1
|
Metser U, Kohan A, O’Brien C, Wong RKS, Ortega C, Veit-Haibach P, Driscoll B, Yeung I, Farag A. 18F-Fluoroazomycin Arabinoside (FAZA) PET/MR as a Biomarker of Hypoxia in Rectal Cancer: A Pilot Study. Tomography 2024; 10:1354-1364. [PMID: 39330748 PMCID: PMC11435673 DOI: 10.3390/tomography10090102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Tumor hypoxia is a negative prognostic factor in many tumors and is predictive of metastatic spread and poor responsiveness to both chemotherapy and radiotherapy. Purpose: To assess the feasibility of using 18F-Fluoroazomycin arabinoside (FAZA) PET/MR to image tumor hypoxia in patients with locally advanced rectal cancer (LARC) prior to and following neoadjuvant chemoradiotherapy (nCRT). The secondary objective was to compare different reference tissues and thresholds for tumor hypoxia quantification. Patients and Methods: Eight patients with histologically proven LARC were included. All patients underwent 18F-FAZA PET/MR prior to initiation of nCRT, four of whom also had a second scan following completion of nCRT and prior to surgery. Tumors were segmented using T2-weighted MR. Each voxel within the segmented tumor was defined as hypoxic or oxic using thresholds derived from various references: ×1.0 or ×1.2 SUVmean of blood pool [BP] or left ventricle [LV] and SUVmean +3SD for gluteus maximus. Correlation coefficient (CoC) between HF and tumor SUVmax/reference SUVmean TRR for the various thresholds was calculated. Hypoxic fraction (HF), defined as the % hypoxic voxels within the tumor volume was calculated for each reference/threshold. Results: For all cases, baseline and follow-up, the CoCs for gluteus maximus and for BP and LV (×1.0) were 0.241, 0.344, and 0.499, respectively, and HFs were (median; range) 16.6% (2.4-33.8), 36.8% (0.3-72.9), and 30.7% (0.8-55.5), respectively. For a threshold of ×1.2, the CoCs for BP and LV as references were 0.611 and 0.838, respectively, and HFs were (median; range) 10.4% (0-47.6), and 4.3% (0-20.1%), respectively. The change in HF following nCRT ranged from (-18.9%) to (+54%). Conclusions: Imaging of hypoxia in LARC with 18F-FAZA PET/MR is feasible. Blood pool as measured in the LV appears to be the most reliable reference for calculating the HF. There is a wide range of HF and variable change in HF before and after nCRT.
Collapse
Affiliation(s)
- Ur Metser
- University Medical Imaging Toronto, University Health Network, Sinai Health Systems, Women’s College Hospital, University of Toronto, Toronto, ON M5G 2N2, Canada (C.O.); (P.V.-H.); (A.F.)
| | - Andres Kohan
- University Medical Imaging Toronto, University Health Network, Sinai Health Systems, Women’s College Hospital, University of Toronto, Toronto, ON M5G 2N2, Canada (C.O.); (P.V.-H.); (A.F.)
| | - Catherine O’Brien
- Department of Surgery, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Rebecca K. S. Wong
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Claudia Ortega
- University Medical Imaging Toronto, University Health Network, Sinai Health Systems, Women’s College Hospital, University of Toronto, Toronto, ON M5G 2N2, Canada (C.O.); (P.V.-H.); (A.F.)
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, University Health Network, Sinai Health Systems, Women’s College Hospital, University of Toronto, Toronto, ON M5G 2N2, Canada (C.O.); (P.V.-H.); (A.F.)
| | - Brandon Driscoll
- Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Ivan Yeung
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Adam Farag
- University Medical Imaging Toronto, University Health Network, Sinai Health Systems, Women’s College Hospital, University of Toronto, Toronto, ON M5G 2N2, Canada (C.O.); (P.V.-H.); (A.F.)
| |
Collapse
|
2
|
Imaging Hypoxia. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Bader SB, Dewhirst MW, Hammond EM. Cyclic Hypoxia: An Update on Its Characteristics, Methods to Measure It and Biological Implications in Cancer. Cancers (Basel) 2020; 13:E23. [PMID: 33374581 PMCID: PMC7793090 DOI: 10.3390/cancers13010023] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Regions of hypoxia occur in most if not all solid cancers. Although the presence of tumor hypoxia is a common occurrence, the levels of hypoxia and proportion of the tumor that are hypoxic vary significantly. Importantly, even within tumors, oxygen levels fluctuate due to changes in red blood cell flux, vascular remodeling and thermoregulation. Together, this leads to cyclic or intermittent hypoxia. Tumor hypoxia predicts for poor patient outcome, in part due to increased resistance to all standard therapies. However, it is less clear how cyclic hypoxia impacts therapy response. Here, we discuss the causes of cyclic hypoxia and, importantly, which imaging modalities are best suited to detecting cyclic vs. chronic hypoxia. In addition, we provide a comparison of the biological response to chronic and cyclic hypoxia, including how the levels of reactive oxygen species and HIF-1 are likely impacted. Together, we highlight the importance of remembering that tumor hypoxia is not a static condition and that the fluctuations in oxygen levels have significant biological consequences.
Collapse
Affiliation(s)
- Samuel B. Bader
- Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, Oxford OX3 7DQ, UK;
| | - Mark W. Dewhirst
- Radiation Oncology Department, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ester M. Hammond
- Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, Oxford OX3 7DQ, UK;
| |
Collapse
|
4
|
Ron A, Deán-Ben XL, Gottschalk S, Razansky D. Volumetric Optoacoustic Imaging Unveils High-Resolution Patterns of Acute and Cyclic Hypoxia in a Murine Model of Breast Cancer. Cancer Res 2019; 79:4767-4775. [PMID: 31097477 DOI: 10.1158/0008-5472.can-18-3769] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/03/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022]
Abstract
Mapping tumor heterogeneity and hypoxia within a living intact organism is essential for understanding the processes involved in cancer progression and assessing long-term responses to therapies. Efficient investigations into tumor hypoxia mechanisms have been hindered by the lack of intravital imaging tools capable of multiparametric probing of entire solid tumors with high spatial and temporal resolution. Here, we exploit volumetric multispectral optoacoustic tomography (vMSOT) for accurate, label-free delineation of tumor heterogeneity and dynamic oxygenation behavior. Mice bearing orthotopic MDA-MB-231 breast cancer xenografts were imaged noninvasively during rest and oxygen stress challenge, attaining time-lapse three-dimensional oxygenation maps across entire tumors with 100 μm spatial resolution. Volumetric quantification of the hypoxic fraction rendered values of 3.9% to 21.2%, whereas the oxygen saturation (sO2) rate declined at 1.7% to 2.3% per mm in all tumors when approaching their core. Three distinct functional areas (the rim, hypoxic, and normoxic cores) were clearly discernible based on spatial sO2 profiles and responses to oxygen challenge. Notably, although sO2 readings were responsive to the challenge, deoxyhemoglobin (HbR) trends exhibited little to no variations in all mice. Dynamic analysis further revealed the presence of cyclic hypoxia patterns with a 21% average discrepancy between cyclic fractions assessed via sO2 (42.2% ± 17.3%) and HbR fluctuations (63% ± 14.1%) within the hypoxic core. These findings corroborate the strong potential of vMSOT for advancing preclinical imaging of cancer and informing clinical decisions on therapeutic interventions. SIGNIFICANCE: vMSOT provides quantitative measures of volumetric hypoxic fraction and cyclic hypoxia in a label-free and noninvasive manner, providing new readouts to aid tumor staging and treatment decision making. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/18/4767/F1.large.jpg.See related commentary by Klibanov and Hu, p. 4577.
Collapse
Affiliation(s)
- Avihai Ron
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany.,Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Xosé Luís Deán-Ben
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany.,Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering ETH Zurich, Zurich, Switzerland
| | - Sven Gottschalk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany. .,Faculty of Medicine, Technical University of Munich, Munich, Germany.,Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Han K, Shek T, Vines D, Driscoll B, Fyles A, Jaffray D, Keller H, Metser U, Pintilie M, Xie J, Yeung I, Milosevic M. Measurement of Tumor Hypoxia in Patients With Locally Advanced Cervical Cancer Using Positron Emission Tomography with 18F-Fluoroazomyin Arabinoside. Int J Radiat Oncol Biol Phys 2018; 102:1202-1209. [PMID: 29680257 DOI: 10.1016/j.ijrobp.2018.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/11/2018] [Accepted: 02/20/2018] [Indexed: 01/25/2023]
Abstract
PURPOSE To assess cervical tumor hypoxia using the hypoxia tracer 18F-fluoroazomycin arabinoside (18F-FAZA) and compare different reference tissues and thresholds for quantifying tumor hypoxia. METHODS AND MATERIALS Twenty-seven patients with cervical cancer were studied prospectively by positron emission tomography (PET) imaging with 18F-FAZA before starting standard chemoradiation. The hypoxic volume was defined as all voxels within a tumor (T) with standardized uptake values (SUVs) greater than 3 standard deviations from the mean gluteus maximus muscle SUV value (M) or SUVs greater than 1 to 1.4 times the mean SUV value of the left ventricle, a blood (B) surrogate. The hypoxic fraction was defined as the ratio of the number of hypoxic voxels to the total number of tumor voxels. RESULTS A 18F-FAZA-PET hypoxic volume could be identified in the majority of cervical tumors (89% when using T/M or T/B > 1.2 as threshold) on the 2-hour static scan. The hypoxic fraction ranged from 0% to 99% (median 31%) when defined using the T/M threshold and from 0% to 78% (median 32%) with the T/B > 1.2 threshold. Hypoxic volumes derived from the different thresholds were highly correlated (Spearman's correlation coefficient ρ between T/M and T/B > 1-1.4 were 0.82-0.91), as were hypoxic fractions (0.75-0.85). Compartmental analysis of the dynamic scans showed k3, the FAZA accumulation constant, to be strongly correlated with hypoxic fraction defined using the T/M (Spearman's ρ=0.72) and T/B > 1.2 thresholds (0.76). CONCLUSIONS Hypoxia was detected in the majority of cervical tumors on 18F-FAZA-PET imaging. The extent of hypoxia varied markedly between tumors but not significantly with different reference tissues/thresholds.
Collapse
Affiliation(s)
- Kathy Han
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| | - Tina Shek
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Douglass Vines
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Brandon Driscoll
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony Fyles
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Harald Keller
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Melania Pintilie
- Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Jason Xie
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ivan Yeung
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Quantitative Imaging for Personalized Cancer Medicine, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Milosevic
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Puri T, Greenhalgh TA, Wilson JM, Franklin J, Wang LM, Strauss V, Cunningham C, Partridge M, Maughan T. [ 18F]Fluoromisonidazole PET in rectal cancer. EJNMMI Res 2017; 7:78. [PMID: 28933018 PMCID: PMC5607050 DOI: 10.1186/s13550-017-0324-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND There is an increasing interest in developing predictive biomarkers of tissue hypoxia using functional imaging for personalised radiotherapy in patients with rectal cancer that are considered for neoadjuvant chemoradiotherapy (CRT). The study explores [18F]fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) scans for predicting clinical response in rectal cancer patients receiving neoadjuvant CRT. METHODS Patients with biopsy-proven rectal adenocarcinoma were imaged at 0-45 min, 2 and 4 h, at baseline and after 8-10 fractions of CRT (week 2). The first 6 patients did not receive an enema (the non-enema group) and the last 4 patients received an enema before PET-CT scan (the enema group). [18F]FMISO production failed on 2 occasions. Static PET images at 4 h were analysed using tumour-to-muscle (T:M) SUVmax and tumour-to-blood (T:B) SUVmax. The 0-45 min dynamic PET scans were analysed using Casciari model to report hypoxia and perfusion. Akaike information criteria (AIC) were used to compare data fittings for different pharmacokinetic models. Pathological tumour regression grade was scored using American Joint Committee on Cancer (AJCC) 7.0. Shapiro-Wilk test was used to evaluate the normality of the data. RESULTS Five out of eleven (5/11) patients were classed as good responders (AJCC 0/1 or good clinical response) and 6/11 as poor responders (AJCC 2/3 or poor clinical response). The median T:M SUVmax was 2.14 (IQR 0.58) at baseline and 1.30 (IQR 0.19) at week 2, and the corresponding median tumour hypoxia volume was 1.08 (IQR 1.31) cm3 and 0 (IQR 0.15) cm3, respectively. The median T:B SUVmax was 2.46 (IQR 1.50) at baseline and 1.61 (IQR 0.14) at week 2, and the corresponding median tumour hypoxia volume was 5.68 (IQR 5.86) cm3 and 0.76 (IQR 0.78) cm3, respectively. For 0-45 min tumour modelling, the median hypoxia was 0.92 (IQR 0.41) min-1 at baseline and 0.70 (IQR 0.10) min-1 at week 2. The median perfusion was 4.10 (IQR 1.71) ml g-1 min-1 at baseline and 2.48 (IQR 3.62) ml g-1 min-1 at week 2. In 9/11 patients with both PET scans, tumour perfusion decreased in non-responders and increased in responders except in one patient. None of the changes in other PET parameters showed any clear trend with clinical outcome. CONCLUSIONS This pilot study with small number of datasets revealed significant challenges in delivery and interpretation of [18F]FMISO PET scans of rectal cancer. There are two principal problems namely spill-in from non-tumour tracer activity from rectal and bladder contents. Emphasis should be made on reducing spill-in effects from the bladder to improve data quality. This preliminary study has shown fundamental difficulties in the interpretation of [18F]FMISO PET scans for rectal cancer, limiting its clinical applicability.
Collapse
Affiliation(s)
- Tanuj Puri
- CRUK/MRC Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Tessa A. Greenhalgh
- CRUK/MRC Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ UK
| | - James M. Wilson
- CRUK/MRC Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Jamie Franklin
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lia Mun Wang
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Present address: Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, Singapore
| | - Victoria Strauss
- Centre for Statistics in Medicine, Oxford Clinical Trial Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Chris Cunningham
- Department of Colorectal Surgery, Cancer Centre, Churchill Hospital, Oxford, University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mike Partridge
- CRUK/MRC Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Tim Maughan
- CRUK/MRC Oxford Institute of Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ UK
| |
Collapse
|
7
|
McGowan DR, Macpherson RE, Hackett SL, Liu D, Gleeson FV, McKenna WG, Higgins GS, Fenwick JD. 18 F-fluoromisonidazole uptake in advanced stage non-small cell lung cancer: A voxel-by-voxel PET kinetics study. Med Phys 2017; 44:4665-4676. [PMID: 28644546 PMCID: PMC5600259 DOI: 10.1002/mp.12416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The aim of this study was to determine the relative abilities of compartment models to describe time-courses of 18 F-fluoromisonidazole (FMISO) uptake in tumor voxels of patients with non-small cell lung cancer (NSCLC) imaged using dynamic positron emission tomography. Also to use fits of the best-performing model to investigate changes in fitted rate-constants with distance from the tumor edge. METHODS Reversible and irreversible two- and three-tissue compartment models were fitted to 24 662 individual voxel time activity curves (TACs) obtained from tumors in nine patients, each imaged twice. Descriptions of the TACs provided by the models were compared using the Akaike and Bayesian information criteria (AIC and BIC). Two different models (two- and three-tissue) were fitted to 30 measured voxel TACs to provide ground-truth TACs for a statistical simulation study. Appropriately scaled noise was added to each of the resulting ground-truth TACs, generating 1000 simulated noisy TACs for each ground-truth TAC. The simulation study was carried out to provide estimates of the accuracy and precision with which parameter values are determined, the estimates being obtained for both assumptions about the ground-truth kinetics. A BIC clustering technique was used to group the fitted rate-constants, taking into consideration the underlying uncertainties on the fitted rate-constants. Voxels were also categorized according to their distance from the tumor edge. RESULTS For uptake time-courses of individual voxels an irreversible two-tissue compartment model was found to be most precise. The simulation study indicated that this model had a one standard deviation precision of 39% for tumor fractional blood volumes and 37% for the FMISO binding rate-constant. Weighted means of fitted FMISO binding rate-constants of voxels in all tumors rose significantly with increasing distance from the tumor edge, whereas fitted fractional blood volumes fell significantly. When grouped using the BIC clustering, many centrally located voxels had high-fitted FMISO binding rate-constants and low rate-constants for tracer flow between the vasculature and tumor, both indicative of hypoxia. Nevertheless, many of these voxels had tumor-to-blood (TBR) values lower than the 1.4 level commonly expected for hypoxic tissues, possibly due to the low rate-constants for tracer flow between the vasculature and tumor cells in these voxels. CONCLUSIONS Time-courses of FMISO uptake in NSCLC tumor voxels are best analyzed using an irreversible two-tissue compartment model, fits of which provide more precise parameter values than those of a three-tissue model. Changes in fitted model parameter values indicate that levels of hypoxia rise with increasing distance from tumor edges. The average FMISO binding rate-constant is higher for voxels in tumor centers than in the next tumor layer out, but the average value of the more simplistic TBR metric is lower in tumor centers. For both metrics, higher values might be considered indicative of hypoxia, and the mismatch in this case is likely to be due to poor perfusion at the tumor center. Kinetics analysis of dynamic PET images may therefore provide more accurate measures of the hypoxic status of such regions than the simpler TBR metric, a hypothesis we are presently exploring in a study of tumor imaging versus histopathology.
Collapse
Affiliation(s)
- Daniel R. McGowan
- Cancer Research UK/MRC Oxford Institute for Radiation OncologyGray LaboratoriesDepartment of OncologyUniversity of OxfordOxfordUK
- Radiation Physics and ProtectionOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Ruth E. Macpherson
- Department of RadiologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Sara L. Hackett
- Cancer Research UK/MRC Oxford Institute for Radiation OncologyGray LaboratoriesDepartment of OncologyUniversity of OxfordOxfordUK
| | - Dan Liu
- Cancer Research UK/MRC Oxford Institute for Radiation OncologyGray LaboratoriesDepartment of OncologyUniversity of OxfordOxfordUK
| | - Fergus V. Gleeson
- Cancer Research UK/MRC Oxford Institute for Radiation OncologyGray LaboratoriesDepartment of OncologyUniversity of OxfordOxfordUK
- Department of RadiologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - W. Gillies McKenna
- Cancer Research UK/MRC Oxford Institute for Radiation OncologyGray LaboratoriesDepartment of OncologyUniversity of OxfordOxfordUK
- Department of OncologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Geoff S. Higgins
- Cancer Research UK/MRC Oxford Institute for Radiation OncologyGray LaboratoriesDepartment of OncologyUniversity of OxfordOxfordUK
- Department of OncologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - John D. Fenwick
- Cancer Research UK/MRC Oxford Institute for Radiation OncologyGray LaboratoriesDepartment of OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Panek R, Welsh L, Baker LCJ, Schmidt MA, Wong KH, Riddell AM, Koh DM, Dunlop A, Mcquaid D, d'Arcy JA, Bhide SA, Harrington KJ, Nutting CM, Hopkinson G, Richardson C, Box C, Eccles SA, Leach MO, Robinson SP, Newbold KL. Noninvasive Imaging of Cycling Hypoxia in Head and Neck Cancer Using Intrinsic Susceptibility MRI. Clin Cancer Res 2017; 23:4233-4241. [PMID: 28314789 PMCID: PMC5516915 DOI: 10.1158/1078-0432.ccr-16-1209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/19/2016] [Accepted: 03/03/2017] [Indexed: 01/13/2023]
Abstract
Purpose: To evaluate intrinsic susceptibility (IS) MRI for the identification of cycling hypoxia, and the assessment of its extent and spatial distribution, in head and neck squamous cell carcinoma (HNSCC) xenografts and patients.Experimental Design: Quantitation of the transverse relaxation rate, R2*, which is sensitive to paramagnetic deoxyhemoglobin, using serial IS-MRI acquisitions, was used to monitor temporal oscillations in levels of paramagnetic deoxyhemoglobin in human CALR xenografts and patients with HNSCC at 3T. Autocovariance and power spectrum analysis of variations in R2* was performed for each imaged voxel, to assess statistical significance and frequencies of cycling changes in tumor blood oxygenation. Pathologic correlates with tumor perfusion (Hoechst 33342), hypoxia (pimonidazole), and vascular density (CD31) were sought in the xenografts, and dynamic contrast-enhanced (DCE) MRI was used to assess patient tumor vascularization. The prevalence of fluctuations within patient tumors, DCE parameters, and treatment outcome were reported.Results: Spontaneous R2* fluctuations with a median periodicity of 15 minutes were detected in both xenografts and patient tumors. Spatially, these fluctuations were predominantly associated with regions of heterogeneous perfusion and hypoxia in the CALR xenografts. In patients, R2* fluctuations spatially correlated with regions of lymph nodes with low Ktrans values, typically in the vicinity of necrotic cores.Conclusions: IS-MRI can be used to monitor variations in levels of paramagnetic deoxyhemoglobin, associated with cycling hypoxia. The presence of such fluctuations may be linked with impaired tumor vasculature, the presence of which may impact treatment outcome. Clin Cancer Res; 23(15); 4233-41. ©2017 AACR.
Collapse
Affiliation(s)
- Rafal Panek
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Liam Welsh
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Lauren C J Baker
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
| | - Maria A Schmidt
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Kee H Wong
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Angela M Riddell
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Dow-Mu Koh
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Alex Dunlop
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Dualta Mcquaid
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - James A d'Arcy
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Shreerang A Bhide
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Kevin J Harrington
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | | | | | | | - Carol Box
- Institute of Cancer Research, London, United Kingdom
| | | | - Martin O Leach
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom.
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Simon P Robinson
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
| | - Kate L Newbold
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
9
|
Gonçalves MR, Johnson SP, Ramasawmy R, Lythgoe MF, Pedley RB, Walker-Samuel S. The effect of imatinib therapy on tumour cycling hypoxia, tissue oxygenation and vascular reactivity. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.11715.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Several biomedical imaging techniques have recently been developed to probe hypoxia in tumours, including oxygen-enhanced (OE) and blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI). These techniques have strong potential for measuring both chronic and transient (cycling) changes in hypoxia, and to assess response to vascular-targeting therapies in the clinic. Methods: In this study, we investigated the use of BOLD and OE-MRI to assess changes in cycling hypoxia, tissue oxygenation and vascular reactivity to hyperoxic gas challenges, in mouse models of colorectal therapy, following treatment with the PDGF-receptor inhibitor, imatinib mesylate (Glivec). Results: Whilst no changes were observed in imaging biomarkers of cycling hypoxia (from BOLD) or chronic hypoxia (from OE-MRI), the BOLD response to carbogen-breathing became significantly more positive in some tumour regions and more negative in other regions, thereby increasing overall heterogeneity. Conclusions: Imatinib did not affect the magnitude of cycling hypoxia or OE-MRI signal, but increased the heterogeneity of the spatial distribution of BOLD MRI changes in response to gas challenges.
Collapse
|
10
|
Shi K, Bayer C, Gaertner FC, Astner ST, Wilkens JJ, Nüsslin F, Vaupel P, Ziegler SI. Matching the reaction-diffusion simulation to dynamic [ 18F]FMISO PET measurements in tumors: extension to a flow-limited oxygen-dependent model. Physiol Meas 2017; 38:188-204. [PMID: 28055983 DOI: 10.1088/1361-6579/aa5071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Positron-emission tomography (PET) with hypoxia specific tracers provides a noninvasive method to assess the tumor oxygenation status. Reaction-diffusion models have advantages in revealing the quantitative relation between in vivo imaging and the tumor microenvironment. However, there is no quantitative comparison of the simulation results with the real PET measurements yet. The lack of experimental support hampers further applications of computational simulation models. This study aims to compare the simulation results with a preclinical [18F]FMISO PET study and to optimize the reaction-diffusion model accordingly. Nude mice with xenografted human squamous cell carcinomas (CAL33) were investigated with a 2 h dynamic [18F]FMISO PET followed by immunofluorescence staining using the hypoxia marker pimonidazole and the endothelium marker CD 31. A large data pool of tumor time-activity curves (TAC) was simulated for each mouse by feeding the arterial input function (AIF) extracted from experiments into the model with different configurations of the tumor microenvironment. A measured TAC was considered to match a simulated TAC when the difference metric was below a certain, noise-dependent threshold. As an extension to the well-established Kelly model, a flow-limited oxygen-dependent (FLOD) model was developed to improve the matching between measurements and simulations. The matching rate between the simulated TACs of the Kelly model and the mouse PET data ranged from 0 to 28.1% (on average 9.8%). By modifying the Kelly model to an FLOD model, the matching rate between the simulation and the PET measurements could be improved to 41.2-84.8% (on average 64.4%). Using a simulation data pool and a matching strategy, we were able to compare the simulated temporal course of dynamic PET with in vivo measurements. By modifying the Kelly model to a FLOD model, the computational simulation was able to approach the dynamic [18F]FMISO measurements in the investigated tumors.
Collapse
Affiliation(s)
- Kuangyu Shi
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Duan LS, Wang MJ, Sun F, Zhao ZJ, Xing M, Zang YF, Louis S, Cui SJ, Cui JL, Zhang H. Characterizing the Blood Oxygen Level-Dependent Fluctuations in Musculoskeletal Tumours Using Functional Magnetic Resonance Imaging. Sci Rep 2016; 6:36522. [PMID: 27845359 PMCID: PMC5109174 DOI: 10.1038/srep36522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 10/17/2016] [Indexed: 11/09/2022] Open
Abstract
This study characterized the blood oxygen level-dependent (BOLD) fluctuations in benign and malignant musculoskeletal tumours via power spectrum analyses in pre-established low-frequency bands. BOLD MRI and T1-weighted imaging (T1WI) were collected for 52 patients with musculoskeletal tumours. Three ROIs were drawn on the T1WI image in the tumours' central regions, peripheral regions and neighbouring tissue. The power spectrum of the BOLD within each ROI was calculated and divided into the following four frequency bands: 0.01-0.027 Hz, 0.027-0.073 Hz, 0.073-0.198 Hz, and 0.198-0.25 Hz. ANOVA was conducted for each frequency band with the following two factors: the location of the region of interest (LoR, three levels: tumour "centre", "peripheral" and "healthy tissue") and tumour characteristic (TC, two levels: "malignant" and "benign"). There was a significant main effect of LoR in the frequencies of 0.073-0.198 Hz and 0.198-0.25 Hz. These data were further processed with post-hoc pair-wise comparisons. BOLD fluctuations at 0.073-0.198 Hz were stronger in the peripheral than central regions of the malignant tumours; however, no such difference was observed for the benign tumours. Our findings provide evidence that the BOLD signal fluctuates with spatial heterogeneity in malignant musculoskeletal tumours at the frequency band of 0.073-0.198 Hz.
Collapse
Affiliation(s)
- Li-Sha Duan
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.,Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei 050051, China
| | - Meng-Jun Wang
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.,Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei 050051, China
| | - Feng Sun
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.,Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei 050051, China
| | - Zhen-Jiang Zhao
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.,Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei 050051, China
| | - Mei Xing
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.,Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei 050051, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang 310015, China
| | - Steven Louis
- Physics Department, Oakland University, 190 Science and Engineering Building, 2200 N. Squirrel Road, Rochester, Michigan 48309-4401, USA
| | - Sheng-Jie Cui
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, Michigan 48201, USA
| | - Jian-Ling Cui
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.,Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei 050051, China
| | - Han Zhang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang 310015, China.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Stokes AM, Hart CP, Quarles CC. Hypoxia Imaging With PET Correlates With Antitumor Activity of the Hypoxia-Activated Prodrug Evofosfamide (TH-302) in Rodent Glioma Models. Tomography 2016; 2:229-237. [PMID: 27752544 PMCID: PMC5065246 DOI: 10.18383/j.tom.2016.00259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High-grade gliomas are often characterized by hypoxia, which is associated with both poor long-term prognosis and therapy resistance. The adverse role hypoxia plays in treatment resistance and disease progression has led to the development of hypoxia imaging methods and hypoxia-targeted treatments. Here, we determined the tumor hypoxia and vascular perfusion characteristics of 2 rat orthotopic glioma models using 18-fluoromisonidozole positron emission tomography. In addition, we determined tumor response to the hypoxia-activated prodrug evofosfamide (TH-302) in these rat glioma models. C6 tumors exhibited more hypoxia and were less perfused than 9L tumors. On the basis of these differences in their tumor hypoxic burden, treatment with evofosfamide resulted in 4- and 2-fold decreases in tumor growth rates of C6 and 9L tumors, respectively. This work shows that imaging methods sensitive to tumor hypoxia and perfusion are able to predict response to hypoxia-targeted agents. This has implications for improved patient selection, particularly in clinical trials, for treatment with hypoxia-activated cytotoxic prodrugs, such as evofosfamide.
Collapse
Affiliation(s)
- Ashley M. Stokes
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
- Department of Imaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Charles P. Hart
- Threshold Pharmaceuticals Inc., South San Francisco, California
| | - C. Chad Quarles
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
- Department of Imaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| |
Collapse
|
13
|
Gago-Arias A, Aguiar P, Espinoza I, Sánchez-Nieto B, Pardo-Montero J. Modelling radiation-induced cell death and tumour re-oxygenation: local versus global and instant versus delayed cell death. Phys Med Biol 2016; 61:1204-16. [DOI: 10.1088/0031-9155/61/3/1204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Chirla R, Marcu LG. PET-based quantification of statistical properties of hypoxic tumor subvolumes in head and neck cancer. Phys Med 2016; 32:23-35. [DOI: 10.1016/j.ejmp.2015.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/29/2015] [Accepted: 12/13/2015] [Indexed: 11/30/2022] Open
|
15
|
Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, Domarkas J, Lord S, Baldry C, Gilbert FJ. Imaging tumour hypoxia with positron emission tomography. Br J Cancer 2015; 112:238-50. [PMID: 25514380 PMCID: PMC4453462 DOI: 10.1038/bjc.2014.610] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/30/2014] [Accepted: 11/10/2014] [Indexed: 01/02/2023] Open
Abstract
Hypoxia, a hallmark of most solid tumours, is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. Given its prominent role in oncology, accurate detection of hypoxia is important, as it impacts on prognosis and could influence treatment planning. A variety of approaches have been explored over the years for detecting and monitoring changes in hypoxia in tumours, including biological markers and noninvasive imaging techniques. Positron emission tomography (PET) is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. This review provides an overview of imaging hypoxia with PET, with an emphasis on the advantages and limitations of the currently available hypoxia radiotracers.
Collapse
Affiliation(s)
- I N Fleming
- Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, Foresterhill, Aberdeen AB25 2ZD, UK
| | - R Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218-Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - P J Blower
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London SE1 7EH, UK
| | - C West
- Manchester Academic Health Science Centre, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - K J Williams
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, University Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
- EPSRC and CRUK Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK
| | - A L Harris
- Molecular Oncology Laboratories, University Department of Medical Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - J Domarkas
- Centre for Cardiovascular and Metabolic Research, Respiratory Medicine, Hull-York Medical School, University of Hull, Hull HU16 5JQ, UK
| | - S Lord
- Molecular Oncology Laboratories, University Department of Medical Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - C Baldry
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London SE1 7EH, UK
| | - F J Gilbert
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218-Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- EPSRC and CRUK Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK
| |
Collapse
|
16
|
Hypoxia in head and neck cancer in theory and practice: a PET-based imaging approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:624642. [PMID: 25214887 PMCID: PMC4158154 DOI: 10.1155/2014/624642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/06/2014] [Indexed: 11/24/2022]
Abstract
Hypoxia plays an important role in tumour recurrence among head and neck cancer patients. The identification and quantification of hypoxic regions are therefore an essential aspect of disease management. Several predictive assays for tumour oxygenation status have been developed in the past with varying degrees of success. To date, functional imaging techniques employing positron emission tomography (PET) have been shown to be an important tool for both pretreatment assessment and tumour response evaluation during therapy. Hypoxia-specific PET markers have been implemented in several clinics to quantify hypoxic tumour subvolumes for dose painting and personalized treatment planning and delivery. Several new radiotracers are under investigation. PET-derived functional parameters and tracer pharmacokinetics serve as valuable input data for computational models aiming at simulating or interpreting PET acquired data, for the purposes of input into treatment planning or radio/chemotherapy response prediction programs. The present paper aims to cover the current status of hypoxia imaging in head and neck cancer together with the justification for the need and the role of computer models based on PET parameters in understanding patient-specific tumour behaviour.
Collapse
|
17
|
Bell C, Rose S, Puttick S, Pagnozzi A, Poole CM, Gal Y, Thomas P, Fay M, Jeffree RL, Dowson N. Dual acquisition of (18)F-FMISO and (18)F-FDOPA. Phys Med Biol 2014; 59:3925-49. [PMID: 24958083 DOI: 10.1088/0031-9155/59/14/3925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metabolic imaging using positron emission tomography (PET) has found increasing clinical use for the management of infiltrating tumours such as glioma. However, the heterogeneous biological nature of tumours and intrinsic treatment resistance in some regions means that knowledge of multiple biological factors is needed for effective treatment planning. For example, the use of (18)F-FDOPA to identify infiltrative tumour and (18)F-FMISO for localizing hypoxic regions. Performing multiple PET acquisitions is impractical in many clinical settings, but previous studies suggest multiplexed PET imaging could be viable. The fidelity of the two signals is affected by the injection interval, scan timing and injected dose. The contribution of this work is to propose a framework to explicitly trade-off signal fidelity with logistical constraints when designing the imaging protocol. The particular case of estimating (18)F-FMISO from a single frame prior to injection of (18)F-FDOPA is considered. Theoretical experiments using simulations for typical biological scenarios in humans demonstrate that results comparable to a pair of single-tracer acquisitions can be obtained provided protocol timings are carefully selected. These results were validated using a pre-clinical data set that was synthetically multiplexed. The results indicate that the dual acquisition of (18)F-FMISO and (18)F-FDOPA could be feasible in the clinical setting. The proposed framework could also be used to design protocols for other tracers.
Collapse
Affiliation(s)
- Christopher Bell
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston QLD 4029, Australia. School of Medicine, The University of Queensland, St Lucia, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bittner MI, Grosu AL. Hypoxia in Head and Neck Tumors: Characteristics and Development during Therapy. Front Oncol 2013; 3:223. [PMID: 24010122 PMCID: PMC3755323 DOI: 10.3389/fonc.2013.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/13/2013] [Indexed: 11/23/2022] Open
Abstract
Cancers of the head and neck are a malignancy causing a considerable health burden. In head and neck cancer patients, tumor hypoxia has been shown to be an important predictor of response to therapy and outcome. Several imaging modalities can be used to determine the amount and localization of tumor hypoxia. Especially PET has been used in a number of studies analyzing this phenomenon. However, only few studies have reported the characteristics and development during (chemoradio-) therapy. Yet, the characterization of tumor hypoxia in the course of treatment is of great clinical importance. Successful delineation of hypoxic subvolumes could make an inclusion into radiation treatment planning feasible, where dose painting is hypothesized to improve the tumor control probability. So far, hypoxic subvolumes have been shown to undergo changes during therapy; in most cases, a reduction in tumor hypoxia can be seen, but there are also differing observations. In addition, the hypoxic subvolumes have mostly been described as geographically rather stable. However, studies specifically addressing these issues are needed to provide more data regarding these initial findings and the hypotheses connected with them.
Collapse
|
19
|
Smith TAD, Zanda M, Fleming IN. Hypoxia stimulates 18F-fluorodeoxyglucose uptake in breast cancer cells via hypoxia inducible factor-1 and AMP-activated protein kinase. Nucl Med Biol 2013; 40:858-64. [PMID: 23786679 DOI: 10.1016/j.nucmedbio.2013.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Hypoxia can stimulate (18)F-fluorodeoxyglucose (FDG) uptake in cultured cells. A better understanding of the underlying molecular mechanism is required to determine the value of FDG for studying tumour hypoxia. METHODS The effect of hypoxia on FDG uptake, and key proteins involved in glucose transport and glycolysis, was studied in MCF7 and MDA231 breast cancer cell lines. RESULTS Hypoxia induced a dose- and time-dependent increase in FDG uptake. The FDG increase was transient, suggesting that FDG uptake is only likely to be increased by acute hypoxia (<24 h). Molecular analysis indicated that hypoxia upregulated glut1 and 6-phosphofructo-2-kinase, key proteins involved in regulating glucose transport and glycolysis, and that these changes were induced by Hypoxia-Inducible factor 1 (HIF1) upregulation and/or AMP-activated protein kinase activation. CONCLUSIONS FDG may provide useful information about the oxygenation status of cells in hypoxic regions where HIF1 upregulation is hypoxia-driven.
Collapse
Affiliation(s)
- Tim A D Smith
- Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD
| | | | | |
Collapse
|
20
|
Redler G, Epel B, Halpern HJ. Principal component analysis enhances SNR for dynamic electron paramagnetic resonance oxygen imaging of cycling hypoxia in vivo. Magn Reson Med 2013; 71:440-50. [PMID: 23401214 DOI: 10.1002/mrm.24631] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/03/2012] [Accepted: 12/17/2012] [Indexed: 11/10/2022]
Abstract
PURPOSE Low oxygen concentration (hypoxia) in tumors strongly affects their malignant state and resistance to therapy. These effects may be more deleterious in regions undergoing cycling hypoxia. Electron paramagnetic resonance imaging (EPRI) has provided a noninvasive, quantitative imaging modality to investigate static pO2 in vivo. However, to image changing hypoxia, EPRI images with better temporal resolution may be required. The tradeoff between temporal resolution and signal-to-noise ratio (SNR) results in lower SNR for EPRI images with imaging time short enough to resolve cycling hypoxia. METHODS Principal component analysis allows for accelerated image acquisition with acceptable SNR by filtering noise in projection data, from which pO2 images are reconstructed. Principal component analysis is used as a denoising technique by including only low-order components to approximate the EPRI projection data. RESULTS Simulated and experimental studies show that principal component analysis filtering increases SNR, particularly for small numbers of sub-volumes with changing pO2 , enabling an order of magnitude increase in temporal resolution with minimal deterioration in spatial resolution or image quality. CONCLUSION The SNR necessary for dynamic EPRI studies with temporal resolution required to investigate cycling hypoxia and its physiological implications is enabled by principal component analysis filtering.
Collapse
Affiliation(s)
- Gage Redler
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
21
|
Busk M, Mortensen LS, Nordsmark M, Overgaard J, Jakobsen S, Hansen KV, Theil J, Kallehauge JF, D'Andrea FP, Steiniche T, Horsman MR. PET hypoxia imaging with FAZA: reproducibility at baseline and during fractionated radiotherapy in tumour-bearing mice. Eur J Nucl Med Mol Imaging 2012; 40:186-97. [PMID: 23076620 DOI: 10.1007/s00259-012-2258-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/18/2012] [Indexed: 12/12/2022]
Abstract
PURPOSE Tumour hypoxia is linked to treatment resistance. Positron emission tomography (PET) using hypoxia tracers such as fluoroazomycin arabinoside (FAZA) may allow identification of patients with hypoxic tumours and the monitoring of the efficacy of hypoxia-targeting treatment. Since hypoxia PET is characterized by poor image contrast, and tumour hypoxia undergoes spontaneous changes and is affected by therapy, it remains unclear to what extent PET scans are reproducible. Tumour-bearing mice are valuable in the validation of hypoxia PET, but identification of a reliable reference tissue value (blood sample or image-derived muscle value) for repeated scans may be difficult due to the small size of the animal or absence of anatomical information (pure PET). Here tumour hypoxia was monitored over time using repeated PET scans in individual tumour-bearing mice before and during fractionated radiotherapy. METHODS Mice bearing human SiHa cervix tumour xenografts underwent a PET scan 3 h following injection of FAZA on two consecutive days before initiation of treatment (baseline) and again following irradiation with four and ten fractions of 2.5 Gy. On the last scan day, mice were given an intraperitoneal injection of pimonidazole (hypoxia marker), tumours were collected and the intratumoral distribution of FAZA (autoradiography) and hypoxia (pimonidazole immunohistology) were determined in cryosections. RESULTS Tissue section analysis revealed that the intratumoral distribution of FAZA was strongly correlated with the regional density of hypoxic (pimonidazole-positive) cells, even when necrosis was present, suggesting that FAZA PET provides a reliable measure of tumour hypoxia at the time of the scan. PET-based quantification of tumour tracer uptake relative to injected dose showed excellent reproducibility at baseline, whereas normalization using an image-derived nonhypoxic reference tissue (muscle) proved highly unreliable since a valid and reliable reference value could not be determined. The intratumoral distribution of tracer was stable at baseline as shown by a voxel-by-voxel comparison of the two scans (R = 0.82, range 0.72-0.90). During treatment, overall tracer retention changed in individual mice, but there was no evidence of general reoxygenation. CONCLUSION Hypoxia PET scans are quantitatively correct and highly reproducible in tumour-bearing mice. Preclinical hypoxia PET is therefore a valuable and reliable tool for the development of strategies that target or modify hypoxia.
Collapse
Affiliation(s)
- M Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Noerrebrogade 44, Building 5.2, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Maftei CA, Bayer C, Shi K, Vaupel P. Intra- and intertumor heterogeneities in total, chronic, and acute hypoxia in xenografted squamous cell carcinomas. Detection and quantification using (immuno-)fluorescence techniques. Strahlenther Onkol 2012; 188:606-15. [PMID: 22695745 DOI: 10.1007/s00066-012-0105-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/08/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND Heterogeneously distributed hypoxia is a major characteristic of solid tumors. (Immuno-)fluorescence detection of hypoxia in experimental tumors is frequently assessed in a single central section; however, this may not necessarily be representative of the whole tumor. In order to determine whether analysis of one central section is exemplary of the whole tumor and whether different volumes have an impact on tumor oxygenation, we assessed the fractions of total (TH), chronic (CH), and acute hypoxia (AH) throughout different layers of tumors of varying volumes. MATERIALS AND METHODS Xenografted FaDu human squamous cell carcinomas of different volumes were investigated for intra- and intertumor heterogeneities. Tissue blocks located at the apical, central, and basal layer were sliced from individual tumors. Four serial cryosections were analyzed from each tissue block. Vital tumor tissue was explored for the distribution of Hoechst 33342 (perfusion), pimonidazole (hypoxia), and CD31 (endothelium) to assess TH, CH, and AH. RESULTS Fractions of TH, CH, and AH were consistently similar in the serial sections of individual tissue blocks. However, significant differences were found between the apical, central, and basal blocks that were even opposite depending on the tumor volume. Pooled data from all three tissue blocks revealed significantly higher fractions of hypoxia in the large tumors than in the small tumors. CONCLUSION FaDu tumors exhibit a heterogeneous and volume-dependent oxygenation status. Assessing the average fractions of TH, CH, and AH from central blocks corresponds best to the average of the entire tumor. However, information on intratumor heterogeneities is lost, especially when considering tumors of substantially different volumes.
Collapse
Affiliation(s)
- C-A Maftei
- Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | | | | | | |
Collapse
|
23
|
Tran LBA, Bol A, Labar D, Jordan B, Magat J, Mignion L, Grégoire V, Gallez B. Hypoxia imaging with the nitroimidazole 18F-FAZA PET tracer: a comparison with OxyLite, EPR oximetry and 19F-MRI relaxometry. Radiother Oncol 2012; 105:29-35. [PMID: 22677038 DOI: 10.1016/j.radonc.2012.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/02/2012] [Accepted: 04/16/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE (18)F-FAZA is a nitroimidazole PET tracer that can provide images of tumor hypoxia. However, it cannot provide absolute pO(2) values. To qualify (18)F-FAZA PET, we compared PET images to pO(2) measured by OxyLite, EPR oximetry and (19)F-MRI. MATERIALS AND METHODS Male WAG/Rij rats grafted with rhabdomyosarcoma were used. Tumor oxygenation was modified by gas breathing (air or carbogen). The same day of PET acquisition, the pO(2) was measured in the same tumor either by OxyLite probes (measurement at 10 different sites), EPR oximetry using low frequency EPR or (19)F-relaxometry using 15C5 on an 11.7T MR system. RESULTS There was a good correlation between the results obtained by PET and EPR (R = 0.93). In the case of OxyLite, although a weaker correlation was observed (R = 0.55), the trend for two values to agree was still related to the inverse function theoretically predicted. For the comparison of (18)F-FAZA PET and (19)F-MRI, no change in T(1) was observed. CONCLUSIONS A clear correlation between (18)F-FAZA PET image intensities and tumor oxygenation was demonstrated, suggesting that (18)F-FAZA PET is a promising imaging technique to guide cancer therapy.
Collapse
Affiliation(s)
- Ly-Binh-An Tran
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bayer C, Vaupel P. Acute versus chronic hypoxia in tumors: Controversial data concerning time frames and biological consequences. Strahlenther Onkol 2012; 188:616-27. [PMID: 22454045 DOI: 10.1007/s00066-012-0085-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/20/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Many tumors contain hypoxic regions. Hypoxia, in turn, is known to increase aggressiveness and to be associated with treatment resistance. The two most frequently described and investigated subtypes of tumor hypoxia are acute and chronic. These two subtypes can lead to completely different hypoxia-related responses within the tumor, which could have a direct effect on tumor development and response to treatment. In order to accurately assess the specific biological consequences, it is important to understand which time frames best define acute and chronic hypoxia. MATERIALS AND METHODS This article provides an overview of the kinetics of in vitro and in vivo acute and chronic tumor hypoxia. Special attention was paid to differentiate between methods to detect spontaneous in vivo hypoxia and to describe the biological effects of experimental in vitro and in vivo acute and chronic tumor hypoxia. RESULTS AND CONCLUSIONS There are large variations in reported spontaneous fluctuations in acute hypoxia that are dependent on the cell lines investigated and the detection method used. In addition to differing hypoxia levels, exposure times used to induce in vitro and in vivo experimental acute and chronic hypoxia range from 30 min to several weeks with no clear boundaries separating the two. Evaluation of the biological consequences of each hypoxia subtype revealed a general trend that acute hypoxia leads to a more aggressive phenotype. Importantly, more information on the occurrence of acute and chronic hypoxia in human tumors is needed to help our understanding of the clinical consequences.
Collapse
Affiliation(s)
- C Bayer
- Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | | |
Collapse
|
25
|
Mönnich D, Troost EGC, Kaanders JHAM, Oyen WJG, Alber M, Thorwarth D. Modelling and simulation of the influence of acute and chronic hypoxia on [18F]fluoromisonidazole PET imaging. Phys Med Biol 2012; 57:1675-84. [PMID: 22398239 DOI: 10.1088/0031-9155/57/6/1675] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tumour hypoxia can be assessed by positron emission tomography (PET) using radiotracers like [(18)F]fluoromisonidazole (Fmiso). The purpose of this work was to independently investigate the influence of chronic and acute hypoxia on the retention of Fmiso on the microscale. This was approached by modelling and simulating tissue oxygenation and Fmiso dynamics on the microscale based on tumour histology. Diffusion of oxygen and Fmiso molecules in tissue- and oxygen-dependent Fmiso binding were included in the model. Moreover, a model of fluctuating vascular oxygen tension was incorporated to theoretically predict the effects of acute hypoxia. Simulated tissue oxygen tensions (PO(2)) are strongly influenced by the modelled periodical fluctuations (period 40 min, total amplitude 10 mmHg and mean 35 mmHg). Fluctuations led to variations in mean PO(2) of up to 41% and in the hypoxic fraction (PO(2) < 5 mmHg) from 56% up to 65%. Significant Fmiso retention is caused by chronic (87%) as well as acute hypoxia (13%). By simulating Fmiso injection during different phases of the vascular PO(2) fluctuation cycle, it was found that acute hypoxia of an empirically valid magnitude does not influence the reproducibility of PET imaging. Thus, it may be impossible to separate acute and chronic hypoxia from serial PET images.
Collapse
Affiliation(s)
- David Mönnich
- Section for Biomedical Physics, University Hospital for Radiation Oncology, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Han MW, Lee HJ, Cho KJ, Kim JS, Roh JL, Choi SH, Nam SY, Kim SY. Role of FDG-PET as a biological marker for predicting the hypoxic status of tongue cancer. Head Neck 2011; 34:1395-402. [PMID: 22052623 DOI: 10.1002/hed.21945] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND To determine whether 2-[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) could serve as a useful technique predicting tumor hypoxia and prognosis in tongue cancer, we assessed the relationship between FDG uptake and the levels of hypoxia-related markers. METHODS Tumor uptake of FDG in 33 patients with T2 tongue cancer was assessed by measuring maximum standardized uptake values (SUVmax). Expression of hypoxia-inducible factor (HIF)-1α, carbonic anhydrase (CA)-9, glucose transporter (GLUT)-1, and erythropoietin receptor (EPOR), was determined by immunohistochemical staining. Correlation between SUVmax and the expression of hypoxia-related markers was assessed and multivariate analysis was performed to determine what parameters affected clinical outcomes. RESULTS We observed strong correlations between SUVmax and expression of HIF-1α (p < .05), CA-9 (p < .01), and GLUT-1 (p < .01). SUVmax, HIF-1α expression, and tumor grade were significant independent predictors of disease-free survival (DFS). CONCLUSION SUVmax may be a good noninvasive biomarker for prediction of hypoxic status and prognosis of patients with T2 tongue cancer.
Collapse
Affiliation(s)
- Myung Woul Han
- Department of Otolaryngology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Maftei CA, Shi K, Bayer C, Astner ST, Vaupel P. Comparison of (immuno-)fluorescence data with serial [18F]Fmiso PET/CT imaging for assessment of chronic and acute hypoxia in head and neck cancers. Radiother Oncol 2011; 99:412-7. [DOI: 10.1016/j.radonc.2011.05.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/24/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
|
28
|
Harada H. How can we overcome tumor hypoxia in radiation therapy? JOURNAL OF RADIATION RESEARCH 2011; 52:545-56. [PMID: 21952313 DOI: 10.1269/jrr.11056] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Local recurrence and distant metastasis frequently occur after radiation therapy for cancer and can be fatal. Evidence obtained from radiochemical and radiobiological studies has revealed these problems to be caused, at least in part, by a tumor-specific microenvironment, hypoxia. Moreover, a transcription factor, hypoxia-inducible factor 1 (HIF-1), was identified as pivotal to hypoxia-mediated radioresistance. To overcome the problems, radiation oncologists have recently obtained powerful tools, such as "simultaneous integrated boost intensity-modulated radiation therapy (SIB-IMRT), which enables a booster dose of radiation to be delivered to small target fractions in a malignant tumor", "hypoxia-selective cytotoxins/drugs", and "HIF-1 inhibitors" etc. In order to fully exploit these innovative and interdisciplinary strategies in cancer therapy, it is critical to unveil the characteristics, intratumoral localization, and dynamics of hypoxia/HIF-1-active tumor cells during tumor growth and after radiation therapy. We have performed optical imaging experiments using tumor-bearing mice and revealed that the locations of HIF-1-active tumor cells changes dramatically as tumors grow. Moreover, HIF-1 activity changes markedly after radiation therapy. This review overviews 1) fundamental problems surrounding tumor hypoxia in current radiation therapy, 2) the function of HIF-1 in tumor radioresistance, 3) the dynamics of hypoxic tumor cells during tumor growth and after radiation therapy, and 4) how we should overcome the difficulties with radiation therapy using innovative interdisciplinary technologies.
Collapse
Affiliation(s)
- Hiroshi Harada
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Japan.
| |
Collapse
|
29
|
Magat J, Jordan BF, Cron GO, Gallez B. Noninvasive mapping of spontaneous fluctuations in tumor oxygenation using F19 MRI. Med Phys 2010; 37:5434-41. [DOI: 10.1118/1.3484056] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
Shi K, Souvatzoglou M, Astner ST, Vaupel P, Nüsslin F, Wilkens JJ, Ziegler SI. Quantitative assessment of hypoxia kinetic models by a cross-study of dynamic 18F-FAZA and 15O-H2O in patients with head and neck tumors. J Nucl Med 2010; 51:1386-94. [PMID: 20720045 DOI: 10.2967/jnumed.109.074336] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Several kinetic models have been proposed to assess the underlying oxygenation status behind hypoxia tracer uptake and have shown advantages, compared with static analysis, in discriminating hypoxic regions. However, the quantitative assessment of mathematic models that take into consideration clinical applications and their biologic nature is still challenging. We performed a feasibility study to assess hypoxia kinetic models using voxelwise cross-analysis between the uptake of the perfusion tracer (15)O-H(2)O and the hypoxia tracer (18)F-fluoroazomycin arabinoside ((18)F-FAZA). METHODS Five patients with advanced head and neck cancer were included. For each patient, dynamic sequences of (15)O-H(2)O for 5 min and (18)F-FAZA for 60 min were acquired consecutively after injections of approximately 1 GBq and 300 MBq of each tracer, respectively. The compartment model, Thorwarth model, Patlak plot, Logan plot, and Cho model were applied to model the process of tracer transport and accumulation under hypoxic conditions. The standard 1-tissue-compartment model was used to compute a perfusion map for each patient. The hypoxia kinetic models were based on the assumption of a positive correlation between tracer delivery and perfusion and a negative (inverse) correlation between tracer accumulation (hypoxia) and perfusion. RESULTS Positive correlations between tracer delivery and perfusion were observed for the Thorwarth and Cho models in all patients and for the reversible and irreversible 2-compartment models in 4 patients. Negative correlations between tracer accumulation and perfusion were observed for the reversible 2-compartment model in all patients and for the irreversible 2-compartment model and Cho model in 4 patients. When applied to normal skeletal muscle, the smallest correlation variance over all 5 patients was observed for the reversible 2-compartment model. CONCLUSION Hypoxia kinetic modeling delivers different information from static measurements. Different models generate different results for the same patient, and they even can lead to opposite physiologic interpretations. On the basis of our assessment of physiologic precision and robustness, the reversible 2-compartment model corresponds better to the expectations of our assumptions than the other investigated models.
Collapse
Affiliation(s)
- Kuangyu Shi
- Department of Radiotherapy and Radiooncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Yasui H, Matsumoto S, Devasahayam N, Munasinghe JP, Choudhuri R, Saito K, Subramanian S, Mitchell JB, Krishna MC. Low-field magnetic resonance imaging to visualize chronic and cycling hypoxia in tumor-bearing mice. Cancer Res 2010; 70:6427-36. [PMID: 20647318 DOI: 10.1158/0008-5472.can-10-1350] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumors exhibit fluctuations in blood flow that influence oxygen concentrations and therapeutic resistance. To assist therapeutic planning and improve prognosis, noninvasive dynamic imaging of spatial and temporal variations in oxygen partial pressure (pO(2)) would be useful. Here, we illustrate the use of pulsed electron paramagnetic resonance imaging (EPRI) as a novel imaging method to directly monitor fluctuations in oxygen concentrations in mouse models. A common resonator platform for both EPRI and magnetic resonance imaging (MRI) provided pO(2) maps with anatomic guidance and microvessel density. Oxygen images acquired every 3 minutes for a total of 30 minutes in two different tumor types revealed that fluctuation patterns in pO(2) are dependent on tumor size and tumor type. The magnitude of fluctuations in pO(2) in SCCVII tumors ranged between 2- to 18-fold, whereas the fluctuations in HT29 xenografts were of lower magnitude. Alternating breathing cycles with air or carbogen (95% O(2) plus 5% CO(2)) distinguished higher and lower sensitivity regions, which responded to carbogen, corresponding to cycling hypoxia and chronic hypoxia, respectively. Immunohistochemical analysis suggests that the fluctuation in pO(2) correlated with pericyte density rather than vascular density in the tumor. This EPRI technique, combined with MRI, may offer a powerful clinical tool to noninvasively detect variable oxygenation in tumors.
Collapse
Affiliation(s)
- Hironobu Yasui
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1002, USA
| | | | | | | | | | | | | | | | | |
Collapse
|