorbed dose to water and the dose to air within the active volume of ionization chamber models. Both spectra and simulations of beam transport through linear accelerator head models were used as radiation sources for the Monte Carlo calculations. RESULTS kQ values as a function of the respective beam quality specifier Q were fitted against recommended equations for photon beam dosimetry in the range of 4 MV to 25 MV. The fitting curves through the calculated values showed a root mean square deviation between 0.0010 and 0.0017. CONCLUSIONS The investigated ionization chamber models (SNC600c, SNC125c) are not included in above mentioned dosimetry protocols, but are in clinical use worldwide. This study covered this knowledge gap and compared the calculated results with published kQ values for similar ionization chambers. Agreements with published data were observed in the 95% confidence interval, confirming the use of data for similar ionization chambers, when there are no kQ values available for a given ionization chamber.
Collapse
Affiliation(s)
- Mohamad Alissa
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany.
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany; Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg, Germany; Marburg Ionbeam Therapycenter (MIT), Marburg, Germany
| | - Frédéric Tessier
- Ionization Radiation Standards, National Research Council, Ottawa, Canada
| | | | - Damian Czarnecki
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany
| |
Collapse
|
26
|
Cervantes Y, Duchaine J, Billas I, Duane S, Bouchard H. Monte Carlo calculation of detector perturbation and quality correction factors in a 1.5 T magnetic resonance guided radiation therapy small photon beams. Phys Med Biol 2021; 66. [PMID: 34700311 DOI: 10.1088/1361-6560/ac3344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023]
Abstract
Objective.With future advances in magnetic resonance imaging-guided radiation therapy, small photon beams are expected to be included regularly in clinical treatments. This study provides physical insights on detector dose-response to multiple megavoltage photon beam sizes coupled to magnetic fields and determines optimal orientations for measurements.Approach.Monte Carlo simulations determine small-cavity detector (solid-state: PTW60012 and PTW60019, ionization chambers: PTW31010, PTW31021, and PTW31022) dose-responses in water to an Elekta Unity 7 MV FFF photon beam. Investigations are performed for field widths between 0.25 and 10 cm in four detector axis orientations with respect to the 1.5 T magnetic field and the photon beam. The magnetic field effect on the overall perturbation factor (PMC) accounting for the extracameral components, atomic composition, and density is quantified in each orientation. The density (Pρ) and volume averaging (Pvol) perturbation factors and quality correction factors (kQB,QfB,f) accounting for the magnetic field are also calculated in each orientation.Main results.Results show thatPvolremains the most significant perturbation both with and without magnetic fields. In most cases, the magnetic field effect onPvolis 1% or less. The magnetic field effect onPρis more significant on ionization chambers than on solid-state detectors. This effect increases up to 1.564 ± 0.001 with decreasing field size for chambers. On the contrary, the magnetic field effect on the extracameral perturbation factor is higher on solid-state detectors than on ionization chambers. For chambers, the magnetic field effect onPMCis only significant for field widths <1 cm, while, for solid-state detectors, this effect exhibits different trends with orientation, indicating that the beam incident angle and geometry play a crucial role.Significance.Solid-state detectors' dose-response is strongly affected by the magnetic field in all orientations. The magnetic field impact on ionization chamber response increases with decreasing field size. In general, ionization chambers yieldkQB,QfB,fcloser to unity, especially in orientations where the chamber axis is parallel to the magnetic field.
Collapse
Affiliation(s)
- Yunuen Cervantes
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Jasmine Duchaine
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Ilias Billas
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Teddington, United Kingdom.,Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Simon Duane
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Teddington, United Kingdom
| | - Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| |
Collapse
|
27
|
Georgiou G, Kumar S, Würfel JU, Gilmore M, Underwood TSA, Rowbottom CG, Fenwick JD. The PTW microSilicon diode: Performance in small 6 and 15 MV photon fields and utility of density compensation. Med Phys 2021; 48:8062-8074. [PMID: 34725831 DOI: 10.1002/mp.15329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE We have experimentally and computationally characterized the PTW microSilicon 60023-type diode's performance in 6 and 15 MV photon fields ≥5 × 5 mm2 projected to isocenter. We tested the detector on- and off-axis at 5 and 15 cm depths in water, and investigated whether its response could be improved by including within it a thin airgap. METHODS Experimentally, detector readings were taken in fields generated by a Varian TrueBeam linac and compared with doses-to-water measured using Gafchromic film and ionization chambers. An unmodified 60023-type diode was tested along with detectors modified to include 0.6, 0.8, and 1.0 mm thick airgaps. Computationally, doses absorbed by water and detectors' sensitive volumes were calculated using the EGSnrc/BEAMnrc Monte Carlo radiation transport code. Detector response was characterized using k Q c l i n , 4 cm f c l i n , 4 cm , a factor that corrects for differences in the ratio of dose-to-water to detector reading between small fields and the reference condition, in this study 5 cm deep on-axis in a 4 × 4 cm2 field. RESULTS The greatest errors in measurements of small field doses made using uncorrected readings from the unmodified 60023-type detector were over-responses of 2.6% ± 0.5% and 5.3% ± 2.0% determined computationally and experimentally, relative to the reading-per-dose in the reference field. Corresponding largest errors for the earlier 60017-type detector were 11.9% ± 0.6% and 11.7% ± 1.4% over-responses. Adding even the thinnest, 0.6 mm, airgap to the 60023-type detector over-corrected it, leading to under-responses of up to 4.8% ± 0.6% and 5.0% ± 1.8% determined computationally and experimentally. Further, Monte Carlo calculations indicate that a detector with a 0.3 mm airgap would read correctly to within 1.3% on-axis. The ratio of doses at 15 and 5 cm depths in water in a 6 MV 4 × 4 cm2 field was measured more accurately using the unmodified 60023-type detector than using the 60017-type detector, and was within 0.3% of the ratio measured using an ion chamber. The 60023-type diode's sensitivity also varied negligibly as dose-rate was reduced from 13 to 4 Gy min-1 by decreasing the linac pulse repetition frequency, whereas the sensitivity of the 60017-type detector fell by 1.5%. CONCLUSIONS The 60023-type detector performed well in small fields across a wide range of beam energies, field sizes, depths, and off-axis positions. Its response can potentially be further improved by adding a thin, 0.3 mm, airgap.
Collapse
Affiliation(s)
- Georgios Georgiou
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Physics, Clatterbridge Cancer Centre, Wirral, UK.,Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
| | - Sudhir Kumar
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Martyn Gilmore
- Department of Physics, Clatterbridge Cancer Centre, Wirral, UK
| | - Tracy S A Underwood
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Carl G Rowbottom
- Department of Physics, Clatterbridge Cancer Centre, Wirral, UK.,Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
| | - John D Fenwick
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Physics, Clatterbridge Cancer Centre, Wirral, UK
| |
Collapse
|
28
|
Partanen M, Niemelä J, Ojala J, Keyriläinen J, Kapanen M. Properties of IBA Razor Nano Chamber in small-field radiation therapy using 6 MV FF, 6 MV FFF, and 10 MV FFF photon beams. Acta Oncol 2021; 60:1419-1424. [PMID: 34596486 DOI: 10.1080/0284186x.2021.1979644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Small megavoltage photon fields are increasingly used in modern radiotherapy techniques such as stereotactic radiotherapy. Therefore, it is important to study the reliability of dosimetry in the small-field conditions. The IBA Razor Nano Chamber (Nano chamber) ionization chamber is particularly intended for small-field measurements. In this work, properties of the Nano chamber were studied with both measurements and Monte Carlo (MC) simulations. MATERIAL AND METHODS The measurements and MC simulations were performed with 6 MV, 6 MV FFF and 10 MV FFF photon beams from the Varian TrueBeam linear accelerator. The source-to-surface distance was fixed at 100 cm. The measurements and MC simulations included profiles, percentage depth doses (PDD), and output factors (OF) in square jaw-collimated fields. The MC simulations were performed with the EGSnrc software system in a large water phantom. RESULTS The measured profiles and PDDs obtained with the Nano chamber were compared against IBA Razor Diode, PTW microDiamond and the PTW Semiflex ionization chamber. These results indicate that the Nano chamber is a high-resolution detector and thus suitable for small field profile measurements down to field sizes 2 × 2 cm2 and appropriate for the PDD measurements. The field output correction factors kQclin, Qmsrfclin, fmsr and field OFs ΩQclin, Qmsrfclin, fmsr were determined according to TRS-483 protocol In the 6 MV FF and FFF beams, the determined correction factors kQclin, Qmsrfclin, fmsr were within 1.2% for the field sizes of 1 × 1 cm2-3 × 3 cm2 and the experimental and MC defined field output factors ΩQclin,Qmsrfclin,fmsr showed good agreement. CONCLUSION The Nano chamber with its small cavity volume is a potential detector for the small-field dosimetry. In this study, the properties of this detector were characterized with measurements and MC simulations. The determined correction factors kQclin, Qmsrfclin, fmsr are novel results for the NC in the TrueBeam fields.
Collapse
Affiliation(s)
- Mari Partanen
- Unit of Radiotherapy, Department of Oncology, Tampere University Hospital, Tampere, Finland
- Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| | - Jarkko Niemelä
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
- Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Jarkko Ojala
- Unit of Radiotherapy, Department of Oncology, Tampere University Hospital, Tampere, Finland
- Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| | - Jani Keyriläinen
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Mika Kapanen
- Unit of Radiotherapy, Department of Oncology, Tampere University Hospital, Tampere, Finland
- Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
29
|
Araki F. Determination of an ionization chamber response using quality index for kilovoltage x-ray beams. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Côté B, Keszti F, Bancheri J, Sarfehnia A, Seuntjens J, Renaud J. Feasibility of operating a millimeter-scale graphite calorimeter for absolute dosimetry of small-field photon beams in the clinic. Med Phys 2021; 48:7476-7492. [PMID: 34549805 DOI: 10.1002/mp.15244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 07/06/2021] [Accepted: 08/28/2001] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To characterize and build a cylindrically layered graphite calorimeter the size of a thimble ionization chamber for absolute dosimetry of small fields. This detector has been designed in a familiar probe format to facilitate integration into the clinical workflow. The feasibility of operating this absorbed dose calorimeter in quasi-adiabatic mode is assessed for high-energy accelerator-based photon beams. METHODS This detector, herein referred to as Aerrow MK7, is a miniaturized version of a previously validated aerogel-insulated graphite calorimeter known as Aerrow. The new model was designed and developed using numerical methods. Medium conversion factors from graphite to water, small-field output correction factors, and layer perturbation factors for this dosimeter were calculated using the EGSnrc Monte Carlo code system. A range of commercially available aerogel densities were studied for the insulating layers, and an optimal density was selected by minimizing the small-field output correction factors. Heat exchange within the detector was simulated using a five-body compartmental heat transfer model. In quasi-adiabatic mode, the sensitive volume (a 3 mm diameter cylindrical graphite core) experiences a temperature rise during irradiation on the order of 1.3 mK·Gy-1 . The absorbed dose is obtained by calculating the product of this temperature rise with the specific heat capacity of the graphite. The detector was irradiated with 6 MV ( % dd ( 10 ) x = 63.5%) and 10 MV ( % dd ( 10 ) x = 71.1%) flattening filter-free (FFF) photon beams for two field sizes, characterized by S clin dimensions of 2.16 and 11.0 cm. The dose readings were compared against a calibrated Exradin A1SL ionization chamber. All dose values are reported at d max in water. RESULTS The field output correction factors for this dosimeter design were computed for field sizes ranging from S clin = 0.54 to 11.0 cm. For all aerogel densities studied, these correction factors did not exceed 1.5%. The relative dose difference between the two dosimeters ranged between 0.3% and 0.7% for all beams and field sizes. The smallest field size experimentally investigated, S clin = 2.16 cm, which was irradiated with the 10 MV FFF beam, produced readings of 84.4 cGy (±1.3%) in the calorimeter and 84.5 cGy (±1.3%) in the ionization chamber. CONCLUSION The median relative difference in absorbed dose values between a calibrated A1SL ionization chamber and the proposed novel graphite calorimeter was 0.6%. This preliminary experimental validation demonstrates that Aerrow MK7 is capable of accurate and reproducible absorbed dose measurements in quasi-adiabatic mode.
Collapse
Affiliation(s)
- Benjamin Côté
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Federico Keszti
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Julien Bancheri
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Arman Sarfehnia
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jan Seuntjens
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - James Renaud
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Blum I, Tekin T, Delfs B, Schönfeld AB, Kapsch RP, Poppe B, Looe HK. The dose response of PTW microDiamond and microSilicon in transverse magnetic field under small field conditions. Phys Med Biol 2021; 66. [PMID: 34181591 DOI: 10.1088/1361-6560/ac0f2e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022]
Abstract
The aim of the present work is to investigate the behavior of two diode-type detectors (PTW microDiamond 60019 and PTW microSilicon 60023) in transverse magnetic field under small field conditions. A formalism based on TRS 483 has been proposed serving as the framework for the application of these high-resolution detectors under these conditions. Measurements were performed at the National Metrology Institute of Germany (PTB, Braunschweig) using a research clinical linear accelerator facility. Quadratic fields corresponding to equivalent square field sizesSbetween 0.63 and 4.27 cm at the depth of measurement were used. The magnetic field strength was varied up to 1.4 T. Experimental results have been complemented with Monte Carlo simulations up to 1.5 T. Detailed simulations were performed to quantify the small field perturbation effects and the influence of detector components on the dose response. The does response of both detectors decreases by up to 10% at 1.5 T in the largest field size investigated. InS = 0.63 cm, this reduction at 1.5 T is only about half of that observed in field sizesS > 2 cm for both detectors. The results of the Monte Carlo simulations show agreement better than 1% for all investigated conditions. Due to normalization at the machine specific reference field, the resulting small field output correction factors for both detectors in magnetic fieldkQclin,QmsrBare smaller than those in the magnetic field-free case, where correction up to 6.2% at 1.5 T is required for the microSilicon in the smallest field size investigated. The volume-averaging effect of both detectors was shown to be nearly independent of the magnetic field. The influence of the enhanced-density components within the detectors has been identified as the major contributors to their behaviors in magnetic field. Nevertheless, the effect becomes weaker with decreasing field size that may be partially attributed to the deficiency of low energy secondary electrons originated from distant locations in small fields.
Collapse
Affiliation(s)
- Isabel Blum
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Tuba Tekin
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Björn Delfs
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Ann-Britt Schönfeld
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | | | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
32
|
Delfs B, Blum I, Tekin T, Schönfeld AB, Kranzer R, Poppinga D, Giesen U, Langner F, Kapsch RP, Poppe B, Looe HK. The role of the construction and sensitive volume of compact ionization chambers on the magnetic field-dependent dose response. Med Phys 2021; 48:4572-4585. [PMID: 34032298 DOI: 10.1002/mp.14994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The magnetic-field correction factors k B , Q of compact air-filled ionization chambers have been investigated experimentally and using Monte Carlo simulations up to 1.5 T. The role of the nonsensitive region within the air cavity and influence of the chamber construction on its dose response have been elucidated. MATERIALS AND METHODS The PTW Semiflex 3D 31021, PinPoint 3D 31022, and Sun Nuclear Cooperation SNC125c chambers were studied. The k B , Q factors were measured at the experimental facility of the German National Metrology Institute (PTB) up to 1.4 T using a 6 MV photon beam. The chambers were positioned with the chamber axis perpendicular to the beam axis (radial); and parallel to the beam axis (axial). In both cases, the magnetic field was directed perpendicular to both the beam axis and chamber axis. Additionally, the sensitive volumes of these chambers have been experimentally determined using a focused proton microbeam and finite element method. Beside the simulations of k B , Q factors, detailed Monte Carlo technique has been applied to analyse the secondary electron fluence within the air cavity, that is, the number of secondary electrons and the average path length as a function of the magnetic field strength. RESULTS A nonsensitive volume within the air cavity adjacent to the chamber stem for the PTW chambers has been identified from the microbeam measurements and FEM calculations. The dose response of the three investigated ionization chambers does not deviate by more than 4% from the field-free case within the range of magnetic fields studied in this work for both the radial and axial orientations. The simulated k B , Q for the fully guarded PTW chambers deviate by up to 6% if their sensitive volumes are not correctly considered during the simulations. After the implementation of the sensitive volume derived from the microbeam measurements, an agreement of better than 1% between the experimental and Monte Carlo k B , Q factors for all three chambers can be achieved. Detailed analysis reveals that the stem of the PTW chambers could give rise to a shielding effect reducing the number of secondary electrons entering the air cavity in the presence of magnetic field. However, the magnetic field dependence of their path length within the air cavity is shown to be weaker than for the SNC125c chamber, where the length of the air cavity is larger than its diameter. For this chamber it is shown that the number of electrons and their path lengths in the cavity depend stronger on the magnetic field. DISCUSSION AND CONCLUSION For clinical measurements up to 1.5 T, the required k B , Q corrections of the three chambers could be kept within 3% in both the investigated chamber orientations. The results reiterate the importance of considering the sensitive volume of fully guarded chambers, even for the investigated compact chambers, in the Monte Carlo simulations of chamber response in magnetic field. The resulting magnetic field-dependent dose response has been demonstrated to depend on the chamber construction, such as the ratio between length and the diameter of the air cavity as well as the design of the chamber stem.
Collapse
Affiliation(s)
- Björn Delfs
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Isabel Blum
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Tuba Tekin
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Ann-Britt Schönfeld
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Rafael Kranzer
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.,PTW Freiburg, Freiburg, Germany
| | | | - Ulrich Giesen
- Hochenergetische Photonen- und Elektronenstrahlung, Physikalisch-Technische Bundesanstalt, PTB, Braunschweig, Germany
| | - Frank Langner
- Hochenergetische Photonen- und Elektronenstrahlung, Physikalisch-Technische Bundesanstalt, PTB, Braunschweig, Germany
| | - Ralf-Peter Kapsch
- Hochenergetische Photonen- und Elektronenstrahlung, Physikalisch-Technische Bundesanstalt, PTB, Braunschweig, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
33
|
Hernández-Becerril MA, Lárraga-Gutiérrez JM, Saldivar B, Hernández-Servín JA. Monte Carlo verification of output correction factors for a TrueBeam STx®. Appl Radiat Isot 2021; 173:109701. [PMID: 33813187 DOI: 10.1016/j.apradiso.2021.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/15/2022]
Abstract
The recent publication of the new code of practice IAEA/AAPM TRS-483 introduces output correction factors to correct detector response changes in relative dosimetry of small photon beams. In TRS-483, average correction factors are reported for several detectors in high-energy photon beams at 6 and 10 MV with and without flattening filter. These correction factors were determined by Monte Carlo simulation or experimental measurements using several linacs of different brands and vendors. The goal of this work was to validate the output correction factors reported in TRS-483 for 6 MV photon beams of a TrueBeam STx® linac. The validation was performed using Monte Carlo simulations of four radiation detectors employed in the dosimetry of small photon beams and whose output correction factors were determined using a different radiation source than TrueBeam STx®. The results show that Monte Carlo calculated output correction factors, and those reported in the code of practice TRS-483 fully agree within ∼1%. The use of generic correction factors for a TrueBeam STx® and the detectors studied in this work is suitable for small field dosimetry static beams within the uncertainties of Monte Carlo calculations and output correction factors reported in TRS-483.
Collapse
Affiliation(s)
- Mario A Hernández-Becerril
- Facultad de Ingeniería,Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, Toluca 50100, Estado de México, Mexico
| | - José M Lárraga-Gutiérrez
- Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Insurgentes sur 3877, Tlalpan 14269, CDMX, Mexico.
| | - Belem Saldivar
- Facultad de Ingeniería,Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, Toluca 50100, Estado de México, Mexico; Cátedras CONACYT, Av. Insurgentes sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, CDMX 03940, Mexico
| | - J A Hernández-Servín
- Facultad de Ingeniería,Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, Toluca 50100, Estado de México, Mexico
| |
Collapse
|
34
|
Mirzakhanian L, Bassalow R, Zaks D, Huntzinger C, Seuntjens J. IAEA-AAPM TRS-483-based reference dosimetry of the new RefleXion biology-guided radiotherapy (BgRT) machine. Med Phys 2021; 48:1884-1892. [PMID: 33296515 DOI: 10.1002/mp.14631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2020] [Accepted: 11/18/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study is to provide data for the calibration of the recent RefleXion TM biology-guided radiotherapy (BgRT) machine (Hayward, CA, USA) following the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) TRS-483 code of practice (COP) (Palmans et al. International Atomic Energy Agency, Vienna, 2017) and (Mirzakhanian et al. Med Phys, 2020). METHODS In RefleXion BgRT machine, reference dosimetry was performed using two methodologies described in TRS-483 and (Mirzakhanian et al. Med Phys, 2020) In the first approach (Approach 1), the generic beam quality correction factor k Q A , Q 0 f A , f ref was calculated using an accurate Monte Carlo (MC) model of the beam and of six ionization chamber types. The k Q A , Q 0 f A , f ref is a beam quality factor that corrects N D , w , Q 0 f ref (absorbed dose to water calibration coefficient in a calibration beam quality Q 0 ) for the differences between the response of the chamber in the conventional reference calibration field f ref with beam quality Q 0 at the standards laboratory and the response of the chamber in the user's A field f A with beam quality Q A . Field A represents the reference calibration field that does not fulfill msr conditions. In the second approach (Approach 2), a square equivalent field size was determined for field A of 10 × 2 cm 2 and 10 × 3 cm 2 . Knowing the equivalent field size, the beam quality specifier for the hypothetical 10 × 10 cm 2 field size was derived. This was used to calculate the beam quality correction factor analytically for the six chamber types using the TRS-398. (Andreo et al. Int Atom Energy Agency 420, 2001) Here, TRS-398 was used instead of TRS-483 since the beam quality correction values for the chambers used in this study are not tabulated in TRS-483. The accuracy of Approach 2 is studied in comparison to Approach 1. RESULTS Among the chambers, the PTW 31010 had the largest k Q A , Q 0 f A , f ref correction due to the volume averaging effect. The smallest-volume chamber (IBA CC01) had the smallest correction followed by the other microchambers Exradin-A14 and -A14SL. The equivalent square fields sizes were found to be 3.6 cm and 4.8 cm for the 10 × 2 cm 2 and 10 × 3 cm 2 field sizes, respectively. The beam quality correction factors calculated using the two approaches were within 0.27% for all chambers except IBA CC01. The latter chamber has an electrode made of steel and the differences between the correction calculated using the two approaches was the largest, that is, 0.5%. CONCLUSIONS In this study, we provided the k Q A , Q 0 f A , f ref values as a function of the beam quality specifier at the RefleXion BgRT setup ( TPR 20 , 10 ( S ) and % d d ( 10 , S ) x ) for six chamber types. We suggest using the first approach for calibration of the RefleXion BgRT machine. However, if the MC correction is not available for a user's detector, the user can use the second approach for estimating the beam quality correction factor to sufficient accuracy (0.3%) provided the chamber electrode is not made of high Z material.
Collapse
Affiliation(s)
| | - Rostem Bassalow
- RefleXion Medical, 25841 Industrial Blvd, Hayward, California, 94545, USA
| | - Daniel Zaks
- RefleXion Medical, 25841 Industrial Blvd, Hayward, California, 94545, USA
| | - Calvin Huntzinger
- RefleXion Medical, 25841 Industrial Blvd, Hayward, California, 94545, USA
| | - Jan Seuntjens
- Medical Physics Unit, McGill University, Montreal, Quebec, H4A 3J1, Canada
| |
Collapse
|
35
|
Bouchard H. Reference dosimetry of modulated and dynamic photon beams. Phys Med Biol 2021; 65:24TR05. [PMID: 33438582 DOI: 10.1088/1361-6560/abc3fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the late 1980s, a new technique was proposed that would revolutionize radiotherapy. Now referred to as intensity-modulated radiotherapy, it is at the core of state-of-the-art photon beam delivery techniques, such as helical tomotherapy and volumetric modulated arc therapy. Despite over two decades of clinical application, there are still no established guidelines on the calibration of dynamic modulated photon beams. In 2008, the IAEA-AAPM work group on nonstandard photon beam dosimetry published a formalism to support the development of a new generation of protocols applicable to nonstandard beam reference dosimetry (Alfonso et al 2008 Med. Phys. 35 5179-86). The recent IAEA Code of Practice TRS-483 was published as a result of this initiative and addresses exclusively small static beams. But the plan-class specific reference calibration route proposed by Alfonso et al (2008 Med. Phys. 35 5179-86) is a change of paradigm that is yet to be implemented in radiotherapy clinics. The main goals of this paper are to provide a literature review on the dosimetry of nonstandard photon beams, including dynamic deliveries, and to discuss anticipated benefits and challenges in a future implementation of the IAEA-AAPM formalism on dynamic photon beams.
Collapse
Affiliation(s)
- Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada. Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada. Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| |
Collapse
|
36
|
Pojtinger S, Nachbar M, Ghandour S, Pisaturo O, Pachoud M, Kapsch RP, Thorwarth D. Experimental determination of magnetic field correction factors for ionization chambers in parallel and perpendicular orientations. Phys Med Biol 2020; 65:245044. [PMID: 33181493 DOI: 10.1088/1361-6560/abca06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic field correction factors are needed for absolute dosimetry in magnetic resonance (MR)-linacs. Currently experimental data for magnetic field correction factors, especially for small volume ionization chambers, are largely lacking. The purpose of this work is to establish, independent methods for the experimental determination of magnetic field correction factors [Formula: see text] in an orientation in which the ionization chamber is parallel to the magnetic field. The aim is to confirm previous experiments on the determination of Farmer type ionization chamber correction factors and to gather information about the usability of small-volume ionization chambers for absolute dosimetry in MR-linacs. The first approach to determine [Formula: see text] is based on a cross-calibration of measurements using a conventional linac with an electromagnet and an MR-linac. The absolute influence of the magnetic field in perpendicular orientation is quantified with the help of the conventional linac and the electromagnet. The correction factors for the parallel orientation are then derived by combining these measurements with relative measurements in the MR-linac. The second technique utilizes alanine electron paramagnetic resonance dosimetry. The alanine system as well as several ionization chambers were directly calibrated with the German primary standard for absorbed dose to water. Magnetic field correction factors for the ionization chambers were determined by a cross-calibration with the alanine in an MR-linac. Important quantities like [Formula: see text] for Farmer type ionization chambers in parallel orientation and the change of the dose to water due the magnetic field [Formula: see text] have been confirmed. In addition, magnetic field correction factors have been determined for small volume ionization chambers in parallel orientation. The electromagnet-based measurements of [Formula: see text] for [Formula: see text] MR-linacs and parallel ionization chamber orientations resulted in 0.9926(22), 0.9935(31) and 0.9841(27) for the PTW 30013, the PTW 31010 and the PTW 31021, respectively. The measurements based on the second technique resulted in values for [Formula: see text] of 0.9901(72), 0.9955(72), and 0.9885(71). Both methods show excellent accuracy and reproducibility and are therefore suitable for the determination of magnetic field correction factors. Small-volume ionization chambers showed a variation in the resulting values for [Formula: see text] and should be cross-calibrated instead of using tabulated values for correction factors.
Collapse
Affiliation(s)
- Stefan Pojtinger
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany. University Hospital Tübingen, Biomedical Physics, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Czarnecki D, Zink K, Pimpinella M, Borbinha J, Teles P, Pinto M. Monte Carlo calculation of quality correction factors based on air kerma and absorbed dose to water in medium energy x-ray beams. Phys Med Biol 2020; 65:245042. [PMID: 33120372 DOI: 10.1088/1361-6560/abc5c9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clinical dosimetry is typically performed using ion chambers calibrated in terms of absorbed dose to water. As primary measurement standards for this quantity for low and medium energy x-rays are available only since a few years, most dosimetry protocols for this photon energy range are still based on air kerma calibration. For that reason, data for beam quality correction factors [Formula: see text], necessary for the application of dose to water based protocols, are scarce in literature. Currently the international IAEA TRS-398 Code of Practice is under revision and new [Formula: see text] factors for a large number of ion chambers will be introduced in the update of this protocol. Several international groups provided the IAEA with experimental and Monte Carlo based data for this revision. Within the European Community the EURAMET 16NRM03 RTNORM project was initiated for that purpose. In the present study, Monte Carlo based results for the beam quality correction factors in medium energy x-ray beams for six ion chambers applying different Monte Carlo codes are presented. Additionally, the perturbation factor p Q , necessary for the calculation of dose to water from an air kerma calibration coefficient, was determined. The beam quality correction factor [Formula: see text] for the chambers varied in the investigated energy range by about 4%-5%, and for five out of six chambers the data could be fitted by a simple logarithmic function, if the half-value-layer was used as the beam quality specifier. Corresponding data using different Monte Carlo codes for the same ion chamber agreed within 0.5%. For the perturbation factor p Q , the data did not obey a comparable simple relationship with the beam quality specifier. The variation of p Q for all ion chambers was in the range of 3%-4%. Compared to recently published data, our p Q data is around 1% larger, although the same Monte Carlo code has been used. Compared to the latest experimental data, there are even deviations in the range of 2%.
Collapse
Affiliation(s)
- Damian Czarnecki
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Ayala Alvarez DS, G F Watson P, Popovic M, Jean Heng V, Evans MDC, Seuntjens J. Monte Carlo calculation of the relative TG-43 dosimetry parameters for the INTRABEAM electronic brachytherapy source. Phys Med Biol 2020; 65:245041. [PMID: 33137796 DOI: 10.1088/1361-6560/abc6f1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The INTRABEAM system (Carl Zeiss Meditec AG, Jena, Germany) is an electronic brachytherapy (eBT) device designed for intraoperative radiotherapy applications. To date, the INTRABEAM x-ray source has not been characterized according to the AAPM TG-43 specifications for brachytherapy sources. This restricts its modelling in commercial treatment planning systems (TPSs), with the consequence that the doses to organs at risk are unknown. The aim of this work is to characterize the INTRABEAM source according to the TG-43 brachytherapy dosimetry protocol. The dose distribution in water around the source was determined with Monte Carlo (MC) calculations. For the validation of the MC model, depth dose calculations along the source longitudinal axis were compared with measurements using a soft x-ray ionization chamber (PTW 34013) and two synthetic diamond detectors (microDiamond PTW TN60019). In our results, the measurements in water agreed with the MC model calculations within uncertainties. The use of the microDiamond detector yielded better agreement with MC calculations, within estimated uncertainties, compared to the ionization chamber at points of steeper dose gradients. The radial dose function showed a steep fall-off close to the INTRABEAM source ([Formula: see text]10 mm) with a gradient higher than that of commonly used brachytherapy radionuclides (192Ir, 125I and 103Pd), with values of 2.510, 1.645 and 1.232 at 4, 6 and 8 mm, respectively. The radial dose function partially flattens at larger distances with a fall-off comparable to that of the Xoft Axxent® (iCAD, Inc., Nashua, NH) eBT system. The simulated 2D polar anisotropy close to the bare probe walls showed deviations from unity of up to 55% at 10 mm and 155°. This work presents the MC calculated TG-43 parameters for the INTRABEAM, which constitute the necessary data for the characterization of the source as required by a TPS used in clinical dose calculations.
Collapse
Affiliation(s)
| | - Peter G F Watson
- Medical Physics Unit, McGill University and Cedars Cancer Center, Montreal, Canada
| | - Marija Popovic
- Medical Physics Unit, McGill University and Cedars Cancer Center, Montreal, Canada
| | - Veng Jean Heng
- Medical Physics Unit, McGill University and Cedars Cancer Center, Montreal, Canada
| | - Michael D C Evans
- Medical Physics Unit, McGill University and Cedars Cancer Center, Montreal, Canada
| | - Jan Seuntjens
- Medical Physics Unit, McGill University and Cedars Cancer Center, Montreal, Canada
| |
Collapse
|
39
|
Cervantes Y, Billas I, Shipley D, Duane S, Bouchard H. Small-cavity chamber dose response in megavoltage photon beams coupled to magnetic fields. Phys Med Biol 2020; 65:245008. [PMID: 32674077 DOI: 10.1088/1361-6560/aba6d6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In MRgRT, dosimetry measurements are performed in the presence of magnetic fields. For high-resolution measurements, small-cavity ionization chambers are required. While Monte Carlo simulations are essential to determine dosimetry correction factors, models of small-chambers require careful validation with experimental measurements. The aim of this study is to characterize small-cavity chamber response coupled to magnetic fields. Small-cavity chambers (PTW31010, PTW31016, PTW31021 and PTW3022) are irradiated by a 6 MV photon beam for 9 magnetic field strengths between -1.5 T and +1.5 T. The chamber axis is orientated either parallel or perpendicular to the irradiation beam, with the magnetic field always perpendicular to the beam. MC simulations are performed in EGSnrc. The sensitive volume of the chambers is reduced to account for the inefficiency adjacent to the guard electrode (dead volume) based on COMSOL calculations of electric potentials. The magnetic field affects the chamber response by up to 4.1% and 4.5% in the parallel and perpendicular orientations, respectively, compared to no magnetic field. The maximal difference in dose response between experiments and simulations is up to 6.1% and 4.5% for parallel and perpendicular orientation, respectively. When the dead volume is removed, which accounts for the 15%-23% of the nominal volume, the difference, in most cases, is within the stated uncertainties. Nevertheless, for a particular chamber, the reduced nominal volume barely improved the agreement between the experimental and calculated relative response (4.53% to 4.13%). This disagreement may be due to the imperfect chamber geometry model, as was found from microCT images. A detailed uncertainty analysis is presented. The characterization of small-cavity ion chamber response coupled to magnetic fields is complex. Small differences between real and model chamber geometry that normally would be insignificant become an issue in the presence of magnetic fields. Accurate characterization of the nominal volume is essential for small-cavity ion chamber modelling.
Collapse
Affiliation(s)
- Yunuen Cervantes
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada. Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | | | | | | | | |
Collapse
|
40
|
Shukla BK, Spindeldreier CK, Schrenk O, Bakenecker AC, Klüter S, Kawrakow I, Runz A, Burigo L, Karger CP, Greilich S, Pfaffenberger A. Dosimetry in magnetic fields with dedicated MR-compatible ionization chambers. Phys Med 2020; 80:259-266. [PMID: 33220650 DOI: 10.1016/j.ejmp.2020.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/20/2020] [Accepted: 10/24/2020] [Indexed: 10/22/2022] Open
Abstract
MR-integrated radiotherapy requires suitable dosimetry detectors to be used in magnetic fields. This study investigates the feasibility of using dedicated MR-compatible ionization chambers at MR-integrated radiotherapy devices. MR-compatible ionization chambers (Exradin A19MR, A1SLMR, A26MR, A28MR) were precisely modeled and their relative response in a 6MV treatment beam in the presence of a magnetic field was simulated using EGSnrc. Monte Carlo simulations were carried out with the magnetic field in three orientations: the magnetic field aligned perpendicular to the chamber and beam axis (transverse orientation), the magnetic field parallel to the chamber as well as parallel to the beam axis. Monte Carlo simulation results were validated with measurements using an electromagnet with magnetic field strength upto 1.1 T with the chambers in transverse orientation. The measurements and simulation results were in good agreement, except for the A26MR ionization chamber in transverse orientation. The maximum increase in response of the ionization chambers observed was 8.6% for the transverse orientation. No appreciable change in chamber response due to the magnetic field was observed for the magnetic field parallel to the ionization chamber and parallel to the photon beam. Polarity and recombination correction factor were experimentally investigated in the transverse orientation. The polarity effect and recombination effect were not altered by a magnetic field. This study further investigates the response of the ionization chambers as a function of the chambers' rotation around their longitudinal axis. A variation in response was observed when the chamber was not rotationally symmetric, which was independent of the magnetic field.
Collapse
Affiliation(s)
- Bhargesh K Shukla
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany
| | - Claudia Katharina Spindeldreier
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Schrenk
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Anna C Bakenecker
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany
| | - Sebastian Klüter
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Iwan Kawrakow
- Viewray Inc., Thermo Fischer Way, Oakwood village, OH, USA
| | - Armin Runz
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany
| | - Lucas Burigo
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany
| | - Christian P Karger
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany
| | - Steffen Greilich
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany
| | - Asja Pfaffenberger
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany
| |
Collapse
|
41
|
Kretschmer J, Dulkys A, Brodbek L, Stelljes TS, Looe HK, Poppe B. Monte Carlo simulated beam quality and perturbation correction factors for ionization chambers in monoenergetic proton beams. Med Phys 2020; 47:5890-5905. [DOI: 10.1002/mp.14499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jana Kretschmer
- University Clinic for Medical Radiation Physics Medical Campus Pius HospitalCarl‐von‐Ossietzky University Oldenburg Germany
| | - Anna Dulkys
- University Clinic for Medical Radiation Physics Medical Campus Pius HospitalCarl‐von‐Ossietzky University Oldenburg Germany
- Department of Radiation Therapy Helios Clinics Schwerin Schwerin Germany
| | - Leonie Brodbek
- University Clinic for Medical Radiation Physics Medical Campus Pius HospitalCarl‐von‐Ossietzky University Oldenburg Germany
- Department of Radiation Oncology University Medical Center GroningenUniversity of Groningen Groningen The Netherlands
| | - Tenzin Sonam Stelljes
- University Clinic for Medical Radiation Physics Medical Campus Pius HospitalCarl‐von‐Ossietzky University Oldenburg Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics Medical Campus Pius HospitalCarl‐von‐Ossietzky University Oldenburg Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics Medical Campus Pius HospitalCarl‐von‐Ossietzky University Oldenburg Germany
| |
Collapse
|
42
|
Pojtinger S, Nachbar M, Kapsch RP, Thorwarth D. Influence of beam quality on reference dosimetry correction factors in magnetic resonance guided radiation therapy. Phys Imaging Radiat Oncol 2020; 16:95-98. [PMID: 33458350 PMCID: PMC7807647 DOI: 10.1016/j.phro.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023] Open
Abstract
Correction factors for reference dosimetry in magnetic resonance (MR) imaging-guided radiation therapy (k B → , M , Q ) are often determined in setups that combine a conventional 6 MV linac with an electromagnet. This study investigated whether results based on these measurements were applicable for a 7 MV MR-linac using Monte Carlo simulations. For a Farmer-type ionization chamber,k B → , M , Q was assessed for different tissue-phantom ratios (TPR 20 , 10 ).k B → , M , Q differed by 0.0029 ( 43 ) betweenTPR 20 , 10 = 0.6790 ( 23 ) (6 MV linac) andTPR 20 , 10 = 0.7028 ( 14 ) (7 MV MR-linac) at 1.5 T . The agreement was best in an orientation in which the secondary electrons were deflected to the stem of the ionization chamber.
Collapse
Affiliation(s)
- Stefan Pojtinger
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | | | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| |
Collapse
|
43
|
Rossi G, Gainey M, Kollefrath M, Hofmann E, Baltas D. Suitability of the microDiamond detector for experimental determination of the anisotropy function of High Dose Rate 192 Ir brachytherapy sources. Med Phys 2020; 47:5838-5851. [PMID: 32970875 DOI: 10.1002/mp.14488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate the suitability of the microDiamond detector (mDD) type 60019 (PTW-Freiburg, Germany) to measure the anisotropy function F(r,θ) of High Dose Rate (HDR) 192 Ir brachytherapy sources. METHODS The HDR 192 Ir brachytherapy source, model mHDR-v2r (Elekta AB, Sweden), was placed inside a water tank within a 4F plastic needle. Four mDDs (mDD1, mDD2, mDD3, and mDD4) were investigated. Each mDD was placed laterally with respect to the source, and measurements were performed at radial distances r = 1 cm, 3 and 5 cm, and polar angles θ from 0° to 168°. The Monte Carlo (MC) system EGSnrc was used to simulate the measurements and to calculate phantom effect, energy dependence and volume-averaging correction factors. F(r,θ) was determined according to TG-43 formalism from the detector reading corrected with the MC-based factors and compared to the consensus anisotropy function CON F(r,θ). RESULTS At 1 cm, the differences between measurements and MC simulations ranged from -0.8% to +0.8% for θ = 0° and from -2.1% to + 2.3% for θ ≠ 0°. At 3 and 5 cm, the differences ranged from +1.4% to +3.9% for θ = 0°, and from -0.4% to +2.9% for θ ≠ 0°. All differences were within the uncertainties (k = 2). At small angles, the phantom effect correction was up to -1.9%. This effect was mainly caused by the air between source and needle tip. The energy correction was angle-independent everywhere. For small angles at 1 cm, the volume-averaging correction was up to -2.9% and became less important for larger angles and distances. The differences of the measured F(r,θ) corrected with the MC-based factors to CON F(r,θ) ranged from -1.0% to +3.4% for mDD1, -2.2% to +4.2% for mDD2, -2.5% to +4.0% for mDD3, and -2.6% to +3.4% for mDD4. All differences were within the uncertainties (k = 2) except one at (3 cm, 0°). For all the mDDs, F(r,0°) was always higher than CON F(r,0°), with average differences of +3.1% (1 cm), +3.6% (3 cm), and +1.9% (5 cm). The inter-detector variability was within 2.9% (1 cm), 1.8% (3 cm), and 3.4% (5 cm). CONCLUSIONS A reproducible method and experimental setup were presented for measuring and validating F(r,θ) of an HDR 192 Ir brachytherapy source in a water phantom using the mDD. The phantom effect and the volume-averaging need to be taken into account, especially for the smaller distances and angles. Good agreement to CON F(r,θ) was obtained. The discrepancies at (1 cm, 0°), accurately predicted by the MC results, may suggest a reconsideration of CON F(r,θ), at least for this position. The slight overestimations at (3 cm,0°) and (5 cm,0°), both in comparison to CON F(r,θ) and MC results, may be due to an underestimation of the air volume between source and needle tip, dark current, intrinsic over-response of the mDDs, or radiation-induced charge imbalance in the detector's components. The results indicate that the mDD is a valuable tool for measurements with HDR 192 Ir brachytherapy sources and support its employment for the determination and validation of TG-43 parameters of such sources.
Collapse
Affiliation(s)
- Giulio Rossi
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Gainey
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Kollefrath
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena Hofmann
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
Mirzakhanian L, Bassalow R, Huntzinger C, Seuntjens J. Extending the IAEA‐AAPM TRS‐483 methodology for radiation therapy machines with field sizes down to 10 × 2 cm
2. Med Phys 2020; 47:5209-5221. [DOI: 10.1002/mp.14325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/17/2020] [Accepted: 05/21/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | | | - Jan Seuntjens
- Medical Physics Unit McGill University Montreal QCH4A 3J1Canada
| |
Collapse
|
45
|
Oliver PAK, Monajemi TT. Skin dose in chest wall radiotherapy with bolus: a Monte Carlo study. Phys Med Biol 2020; 65:155016. [PMID: 32442990 DOI: 10.1088/1361-6560/ab95dc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monte Carlo simulations are used to investigate skin dose resulting from chest wall radiotherapy with bolus. A simple model of a female thorax is developed, which includes a 2 mm-thick skin layer. Two representative 6 MV source models are considered: a tangents source model consisting of a parallel opposed pair of medial and lateral fields and subfields, and an arc source model. Tissue equivalent (TE) boluses (thicknesses of 3, 5 and 10 mm) and brass mesh bolus are considered. Skin dose distributions depend on incident photon obliquity: for tangents, radiation is incident more obliquely, resulting in longer path lengths through the bolus and higher skin dose compared to the arc source model in most cases. However, for thicker TE boluses, attenuation of oblique photons becomes apparent. Brass bolus and 3 mm TE bolus result in similar mean skin dose. This relatively simple computational model allows for consideration of different bolus thicknesses, materials and usage schedules based on desired skin dose and choice of either tangents or an arc beam technique. For example, using a 5 mm TE bolus every second treatment would result in mean skin doses of 89% and 85% for tangents and the arc source model, respectively. The hot spot metric D[Formula: see text] would be 103% and 99%, respectively.
Collapse
Affiliation(s)
- P A K Oliver
- Dept. of Medical Physics, Nova Scotia Health Authority, Halifax, B3H 1V7 Canada
| | | |
Collapse
|
46
|
Georgiou G, Kumar S, Würfel JU, Underwood TSA, Thompson JM, Hill MA, Rowbottom CG, Fenwick JD. Density compensated diodes for small field dosimetry: comprehensive testing and implications for design. Phys Med Biol 2020; 65:155011. [PMID: 32392539 DOI: 10.1088/1361-6560/ab91d9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE In small megavoltage photon fields, the accuracies of an unmodified PTW 60017-type diode dosimeter and six diodes modified by adding airgaps of thickness 0.6-1.6 mm and diameter 3.6 mm have been comprehensively characterized experimentally and computationally. The optimally thick airgap for density compensation was determined, and detectors were micro-CT imaged to investigate differences between experimentally measured radiation responses and those predicted computationally. METHODS Detectors were tested on- and off-axis, at 5 and 15 cm depths in 6 and 15 MV fields ≥ 0.5 × 0.5 cm2. Computational studies were carried out using the EGSnrc/BEAMnrc Monte Carlo radiation transport code. Experimentally, radiation was delivered using a Varian TrueBeam linac and doses absorbed by water were measured using Gafchromic EBT3 film and ionization chambers, and compared with diode readings. Detector response was characterized via the [Formula: see text] formalism, choosing a 4 × 4 cm2 reference field. RESULTS For the unmodified 60017 diode, the maximum error in small field doses obtained from diode readings uncorrected by [Formula: see text] factors was determined as 11.9% computationally at +0.25 mm off-axis and 5 cm depth in a 15 MV 0.5 × 0.5 cm2 field, and 11.7% experimentally at -0.30 mm off-axis and 5 cm depth in the same field. A detector modified to include a 1.6 mm thick airgap performed best, with maximum computationally and experimentally determined errors of 2.2% and 4.1%. The 1.6 mm airgap deepened the modified dosimeter's effective point of measurement by 0.5 mm. For some detectors significant differences existed between responses in small fields determined computationally and experimentally, micro-CT imaging indicating that these differences were due to within-tolerance variations in the thickness of an epoxy resin layer. CONCLUSIONS The dosimetric performance of a 60017 diode detector was comprehensively improved throughout 6 and 15 MV small photon fields via density compensation. For this approach to work well with good detector-to-detector reproducibility, tolerances on dense component dimensions should be reduced to limit associated variations of response in small fields, or these components should be modified to have more water-like densities.
Collapse
Affiliation(s)
- Georgios Georgiou
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool L69 3BX, United Kingdom. Department of Physics, Clatterbridge Cancer Centre, Clatterbridge Road, Wirral CH63 4JY, United Kingdom. Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Oxford Street, Liverpool L69 7ZE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Khan AU, Culberson WS, DeWerd LA. Characterizing a PTW microDiamond detector in kilovoltage radiation beams. Med Phys 2020; 47:4553-4562. [DOI: 10.1002/mp.14330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/12/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ahtesham Ullah Khan
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin53705USA
| | - Wesley S. Culberson
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin53705USA
| | - Larry A. DeWerd
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin53705USA
| |
Collapse
|
48
|
Weber C, Kranzer R, Weidner J, Kröninger K, Poppe B, Looe HK, Poppinga D. Small field output correction factors of the microSilicon detector and a deeper understanding of their origin by quantifying perturbation factors. Med Phys 2020; 47:3165-3173. [PMID: 32196683 PMCID: PMC7496769 DOI: 10.1002/mp.14149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The aim of this study is the experimental and Monte Carlo-based determination of small field correction factors for the unshielded silicon detector microSilicon for a standard linear accelerator as well as the Cyberknife System. In addition, a detailed Monte Carlo analysis has been performed by modifying the detector models stepwise to study the influences of the detector's components. METHODS Small field output correction factors have been determined for the new unshielded silicon diode detector, microSilicon (type 60023, PTW Freiburg, Germany) as well as for the predecessors Diode E (type 60017, PTW Freiburg, Germany) and Diode SRS (type 60018, PTW Freiburg, Germany) for a Varian TrueBeam linear accelerator at 6 MV and a Cyberknife system. For the experimental determination, an Exradin W1 scintillation detector (Standard Imaging, Middleton, USA) has been used as reference. The Monte Carlo simulations have been performed with EGSnrc and phase space files from IAEA as well as detector models according to manufacturer blueprints. To investigate the influence of the detector's components, the detector models have been modified stepwise. RESULTS The correction factors for the smallest field size investigated at the TrueBeam linear accelerator (equivalent dosimetric square field side length Sclin = 6.3 mm) are 0.983 and 0.939 for the microSilicon and Diode E, respectively. At the Cyberknife system, the correction factors of the microSilicon are 0.967 at the smallest 5-mm collimator compared to 0.928 for the Diode SRS. Monte Carlo simulations show comparable results from the measurements and literature. CONCLUSION The microSilicon (type 60023) detector requires less correction than its predecessors, Diode E (type 60017) and Diode SRS (type 60018). The detector housing has been demonstrated to cause the largest perturbation, mainly due to the enhanced density of the epoxy encapsulation surrounding the silicon chip. This density has been rendered more water equivalent in case of the microSilicon detector to minimize the associated perturbation. The sensitive volume itself has been shown not to cause observable field size-dependent perturbation except for the volume-averaging effect, where the slightly larger diameter of the sensitive volume of the microSilicon (1.5 mm) is still small at the smallest field size investigated with corrections <2%. The new microSilicon fulfils the 5% correction limit recommended by the TRS 483 for output factor measurements at all conditions investigated in this work.
Collapse
Affiliation(s)
- Carolin Weber
- PTW FreiburgFreiburg79115Germany
- TU Dortmund UniversityDortmund44227Germany
| | | | | | | | - Björn Poppe
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburg26121Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburg26121Germany
| | | |
Collapse
|
49
|
Bancheri J, Ketelhut S, Büermann L, Seuntjens J. Monte Carlo and water calorimetric determination of kilovoltage beam radiotherapy ionization chamber correction factors. ACTA ACUST UNITED AC 2020; 65:105001. [DOI: 10.1088/1361-6560/ab82e7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Andreo P, Burns DT, Kapsch RP, McEwen M, Vatnitsky S, Andersen CE, Ballester F, Borbinha J, Delaunay F, Francescon P, Hanlon MD, Mirzakhanian L, Muir B, Ojala J, Oliver CP, Pimpinella M, Pinto M, de Prez LA, Seuntjens J, Sommier L, Teles P, Tikkanen J, Vijande J, Zink K. Determination of consensus k Q values for megavoltage photon beams for the update of IAEA TRS-398. ACTA ACUST UNITED AC 2020; 65:095011. [DOI: 10.1088/1361-6560/ab807b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|