1
|
Xu S, Zhang G, Zhang J, Liu W, Wang Y, Fu X. Advances in Brain Tumor Therapy Based on the Magnetic Nanoparticles. Int J Nanomedicine 2023; 18:7803-7823. [PMID: 38144513 PMCID: PMC10749175 DOI: 10.2147/ijn.s444319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023] Open
Abstract
Brain tumors, including primary gliomas and brain metastases, are one of the deadliest tumors because effective macromolecular antitumor drugs cannot easily penetrate the blood-brain barrier (BBB) and blood-brain tumor barrier (BTB). Magnetic nanoparticles (MNPs) are considered the most suitable nanocarriers for the delivery of brain tumor drugs because of their unique properties compared to other nanoparticles. Numerous preclinical and clinical studies have demonstrated the potential of these nanoparticles in magnetic targeting, nuclear magnetic resonance, magnetic thermal therapy, and ultrasonic hyperthermia. To further develop and optimize MNPs for the diagnosis and treatment of brain tumors, we attempt to outline recent advances in the use of MNPs to deliver drugs, with a particular focus on their efficacy in the delivery of anti-brain tumor drugs based on magnetic targeting and low-intensity focused ultrasound, magnetic resonance imaging for surgical real-time guidance, and magnetothermal and ultrasonic hyperthermia therapy. Furthermore, we summarize recent findings on the clinical application of MNPs and the research limitations that need to be addressed in clinical translation.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Guangxin Zhang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiaomei Zhang
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Wei Liu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yicun Wang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiying Fu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Rotundo S, Brizi D, Flori A, Giovannetti G, Menichetti L, Monorchio A. Shaping and Focusing Magnetic Field in the Human Body: State-of-the Art and Promising Technologies. SENSORS (BASEL, SWITZERLAND) 2022; 22:5132. [PMID: 35890812 PMCID: PMC9318684 DOI: 10.3390/s22145132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the usage of radio frequency magnetic fields for biomedical applications has increased exponentially. Several diagnostic and therapeutic methodologies exploit this physical entity such as, for instance, magnetic resonance imaging, hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation. Within this framework, the magnetic field focusing and shaping, at different depths inside the tissue, emerges as one of the most important challenges from a technological point of view, since it is highly desirable for improving the effectiveness of clinical methodologies. In this review paper, we will first report some of the biomedical practices employing radio frequency magnetic fields, that appear most promising in clinical settings, explaining the underneath physical principles and operative procedures. Specifically, we direct the interest toward hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation, together with a brief mention of magnetic resonance imaging. Additionally, we deeply review the technological solutions that have appeared so far in the literature to shape and control the radio frequency magnetic field distribution within biological tissues, highlighting human applications. In particular, volume and surface coils, together with the recent raise of metamaterials and metasurfaces will be reported. The present review manuscript can be useful to fill the actual gap in the literature and to serve as a guide for the physicians and engineers working in these fields.
Collapse
Affiliation(s)
- Sabrina Rotundo
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| | - Danilo Brizi
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| | - Alessandra Flori
- Fondazione CNR-Regione Toscana G. Monasterio, 56124 Pisa, Italy;
| | | | - Luca Menichetti
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (G.G.); (L.M.)
| | - Agostino Monorchio
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| |
Collapse
|
3
|
Abdelaziz MM, Hefnawy A, Anter A, Abdellatif MM, Khalil MAF, Khalil IA. Respirable spray dried vancomycin coated magnetic nanoparticles for localized lung delivery. Int J Pharm 2022; 611:121318. [PMID: 34838622 DOI: 10.1016/j.ijpharm.2021.121318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/28/2023]
Abstract
Bacterial pneumonia is a common pulmonary infection responsible for premature death. Biomaterials based-carriers loaded with antibiotics enhance drug potency through localizing the therapy, minimizing the associated adverse effects, and improving patient compliance. Herein, this study reports the preparation of an inhalable dry powder formulation composed of a nano-in-microparticles. Vancomycin was adsorbed on the core of magnetic nanoparticles followed by spray drying into lactose/dextran to optimize the aerodynamic performance and allow the local delivery of the drug into the bacterial pneumonia infection site. Lactose and Dextran are polysaccharides commonly used for pulmonary delivery due to their optimum aerodynamic performance and biocompatibility. The preparation of the nano-in-micro particles with optimum properties was confirmed using FTIR, TEM, SEM, Laser-diffraction, ICP-AES and TGA. The TEM micrographs confirmed the formation of spherical magnetic nanoparticles with a diameter 14.7 ± 5.9 nm and a coating thickness 3 - 16 nm, while laser diffraction showed that outer microparticles exhibited a mean diameter < 5 µm. The formulations demonstrated a promising activity against S. aureus and MRSA and better biocompatibility using MTT assay. In vivo safety and pharmacokinetic studies confirmed the localization of VAN in lung tissue and minimized adverse effects compared to free VAN. Therefore, the developed nano-in-microparticles confers a good potential for eradication of lung infections.
Collapse
Affiliation(s)
| | - Amr Hefnawy
- Smyth Lab, College of Pharmacy, University of Texas at Austin, TX 78712, USA
| | - Asem Anter
- Microbiology Unit, Drug Factory, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12566, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
4
|
Attaluri A, Jackowski J, Sharma A, Kandala SK, Nemkov V, Yakey C, DeWeese TL, Kumar A, Goldstein RC, Ivkov R. Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia. Int J Hyperthermia 2020; 37:1-14. [PMID: 31918595 DOI: 10.1080/02656736.2019.1704448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Purpose: We describe a modified Helmholtz induction coil, or Maxwell coil, that generates alternating magnetic fields (AMF) having field uniformity (≤10%) within a = 3000 cm3 volume of interest for magnetic hyperthermia research.Materials and methods: Two-dimensional finite element analysis (2D-FEA) was used for electromagnetic design of the induction coil set and to develop specifications for the required matching network. The matching network and induction coil set were fabricated using best available practices and connected to a 120 kW industrial induction heating power supply. System performance was evaluated by magnetic field mapping with a magnetic field probe, and tests were performed using gel phantoms.Results: Tests verified that the system generated a target peak AMF amplitude along the coil axis of ∼35 kA/m (peak) at a frequency of 150 ± 10 kHz while maintaining field uniformity to >90% of peak for a volume of ∼3000 cm3.Conclusions: The induction coil apparatus comprising three independent loops, i.e., Maxwell-type improves upon the performance of simple solenoid and Helmholtz coils by providing homogeneous flux density fields within a large volume while minimizing demands on power and stray fields. Experiments with gel phantoms and analytical calculations show that future translational research efforts should be devoted to developing strategies to reduce the impact of nonspecific tissue heating from eddy currents; and, that an inductor producing a homogeneous field has significant clinical potential for deep-tissue magnetic fluid hyperthermia.
Collapse
Affiliation(s)
- Anilchandra Attaluri
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Pennsylvania State University, Harrisburg, PA, USA
| | | | - Anirudh Sharma
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sri Kamal Kandala
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Deparment of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Chris Yakey
- AMF Life Systems, LLC, Auburn Hills, MI, USA
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Deparment of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Deparment of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Zhu L, Lam D, Pacia CP, Gach HM, Partanen A, Talcott MR, Greco SC, Zoberi I, Hallahan DE, Chen H, Altman MB. Characterization of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced large-volume hyperthermia in deep and superficial targets in a porcine model. Int J Hyperthermia 2020; 37:1159-1173. [DOI: 10.1080/02656736.2020.1825836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dao Lam
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - H. Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Ari Partanen
- Clinical Science, Profound Medical Inc, Mississauga, Ontario, Canada
| | - Michael R. Talcott
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Suellen C. Greco
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| | - Michael B. Altman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
- Siteman Comprehensive Cancer Center, St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Wells J, Twamley S, Sekar A, Ludwig A, Paysen H, Kosch O, Wiekhorst F. Lissajous scanning magnetic particle imaging as a multifunctional platform for magnetic hyperthermia therapy. NANOSCALE 2020; 12:18342-18355. [PMID: 32869808 DOI: 10.1039/d0nr00604a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of engineered nanoscale magnetic materials in healthcare and biomedical technologies is rapidly growing. Two examples which have recently attracted significant attention are magnetic particle imaging (MPI) for biological monitoring, and magnetic field hyperthermia (MFH) for cancer therapy. Here for the first time, the capability of a Lissajous scanning MPI device to act as a standalone platform to support the application of MFH cancer treatment is presented. The platform is shown to offer functionalities for nanoparticle localization, focused hyperthermia therapy application, and non-invasive tissue thermometry in one device. Combined, these capabilities have the potential to significantly enhance the accuracy, effectiveness and safety of MFH therapy. Measurements of nanoparticle hyperthermia during protracted exposure to the MPI scanner's 3D imaging field sequence revealed spatially focused heating, with a maximum that is significantly enhanced compared with a simple 1-dimensional sinusoidal excitation. The observed spatial heating behavior is qualitatively described based on a phenomenological model considering torques exerted in the Brownian regime. In vitro cell studies using a human acute monocytic leukemia cell line (THP-1) demonstrated strong suppression of both structural integrity and metabolic activity within 24 h following a 40 min MFH treatment actuated within the Lissajous MPI scanner. Furthermore, reconstructed MPI images of the nanoparticles distributed among the cells, and the temperature-sensitivity of the MPI imaging signal obtained during treatment are demonstrated. In summary, combined Lissajous MPI and MFH technologies are presented; demonstrating for the first time their potential for cancer treatment with maximum effectiveness, and minimal collateral damage to surrounding tissues.
Collapse
Affiliation(s)
- James Wells
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
8
|
Myrovali E, Maniotis N, Samaras T, Angelakeris M. Spatial focusing of magnetic particle hyperthermia. NANOSCALE ADVANCES 2020; 2:408-416. [PMID: 36133972 PMCID: PMC9417684 DOI: 10.1039/c9na00667b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/24/2019] [Indexed: 05/09/2023]
Abstract
Magnetic particle hyperthermia is a promising cancer therapy, but a typical constraint of its applicability is localizing heat solely to malignant regions sparing healthy surrounding tissues. By simultaneous application of a constant magnetic field together with the hyperthermia inducing alternating magnetic field, heating focus may be confined to smaller regions in a tunable manner. The main objective of this work is to evaluate the focusing parameters, by adequate selection of magnetic nanoparticles and field conditions, and explore spatially focused magnetic particle hyperthermia efficiency in tissue phantom systems comprising agarose gel and magnetic nanoparticles. Our results suggest the possibility of spatially focused heating efficiency of magnetic nanoparticles through the application of a constant magnetic field. Tuning of the constant magnetic field parameters may result in minimizing thermal shock in surrounding regions without affecting the beneficiary thermal outcome in the focusing region.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| | - Nikos Maniotis
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| | - Theodoros Samaras
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
- Department of Physics, University of Malta Msida MSD 2080 Malta
| | - Makis Angelakeris
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| |
Collapse
|
9
|
Rivera-Rodriguez A, Chiu-Lam A, Morozov VM, Ishov AM, Rinaldi C. Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells. Int J Nanomedicine 2018; 13:4771-4779. [PMID: 30197514 PMCID: PMC6112810 DOI: 10.2147/ijn.s171130] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Introduction Overcoming resistance to antimitotic drugs, such as paclitaxel (PTX), would represent a major advance in breast cancer treatment. PTX induces mitotic block and sensitive cells exit mitosis dying by mitotic catastrophe. Resistant cells remain in block and continue proliferation after drug decay, denoting one of the PTX resistance mechanisms. Mild hyperthermia (HT) triggers mitotic exit of PTX-pretreated cells, overcoming PTX resistance and suggesting HT-forced mitotic exit as a promising strategy to potentiate PTX. Methods and results Superparamagnetic iron oxide nanoparticles (SPIONs) were used to deliver mild HT at 42°C in PTX-pretreated breast adenocarcinoma MCF-7 cells sensitive and resistant to PTX. To evaluate mechanism of cell death, cells were classified based on nuclear morphology into interphase, mitotic, micronucleated, and apoptotic. The combined PTX→SPION treatment resulted in an increase in the percentage of micronucleated cells, an indication of forced mitotic exit. Importantly, in PTX-resistant cells, the combination therapy using SPION HT helps to overcome resistance by reducing the number of cells relative to the control. Conclusion SPION HT potentiates PTX by significantly reducing cell survival, suggesting potential of combined treatment for future clinical translation.
Collapse
Affiliation(s)
- Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA,
| | - Andreina Chiu-Lam
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,
| | - Viacheslav M Morozov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.,UF Health Cancer Center Gainesville, FL, USA,
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.,UF Health Cancer Center Gainesville, FL, USA,
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA, .,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA, .,UF Health Cancer Center Gainesville, FL, USA,
| |
Collapse
|
10
|
Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhavalikar R, Zhou XY, Yu EY, Goodwill PW, Zheng B, Rinaldi C, Conolly SM. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. ACS NANO 2018; 12:3699-3713. [PMID: 29570277 PMCID: PMC6007035 DOI: 10.1021/acsnano.8b00893] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Image-guided treatment of cancer enables physicians to localize and treat tumors with great precision. Here, we present in vivo results showing that an emerging imaging modality, magnetic particle imaging (MPI), can be combined with magnetic hyperthermia into an image-guided theranostic platform. MPI is a noninvasive 3D tomographic imaging method with high sensitivity and contrast, zero ionizing radiation, and is linearly quantitative at any depth with no view limitations. The same superparamagnetic iron oxide nanoparticle (SPIONs) tracers imaged in MPI can also be excited to generate heat for magnetic hyperthermia. In this study, we demonstrate a theranostic platform, with quantitative MPI image guidance for treatment planning and use of the MPI gradients for spatial localization of magnetic hyperthermia to arbitrarily selected regions. This addresses a key challenge of conventional magnetic hyperthermia-SPIONs delivered systemically accumulate in off-target organs ( e.g., liver and spleen), and difficulty in localizing hyperthermia results in collateral heat damage to these organs. Using a MPI magnetic hyperthermia workflow, we demonstrate image-guided spatial localization of hyperthermia to the tumor while minimizing collateral damage to the nearby liver (1-2 cm distance). Localization of thermal damage and therapy was validated with luciferase activity and histological assessment. Apart from localizing thermal therapy, the technique presented here can also be extended to localize actuation of drug release and other biomechanical-based therapies. With high contrast and high sensitivity imaging combined with precise control and localization of the actuated therapy, MPI is a powerful platform for magnetic-based theranostics.
Collapse
Affiliation(s)
| | | | - Andreina Chiu-Lam
- Department of Chemical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Daniel W Hensley
- Magnetic Insight, Inc. , Alameda , California 94501 , United States
| | - Rohan Dhavalikar
- Department of Chemical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | | | - Elaine Y Yu
- Magnetic Insight, Inc. , Alameda , California 94501 , United States
| | | | | | - Carlos Rinaldi
- Department of Chemical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | | |
Collapse
|
11
|
Rahman MA, Matsumura Y, Yano S, Ochiai B. pH-Responsive Charge-Conversional and Hemolytic Activities of Magnetic Nanocomposite Particles for Cell-Targeted Hyperthermia. ACS OMEGA 2018; 3:961-972. [PMID: 30023794 PMCID: PMC6045334 DOI: 10.1021/acsomega.7b01918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 05/12/2023]
Abstract
Magnetic nanocomposite particle (MNP)-induced hyperthermia therapy has been restricted by inefficient cellular targeting. pH-responsive charge-conversional MNPs can enhance selective cellular uptake in acidic cells like tumors by sensing extracellular acidity based on their charge alteration. We have synthesized new, pH-induced charge-conversional, superparamagnetic, and single-cored Fe3O4 nanocomposite particles coated by N-itaconylated chitosan (NICS) cross-linked with ethylene glycol diglycidyl ether (EGDE) (Fe3O4-NICS-EGDE) using a simple, one-step chemical coprecipitation-coating process. The surface of the Fe3O4-NICS-EGDE nanocomposite particles was modified with ethanolamine (EA) via aza-Michael addition to enhance their buffering capacity, aqueous stability, and pH sensitivity. The designed Fe3O4-NICS-EGDE-EA nanocomposite particles showed pH-dependent charge-conversional properties, colloidal stability, and excellent hemocompatibility in physiological media. By contrast, the charge-conversional properties enabled microwave-induced hemolysis only under weakly acidic conditions. Therefore, the composite particles are highly feasible for magnetically induced and targeted cellular thermotherapeutic applications.
Collapse
Affiliation(s)
- Md. Abdur Rahman
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yoshimasa Matsumura
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shigekazu Yano
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Bungo Ochiai
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
- E-mail:
| |
Collapse
|
12
|
Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V. Iron oxide nanoparticles - In vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interface Sci 2017; 249:192-212. [PMID: 28499604 DOI: 10.1016/j.cis.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
The review presents a broad overview of the biomedical applications of surface functionalized iron oxide nanoparticles (IONPs) as magnetic resonance imaging (MRI) agents for sensitive and precise diagnosis tool and synergistic combination with other imaging modalities. Then, the recent progress in therapeutic applications, such as hyperthermia is discussed and the available toxicity data of magnetic nanoparticles concerning in vitro and in vivo biomedical applications are addressed. This review also presents the available computer models using molecular dynamics (MD), Monte Carlo (MC) and density functional theory (DFT), as a basis for a complete understanding of the behaviour and morphology of functionalized IONPs, for improving NPs surface design and expanding the potential applications in nanomedicine.
Collapse
Affiliation(s)
- Miroslava Nedyalkova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria.
| | - Borjana Donkova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - Julia Romanova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - George Tzvetkov
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - Sergio Madurga
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), C/Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| |
Collapse
|
13
|
Piraner DI, Farhadi A, Davis HC, Wu D, Maresca D, Szablowski JO, Shapiro MG. Going Deeper: Biomolecular Tools for Acoustic and Magnetic Imaging and Control of Cellular Function. Biochemistry 2017; 56:5202-5209. [PMID: 28782927 PMCID: PMC6058970 DOI: 10.1021/acs.biochem.7b00443] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most cellular phenomena of interest to mammalian biology occur within the context of living tissues and organisms. However, today's most advanced tools for observing and manipulating cellular function, based on fluorescent or light-controlled proteins, work best in cultured cells, transparent model species, or small, surgically accessed anatomical regions. Their reach into deep tissues and larger animals is limited by photon scattering. To overcome this limitation, we must design biochemical tools that interface with more penetrant forms of energy. For example, sound waves and magnetic fields easily permeate most biological tissues, allowing the formation of images and delivery of energy for actuation. These capabilities are widely used in clinical techniques such as diagnostic ultrasound, magnetic resonance imaging, focused ultrasound ablation, and magnetic particle hyperthermia. Each of these modalities offers spatial and temporal precision that could be used to study a multitude of cellular processes in vivo. However, connecting these techniques to cellular functions such as gene expression, proliferation, migration, and signaling requires the development of new biochemical tools that can interact with sound waves and magnetic fields as optogenetic tools interact with photons. Here, we discuss the exciting challenges this poses for biomolecular engineering and provide examples of recent advances pointing the way to greater depth in in vivo cell biology.
Collapse
Affiliation(s)
- Dan I. Piraner
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hunter C. Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Di Wu
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jerzy O. Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
14
|
Hensley D, Tay ZW, Dhavalikar R, Zheng B, Goodwill P, Rinaldi C, Conolly S. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys Med Biol 2016; 62:3483-3500. [PMID: 28032621 DOI: 10.1088/1361-6560/aa5601] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Magnetic particle imaging (MPI) is a rapidly developing molecular and cellular imaging modality. Magnetic fluid hyperthermia (MFH) is a promising therapeutic approach where magnetic nanoparticles are used as a conduit for targeted energy deposition, such as in hyperthermia induction and drug delivery. The physics germane to and exploited by MPI and MFH are similar, and the same particles can be used effectively for both. Consequently, the method of signal localization through the use of gradient fields in MPI can also be used to spatially localize MFH, allowing for spatially selective heating deep in the body and generally providing greater control and flexibility in MFH. Furthermore, MPI and MFH may be integrated together in a single device for simultaneous MPI-MFH and seamless switching between imaging and therapeutic modes. Here we show simulation and experimental work quantifying the extent of spatial localization of MFH using MPI systems: we report the first combined MPI-MFH system and demonstrate on-demand selective heating of nanoparticle samples separated by only 3 mm (up to 0.4 °C s-1 heating rates and 150 W g-1 SAR deposition). We also show experimental data for MPI performed at a typical MFH frequency and show preliminary simultaneous MPI-MFH experimental data.
Collapse
Affiliation(s)
- Daniel Hensley
- Department of Bioengineering, University of California, Berkeley, CA, United States of America
| | | | | | | | | | | | | |
Collapse
|
15
|
Dhavalikar R, Rinaldi C. Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2016; 419:267-273. [PMID: 28943706 PMCID: PMC5604258 DOI: 10.1016/j.jmmm.2016.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI.
Collapse
Affiliation(s)
- Rohan Dhavalikar
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611, USA
| | - Carlos Rinaldi
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida,1275 Center Drive, Gainesville, FL 32611, USA
- Corresponding author. Tel.: +1 (352) 294-5588.
| |
Collapse
|
16
|
Ma JM, Guo SN, Su RJ, Yue WN. The Method for Magnetic Hyperthermia Based on Particle Swarm Optimization Algorithm with Levy Flight. INT J PATTERN RECOGN 2016. [DOI: 10.1142/s0218001416590254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new method to set up the static magnetic field of the targeted magnetic fluid hyperthermia is presented, and a new particle swarm optimization algorithm with Levy flight (LF-PSO) is proposed. Magnetic field generating system consists of 18 coils, deployed in the lesions of the peripheral symmetric space, the main principle is to heat magnetic nanoparticles by high frequency alternating magnetic field to kill the cancer cells, while building a static magnetic field in the periphery of the tumor region to protect healthy tissue from harm. Tumor location information may be shifted, so each treatment needs to reconfigure the static magnetic field. The set of magnetic heating coil currently adopted this new LF-PSO algorithm, in the reason of the particle swarm optimization algorithm with Levy flight mechanism is characterized by good robustness, high precision of optimal search and it is easy to jump out of local optimum. Experimental results show that by building a new objective function, and comparing with the FEM algorithm, the LF-PSO algorithm has advantages of fast solving speed and high accuracy.
Collapse
Affiliation(s)
- Ji-Ming Ma
- Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Sheng-Nan Guo
- Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Ri-Jian Su
- Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Wei-Na Yue
- Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| |
Collapse
|
17
|
Eisenberg DP, Bischof JC, Rabin Y. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect. J Biomech Eng 2016; 138:2473569. [PMID: 26592974 DOI: 10.1115/1.4032053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 11/08/2022]
Abstract
This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.
Collapse
|
18
|
Kellnberger S, Rosenthal A, Myklatun A, Westmeyer GG, Sergiadis G, Ntziachristos V. Magnetoacoustic Sensing of Magnetic Nanoparticles. PHYSICAL REVIEW LETTERS 2016; 116:108103. [PMID: 27015511 DOI: 10.1103/physrevlett.116.108103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 06/05/2023]
Abstract
The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.
Collapse
Affiliation(s)
- Stephan Kellnberger
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, USA
- Chair for Biological Imaging, Technische Universität München, Trogerstraße 9, 81675 München, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
| | - Amir Rosenthal
- Chair for Biological Imaging, Technische Universität München, Trogerstraße 9, 81675 München, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
- Andrew and Erna Viterbi Faculty of Electrical Engineering, The Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ahne Myklatun
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
| | - Gil G Westmeyer
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Str. 22, 81675 München, Germany
| | - George Sergiadis
- Department of Electrical and Computer Engineering, Aristotle University, Egnatia Str., 54124 Thessaloniki, Greece
| | - Vasilis Ntziachristos
- Chair for Biological Imaging, Technische Universität München, Trogerstraße 9, 81675 München, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 München, Germany
| |
Collapse
|
19
|
Ma J, Zhang Z, Zhang Z, Huang J, Qin Y, Li X, Liu H, Yang K, Wu G. Magnetic nanoparticle clusters radiosensitise human nasopharyngeal and lung cancer cells after alternating magnetic field treatment. Int J Hyperthermia 2015; 31:800-12. [PMID: 26382714 DOI: 10.3109/02656736.2015.1063168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Heat generated by magnetic nanoparticle clusters (MNCs) in an alternating magnetic field (AMF) can be used for hyperthermia cancer treatment. Here, we have synthesised polyacrylic acid-coated MNCs according to previous report, with the ability to increase particle stability in suspension. Radiosensitisation effects of the MNCs under an AMF were investigated in vitro and in vivo. MATERIALS AND METHODS MTT assay, flow cytometry, clone formation assay, Western blotting, and a γ-H2AX experiment were used to explore the biocompatibility and radiosensitisation effect of the MNCs and their putative radiosensitisation mechanism. An NCI-H460 mouse xenograft model was used to investigate the anti-tumour effect under an AMF in vivo. RESULTS The temperature of MNC fluids at different concentrations (200 μg/mL to 2 mg/mL) increased rapidly. The MNCs were endocytosed by the cells and were found to be biocompatible. Hsp70 and caspase-3 were found to be up-regulated upon MNCs under an AMF, radiation, and combination of both treatments. MNCs under an AMF efficiently radiosensitised both CNE-2 cells and NCI-H460 cells. Finally, the tumour inhibition rate after treatment with MNCs under an AMF and radiation was significantly higher than that after either treatment alone. The mechanism of radiosensitisation putatively involves inhibition of DNA repair and induction of apoptosis. CONCLUSIONS The MNC fluids under an AMF enhanced the radiosensitivity of tumour cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Jia Ma
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Zhiping Zhang
- b Tongji School of Pharmacy, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Zhanjie Zhang
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Jing Huang
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - You Qin
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Xu Li
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Hongli Liu
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Kunyu Yang
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| | - Gang Wu
- a Cancer Centre, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China and
| |
Collapse
|
20
|
Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev 2015; 115:10637-89. [PMID: 26250431 DOI: 10.1021/acs.chemrev.5b00112] [Citation(s) in RCA: 593] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University , Seoul 136-702, Korea
| | - Dongwon Yoo
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Daishun Ling
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, PR China
| | - Mi Hyeon Cho
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| |
Collapse
|
21
|
Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:023501. [PMID: 27877761 PMCID: PMC5036481 DOI: 10.1088/1468-6996/16/2/023501] [Citation(s) in RCA: 644] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 05/17/2023]
Abstract
This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed.
Collapse
Affiliation(s)
| | - Zhaohui Wu
- Department of Chemical Engineering, Kyung Hee University, Korea
| | - Taekyung Yu
- Department of Chemical Engineering, Kyung Hee University, Korea
| | - Changzhong Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Woo-Sik Kim
- Department of Chemical Engineering, Kyung Hee University, Korea
| |
Collapse
|
22
|
Sadhukha T, Wiedmann TS, Panyam J. Enhancing therapeutic efficacy through designed aggregation of nanoparticles. Biomaterials 2014; 35:7860-9. [PMID: 24947232 DOI: 10.1016/j.biomaterials.2014.05.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/28/2014] [Indexed: 12/29/2022]
Abstract
Particle size is a key determinant of biological performance of sub-micron size delivery systems. Previous studies investigating the effect of particle size have primarily focused on well-dispersed nanoparticles. However, inorganic nanoparticles are prone to aggregation in biological environments. In our studies, we examined the consequence of aggregation on superparamagnetic iron oxide (SPIO) nanoparticle-induced magnetic hyperthermia. Here we show that the extent and mechanism of hyperthermia-induced cell kill is highly dependent on the aggregation state of SPIO nanoparticles. Well-dispersed nanoparticles induced apoptosis, similar to that observed with conventional hyperthermia. Sub-micron size aggregates, on the other hand, induced temperature-dependent autophagy through generation of oxidative stress. Micron size aggregates caused rapid membrane damage, resulting in acute cell kill. Overall, this work highlights the potential for developing highly effective anticancer therapeutics through designed aggregation of nano delivery systems.
Collapse
Affiliation(s)
- Tanmoy Sadhukha
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy S Wiedmann
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jayanth Panyam
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Analysis of the distribution of magnetic fluid inside tumors by a giant magnetoresistance probe. PLoS One 2013; 8:e81227. [PMID: 24312280 PMCID: PMC3843682 DOI: 10.1371/journal.pone.0081227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42°C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe.
Collapse
|
24
|
Partanen A, Tillander M, Yarmolenko PS, Wood BJ, Dreher MR, Kohler MO. Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia. Med Phys 2013; 40:013301. [PMID: 23298120 DOI: 10.1118/1.4769116] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Ablative hyperthermia (>55 °C) has been used as a definitive treatment for accessible solid tumors not amenable to surgery, whereas mild hyperthermia (40-45 °C) has been shown effective as an adjuvant for both radiotherapy and chemotherapy. An optimal mild hyperthermia treatment is spatially accurate, with precise and homogeneous heating limited to the target region while also limiting the likelihood of unwanted thermal or mechanical bioeffects (tissue damage, vascular shutoff). Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) can noninvasively heat solid tumors under image-guidance. In a mild hyperthermia setting, a sonication approach utilizing multiple concurrent foci may provide the benefit of reducing acoustic pressure in the focal region (leading to reduced or no mechanical effects), while providing better control over the heating. The objective of this study was to design, implement, and characterize a multifoci sonication approach in combination with a mild hyperthermia heating algorithm, and compare it to the more conventional method of electronically sweeping a single focus. METHODS Simulations (acoustic and thermal) and measurements (acoustic, with needle hydrophone) were performed. In addition, heating performance of multifoci and single focus sonications was compared using a clinical MR-HIFU platform in a phantom (target = 4-16 mm), in normal rabbit thigh muscle (target = 8 mm), and in a Vx2 tumor (target = 8 mm). A binary control algorithm was used for real-time mild hyperthermia feedback control (target range = 40.5-41 °C). Data were analyzed for peak acoustic pressure and intensity, heating energy efficiency, temperature accuracy (mean), homogeneity of heating (standard deviation [SD], T10 and T90), diameter and length of the heated region, and thermal dose (CEM(43)). RESULTS Compared to the single focus approach, multifoci sonications showed significantly lower (67% reduction) peak acoustic pressures in simulations and hydrophone measurements. In a rabbit Vx2 tumor, both single focus and multifoci heating approaches were accurate (mean = 40.82±0.12 °C [single] and 40.70±0.09 °C [multi]) and precise (standard deviation = 0.65±0.05 °C [single] and 0.64±0.04 °C [multi]), producing homogeneous heating (T(10-90) = 1.62 °C [single] and 1.41 °C [multi]). Heated regions were significantly shorter in the beam path direction (35% reduction, p < 0.05, Tukey) for multifoci sonications, i.e., resulting in an aspect ratio closer to one. Energy efficiency was lower for the multifoci approach. Similar results were achieved in phantom and rabbit muscle heating experiments. CONCLUSIONS A multifoci sonication approach was combined with a mild hyperthermia heating algorithm, and implemented on a clinical MR-HIFU platform. This approach resulted in accurate and precise heating within the targeted region with significantly lower acoustic pressures and spatially more confined heating in the beam path direction compared to the single focus sonication method.The reduction in acoustic pressure and improvement in spatial control suggest that multifoci heating is a useful tool in mild hyperthermia applications for clinical oncology.
Collapse
Affiliation(s)
- Ari Partanen
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
25
|
Sadhukha T, Wiedmann TS, Panyam J. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 2013; 34:5163-71. [PMID: 23591395 DOI: 10.1016/j.biomaterials.2013.03.061] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
Lung cancer (specifically, non-small cell lung cancer; NSCLC) is the leading cause of cancer-related deaths in the United States. Poor response rates and survival with current treatments clearly indicate the urgent need for developing an effective means to treat NSCLC. Magnetic hyperthermia is a non-invasive approach for tumor ablation, and is based on heat generation by magnetic materials, such as superparamagnetic iron oxide (SPIO) nanoparticles, when subjected to an alternating magnetic field. However, inadequate delivery of magnetic nanoparticles to tumor cells can result in sub-lethal temperature change and induce resistance while non-targeted delivery of these particles to the healthy tissues can result in toxicity. In our studies, we evaluated the effectiveness of tumor-targeted SPIO nanoparticles for magnetic hyperthermia of lung cancer. EGFR-targeted, inhalable SPIO nanoparticles were synthesized and characterized for targeting lung tumor cells as well as for magnetic hyperthermia-mediated antitumor efficacy in a mouse orthotopic model of NSCLC. Our results show that EGFR targeting enhances tumor retention of SPIO nanoparticles. Further, magnetic hyperthermia treatment using targeted SPIO nanoparticles resulted in significant inhibition of in vivo lung tumor growth. Overall, this work demonstrates the potential for developing an effective anticancer treatment modality for the treatment of NSCLC based on targeted magnetic hyperthermia.
Collapse
Affiliation(s)
- Tanmoy Sadhukha
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | |
Collapse
|
26
|
Kumar A, Attaluri A, Mallipudi R, Cornejo C, Bordelon D, Armour M, Morua K, Deweese TL, Ivkov R. Method to reduce non-specific tissue heating of small animals in solenoid coils. Int J Hyperthermia 2013; 29:106-20. [PMID: 23402327 DOI: 10.3109/02656736.2013.764023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Solenoid coils that generate time-varying or alternating magnetic fields (AMFs) are used in biomedical devices for research, imaging and therapy. Interactions of AMF and tissue produce eddy currents that deposit power within tissue, thus limiting effectiveness and safety. We aim to develop methods that minimise excess heating of mice exposed to AMFs for cancer therapy experiments. MATERIALS AND METHODS Numerical and experimental data were obtained to characterise thermal management properties of water using a continuous, custom water jacket in a four-turn simple solenoid. Theoretical data were obtained with method-of-moments (MoM) numerical field calculations and finite element method (FEM) thermal simulations. Experimental data were obtained from gel phantoms and mice exposed to AMFs having amplitude >50 kA/m and frequency of 160 kHz. RESULTS Water has a high specific heat and thermal conductivity, is diamagnetic, polar, and nearly transparent to magnetic fields. We report at least a two-fold reduction of temperature increase from gel phantom and animal models when a continuous layer of circulating water was placed between the sample and solenoid, compared with no water. Thermal simulations indicate the superior efficiency in thermal management by the developed continuous single chamber cooling system over a double chamber non-continuous system. Further reductions of heating were obtained by regulating water temperature and flow for active cooling. CONCLUSIONS These results demonstrate the potential value of a contiguous layer of circulating water to permit sustained exposure to high intensity alternating magnetic fields at this frequency for research using small animal models exposed to AMFs.
Collapse
|
27
|
Partanen A, Yarmolenko PS, Viitala A, Appanaboyina S, Haemmerich D, Ranjan A, Jacobs G, Woods D, Enholm J, Wood BJ, Dreher MR. Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery. Int J Hyperthermia 2012; 28:320-36. [PMID: 22621734 DOI: 10.3109/02656736.2012.680173] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Mild hyperthermia (40-45 °C) is a proven adjuvant for radiotherapy and chemotherapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) can non-invasively heat solid tumours under image guidance. Low temperature-sensitive liposomes (LTSLs) release their drug cargo in response to heat (>40 °C) and may improve drug delivery to solid tumours when combined with mild hyperthermia. The objective of this study was to develop and implement a clinically relevant MR-HIFU mild hyperthermia heating algorithm for combination with LTSLs. MATERIALS AND METHODS Sonications were performed with a clinical MR-HIFU platform in a phantom and rabbits bearing VX2 tumours (target = 4-16 mm). A binary control algorithm was used for real-time mild hyperthermia feedback control (target = 40-41 °C). Drug delivery with LTSLs was measured with HPLC. Data were compared to simulation results and analysed for spatial targeting accuracy (offset), temperature accuracy (mean), homogeneity of heating (standard deviation (SD), T10 and T90), and thermal dose (CEM43). RESULTS Sonications in a phantom resulted in better temperature control than in vivo. Sonications in VX2 tumours resulted in mean temperatures between 40.4 °C and 41.3 °C with a SD of 1.0-1.5 °C (T10 = 41.7-43.7 °C, T90 = 39.0-39.6 °C), in agreement with simulations. 3D spatial offset was 0.1-3.2 mm in vitro and 0.6-4.8 mm in vivo. Combination of MR-HIFU hyperthermia and LTSLs demonstrated heterogeneous delivery to a partially heated VX2 tumour, as expected. CONCLUSIONS An MR-HIFU mild hyperthermia heating algorithm was developed, resulting in accurate and homogeneous heating within the targeted region in vitro and in vivo, which is suitable for applications in drug delivery.
Collapse
Affiliation(s)
- Ari Partanen
- Center for Interventional Oncology, Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bordelon DE, Goldstein RC, Nemkov VS, Kumar A, Jackowski JK, DeWeese TL, Ivkov R. Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications. IEEE TRANSACTIONS ON MAGNETICS 2012; 48:47-52. [PMID: 25392562 PMCID: PMC4226412 DOI: 10.1109/tmag.2011.2162527] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this paper, we describe a modified solenoid coil that efficiently generates high amplitude alternating magnetic fields (AMF) having field uniformity (≤10%) within a 125-cm3 volume of interest. Two-dimensional finite element analysis (2D-FEA) was used to design a coil generating a targeted peak AMF amplitude along the coil axis of ~100 kA/m (peak-to-peak) at a frequency of 150 kHz while maintaining field uniformity to >90% of peak for a specified volume. This field uniformity was realized by forming the turns from cylindrical sections of copper plate and by adding flux concentrating rings to both ends of the coil. Following construction, the field profile along the axes of the coil was measured. An axial peak field value of 95.8 ± 0.4 kA/m was measured with 650 V applied to the coil and was consistent with the calculated results. The region of axial field uniformity, defined as the distance over which field ≥90% of peak, was also consistent with the simulated results. We describe the utility of such a device for calorimetric measurement of nanoparticle heating for cancer therapy and for magnetic fluid hyperthermia in small animal models of human cancer.
Collapse
Affiliation(s)
- David E Bordelon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | | | | | | | | | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| |
Collapse
|
29
|
Murase K, Takata H, Takeuchi Y, Saito S. Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field. Phys Med 2012; 29:624-30. [PMID: 22985766 DOI: 10.1016/j.ejmp.2012.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/19/2012] [Accepted: 08/25/2012] [Indexed: 11/29/2022] Open
Abstract
Our purpose in this study was to investigate the usefulness of a method for controlling the temperature rise in magnetic hyperthermia (MH) using an external static magnetic field (SMF), and to derive an empirical equation for describing the energy dissipation of magnetic nanoparticles (MNPs) in the presence of both the alternating magnetic field (AMF) and SMF through phantom experiments. We made a device that allows for MH in the presence of an SMF with a field-free point (FFP) using a Maxwell coil pair. We measured the temperature rise of MNPs under various conditions of AMF and SMF and various distances from the FFP (d), and calculated the specific absorption rate (SAR) from the initial slope of the temperature curve. The SAR values decreased with increasing strength of SMF (Hs) and d. The extent of their decrease with d increased with an increase of the gradient of SMF (Gs). The relationships between SAR and Hs and between SAR and d could be well approximated by Rosensweig's equation in which the amplitude of AMF (Hac) is replaced by √[Hac(2)]/√[Hac(2)+Hs(2)], except for the case when Gs was small. In conclusion, the use of an external SMF with an FFP will be effective for controlling the temperature rise in MH in order to reduce the risk of heating surrounding healthy tissues, and our empirical equation will be useful for estimating SAR in the presence of both the AMF and SMF and for designing an effective local heating system for MH.
Collapse
Affiliation(s)
- Kenya Murase
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
30
|
Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, Chen ZG, Platt S. Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2012; 2:113-21. [PMID: 22287991 PMCID: PMC3267386 DOI: 10.7150/thno.3854] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/13/2011] [Indexed: 01/21/2023] Open
Abstract
In this study, magnetic iron oxide nanoparticle induced hyperthermia is applied for treatment of head and neck cancer using a mouse xenograft model of human head and neck cancer (Tu212 cell line). A hyperthermia system for heating iron oxide nanoparticles was developed by using alternating magnetic fields. Both theoretical simulation and experimental studies were performed to verify the thermotherapy effect. Experimental results showed that the temperature of the tumor center has dramatically elevated from around the room temperature to about 40(o)C within the first 5-10 minutes. Pathological studies demonstrate epithelial tumor cell destruction associated with the hyperthermia treatment.
Collapse
Affiliation(s)
- Qun Zhao
- 1. Bioimaging Research Center, University of Georgia, Athens, GA. 30602, USA
- 2. Department of Physics and Astronomy, University of Georgia, Athens, GA. 30602, USA
| | - Luning Wang
- 1. Bioimaging Research Center, University of Georgia, Athens, GA. 30602, USA
- 2. Department of Physics and Astronomy, University of Georgia, Athens, GA. 30602, USA
| | - Rui Cheng
- 3. Faculty of Engineering, Nano-scale Science and Engineering Center, University of Georgia, Athens, GA. 30602, USA
| | - Leidong Mao
- 3. Faculty of Engineering, Nano-scale Science and Engineering Center, University of Georgia, Athens, GA. 30602, USA
| | - Robert D. Arnold
- 4. Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA. 30602, USA
| | | | - Zhuo G. Chen
- 7. Winship Cancer Institute, Emory University, Atlanta, GA. 30322, USA
| | - Simon Platt
- 6. Department of Small Animal Medicine & Surgery, University of Georgia, Athens, GA. 30602, USA
| |
Collapse
|
31
|
Rauwerdink AM, Weaver JB. Concurrent quantification of multiple nanoparticle bound states. Med Phys 2011; 38:1136-40. [PMID: 21520825 DOI: 10.1118/1.3549762] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The binding of nanoparticles to in vivo targets impacts their use for medical imaging, therapy, and the study of diseases and disease biomarkers. Though an array of techniques can detect binding in vitro, the search for a robust in vivo method continues. The spectral response of magnetic nanoparticles can be influenced by a variety of changes in their physical environment including viscosity and binding. Here, the authors show that nanoparticles in these different environmental states produce spectral responses, which are sufficiently unique to allow for simultaneous quantification of the proportion of nanoparticles within each state. METHODS The authors measured the response to restricted Brownian motion using an array of magnetic nanoparticle designs. With a chosen optimal particle type, the authors prepared particle samples in three distinct environmental states. Various combinations of particles within these three states were measured concurrently and the authors attempted to solve for the quantity of particles within each physical state. RESULTS The authors found the spectral response of the nanoparticles to be sufficiently unique to allow for accurate quantification of up to three bound states with errors on the order of 1.5%. Furthermore, the authors discuss numerous paths for translating these measurements to in vivo applications. CONCLUSIONS Multiple nanoparticle environmental states can be concurrently quantified using the spectral response of the particles. Such an ability, if translated to the in vivo realm, could provide valuable information about the fate of nanoparticles in vivo or improve the efficacy of nanoparticle based treatments.
Collapse
Affiliation(s)
- Adam M Rauwerdink
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
32
|
Wang ZY, Wang L, Zhang J, Li YT, Zhang DS. A study on the preparation and characterization of plasmid DNA and drug-containing magnetic nanoliposomes for the treatment of tumors. Int J Nanomedicine 2011; 6:871-5. [PMID: 21720500 PMCID: PMC3124393 DOI: 10.2147/ijn.s16485] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Indexed: 12/02/2022] Open
Abstract
Purpose: To explore the preparation and characterization of a novel nanosized magnetic liposome containing the PEI-As2O3/Mn0.5Zn0.5Fe2O4 complex. Methods: Mn0.5Zn0.5Fe2O4 and As2O3/Mn0.5Zn0.5Fe2O4 nanoparticles were prepared by chemical coprecipitation and loaded with PEI. The PEI- As2O3/Mn0.5Zn0.5Fe2O4 complex was characterized using transmission electron and scanning electron microscopy, X-ray diffraction, energy dispersive spectrometry, and Fourier transform infrared spectroscopy. Cell transfection experiments were performed to evaluate the transfect efficiency. Magnetic nanoliposomes were prepared by rotatory evaporation and their shape, diameter, and thermodynamic characteristics were observed. Results: Mn0.5Zn0.5Fe2O4 and PEI-As2O3/Mn0.5Zn0.5Fe2O4 nanoparticles were spherical, with an average diameter of 20–40 nm. PEI-As2O3/Mn0.5Zn0.5Fe2O4 was an appropriate carrier for the delivery of a foreign gene to HepG2 cells. Energy dispersive spectrometry results confirmed the presence of the elements nitrogen and arsenic. Nanoliposomes of approximately 100 nm were observed under a transmission electron microscope. Upon exposure to an alternating magnetic field, they also had good magnetic responsiveness, even though Mn0.5Zn0.5Fe2O4was modified by PEI and encased in liposomes. Temperatures increased to 37°C–54°C depending on different concentrations of PEI-As2O3/Mn0.5Zn0.5Fe2O4and remained stable thereafter. Conclusion: Our results suggest that PEI-As2O3/Mn0.5Zn0.5Fe2O4 magnetic nanoliposomes are an excellent biomaterial, which has multiple benefits in tumor thermotherapy, gene therapy, and chemotherapy.
Collapse
Affiliation(s)
- Zi-Yu Wang
- School of Medicine, Southeast University, Nanjing, China
| | | | | | | | | |
Collapse
|
33
|
Vauthier C, Tsapis N, Couvreur P. Nanoparticles: heating tumors to death? Nanomedicine (Lond) 2011; 6:99-109. [PMID: 21182422 DOI: 10.2217/nnm.10.138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Thermotherapy consisting of heating tumors to death appears to be a suitable method to achieve tumor ablation in a noninvasive manner with minimal side effects but developments were hampered because of the lack of specificity of the heating method. New interests have emerged by introducing nanoparticles as energy absorbent agents in tumor tissue to locally enhance the action of irradiation, hence increasing the specificity of the method. Mechanisms of tumor death depend on the nature of the nanoparticles and irradiation modalities. They can be induced either by heat-dependent or by heat-independent phenomena. As discussed in this article, it can reasonably be expected that the recent methods of thermotherapy developed with nanoparticles have a tremendous potential for cancer treatments. However, overcoming challenging milestones is now required before the method will be ready for the treatment of a wide range of cancers.
Collapse
Affiliation(s)
- Christine Vauthier
- Université Paris-Sud, Physico-chimie, Pharmacotechnie et Biopharmacie, UMR 8612, 5 Rue JB Clément, Châtenay-Malabry, F-92296, France.
| | | | | |
Collapse
|
34
|
Du Y, Zhang D, Liu H, Lai R. Thermochemotherapy effect of nanosized As2O3/Fe3O4 complex on experimental mouse tumors and its influence on the expression of CD44v6, VEGF-C and MMP-9. BMC Biotechnol 2009; 9:84. [PMID: 19804631 PMCID: PMC2765420 DOI: 10.1186/1472-6750-9-84] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 10/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both thermotherapy and arsenic have been shown to be active against a broad spectrum of cancers. To reduce the limitations of conventional thermotherapy, improve therapeutic anticancer activity, reduce the toxicity of arsenic on normal tissue, and increase tissue-specific delivery, we prepared a nanosized As2O3/Fe3O4 complex (Fe3O4 magnetic nanoparticles encapsulated in As2O3). We assessed the thermodynamic characteristics of this complex and validated the hyperthermia effect, when combined with magnetic fluid hyperthermia (MFH), on xenograft HeLa cells (human cervical cancer cell line) in nude mice. We also measured the effect on the expression of CD44v6, VEGF-C, and MMP-9 which were related to cancer and/or metastasis. RESULTS The nanosized As2O3/Fe3O4 particles were approximately spherical, had good dispersibility as evidenced by TEM, and an average diameter of about 50 nm. With different concentrations of the nanosized As2O3/Fe3O4 complex, the correspondingsuspension of magnetic particles could attain a steady temperature ranging from 42 degrees C to 65 degrees C when placed in AMF for 40 min. Thermochemotherapy with the nanosized As2O3/Fe3O4 complex showed a significant inhibitory effect on the mass (88.21%) and volume (91.57%) of xenograft cervical tumors (p < 0.05 for each measurement, compared with control). In addition, thermochemotherapy with the nanosized As2O3/Fe3O4 complex significantly inhibited the expression of CD44v6, VEGF-C, and MMP-9 mRNA (p < 0.05 for each). CONCLUSION As2O3/Fe3O4 complex combined with MFH had is a promising technique for the minimally invasive elimination of solid tumors and may be have anticancerometastasic effect by inhibiting the expression of CD44v6, VEGF-C, and MMP-9.
Collapse
Affiliation(s)
- Yiqun Du
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Southeast University, Nanjing, PR China
- Department of Pathology, Jiangsu Provincial Hospital of Traditional Chinese Medicine (Nanjing University of Traditional Chinese Medicine Hospital), Nanjing, PR China
| | - Dongsheng Zhang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Southeast University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Biomateria and Devices, Southeast University, Nanjing, PR China
| | - Hui Liu
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Southeast University, Nanjing, PR China
- Department of laboratory, Nanjing Tongren Hospital,, Nanjing, PR China
| | - Rensheng Lai
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Southeast University, Nanjing, PR China
| |
Collapse
|