1
|
Mercado-Quintero AV, Torres-García E, Isaac-Olivé K, Torres-García R, Aranda-Lara L, Torres-Velázquez H. Novel photopeak-independent correction method for internal activity calculation of 99mTc: a simulation study. RADIATION PROTECTION DOSIMETRY 2025; 201:105-112. [PMID: 39656846 DOI: 10.1093/rpd/ncae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
This paper presents a new method for correcting the contribution of scattered radiation to the measurement of 99mTc internal activity in nuclear medicine patients using gamma cameras. So, this study aims to derive scattering correction factors by Monte Carlo simulation for anterior and posterior count rates (${I}_{\mathrm{A}}$ and ${I}_{\mathrm{P}}$) in the conjugate view method, enabling more precise estimation of activity A(t) compared to traditional trapezoidal and triangular approximations. The new approach eliminates the need to use photopeak for determining the fraction of scattered photons. Our results showed differences of <3% with respect to the real activity and 11% for the trapezoidal and triangular approaches.
Collapse
Affiliation(s)
- Alfredo V Mercado-Quintero
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n esquina Jesús Carranza, Col. Moderna de la Cruz, Toluca 50180, Estado de México, Mexico
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Eugenio Torres-García
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n esquina Jesús Carranza, Col. Moderna de la Cruz, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n esquina Jesús Carranza, Col. Moderna de la Cruz, Toluca 50180, Estado de México, Mexico
| | - Rocío Torres-García
- Quiropráctica, Universidad Estatal del Valle de Toluca, Pedregal de Guadalupe Hidalgo, Ocoyoacac 52756, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n esquina Jesús Carranza, Col. Moderna de la Cruz, Toluca 50180, Estado de México, Mexico
| | - Hansel Torres-Velázquez
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n esquina Jesús Carranza, Col. Moderna de la Cruz, Toluca 50180, Estado de México, Mexico
| |
Collapse
|
2
|
Wang J, Dai X, Qu B, Yan C, Kou Y, Liu X, Wang X, Cai B. Solution for the External Contour Changes in Cone Beam Computed Tomography-Guided On-demand Online Adaptive Radiotherapy for a Patient With Very Advanced Head and Neck Cancer: A Technical Case Report. Cureus 2024; 16:e67804. [PMID: 39328634 PMCID: PMC11424223 DOI: 10.7759/cureus.67804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
This article presents a case of a patient with advanced head and neck cancer, characterized by a large and protruding tumor. The patient was treated with an innovative on-demand online adaptive radiotherapy (ART) technology, guided by cone beam computed tomography (CBCT), on the Ethos adaptive radiotherapy platform (version 1.0, Varian Medical Systems, Palo Alto, CA). A solution was provided for this special case to address the issue where part of the target volume could not participate in the optimization due to exceeding the external contour boundary during online adaptive radiotherapy. The treatment outcome was satisfactory in terms of tumor regression, while only grade 1 radiodermatitis and grade 2 oral mucositis at the end of radiotherapy. This article discusses the clinical diagnosis, treatment process, and follow-up of this case, aiming to provide clinical references for a broader application of this technology.
Collapse
Affiliation(s)
- Jinyuan Wang
- Department of Radiotherapy, The First Medical Center of the Chinese PLA General Hospital, Beijing, CHN
| | - Xiangkun Dai
- Department of Radiotherapy, The First Medical Center of the Chinese PLA General Hospital, Beijing, CHN
| | - Baolin Qu
- Department of Radiotherapy, The First Medical Center of the Chinese PLA General Hospital, Beijing, CHN
| | - Changxin Yan
- Department of Radiotherapy, The First Medical Center of the Chinese PLA General Hospital, Beijing, CHN
| | - Yuhan Kou
- Department of Radiotherapy, The First Medical Center of the Chinese PLA General Hospital, Beijing, CHN
| | - Xiaoyu Liu
- Department of Radiotherapy, The First Medical Center of the Chinese PLA General Hospital, Beijing, CHN
| | - Xiaoshen Wang
- Clinical Application Training Department, Varian Medical System, Beijing, CHN
| | - Boning Cai
- Department of Radiotherapy, The First Medical Center of the Chinese PLA General Hospital, Beijing, CHN
| |
Collapse
|
3
|
Malhotra A, Carpentier EE, Duzenli C. Recommendations for using analytical anisotropic algorithm and AcurosXB for epidermal dose calculations in breast radiotherapy from an in vivo Gafchromic film study. J Appl Clin Med Phys 2024; 25:e14416. [PMID: 38812120 PMCID: PMC11302804 DOI: 10.1002/acm2.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND AND PURPOSE This study recommends clinical epidermal dose calculation methods based on in-vivo film measurements and registered skin dose distributions with the Eclipse (Varian Medical Systems) treatment planning system's Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) dose calculation algorithms. MATERIALS AND METHODS Eighteen AAA V13.6 breast plans were recalculated using AXB (dose to medium) V13.5 with the same beam parameters and monitor units as in the original plans. These are compared against in-vivo Gafchromic film measurements from the lateral and inferior breast regions. Three skin structures in the treatment planning system are evaluated: a surface layer of voxels of the body contour, a 0.2 cm internal skin rind, and a 0.5 cm internal skin rind. RESULTS Systematic shifts are demonstrated between the film measurements of skin dose and the Eclipse dose calculations. On average, the dose to the surface layer of pixels is underestimated by AAA by 8% and overestimated by AXB by 3%. A 5 mm skin rind extended into the body can increase epidermal dose calculations on average by 8% for AAA and 4% for AXB. CONCLUSION This is the first study to register in-vivo skin dose distributions in the breast to the treatment planning system for comparison. Based on the results from this study it is recommended that epidermal dose is calculated with a 0.5 cm skin rind for the AAA algorithm and with rind thickness up to 0.2 cm for the AXB algorithm.
Collapse
Affiliation(s)
- Aria Malhotra
- BC CancerVancouverBritish ColumbiaCanada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Emilie E. Carpentier
- BC CancerVancouverBritish ColumbiaCanada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Cheryl Duzenli
- BC CancerVancouverBritish ColumbiaCanada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of SurgeryDivision of Radiation Oncology and Experimental RadiotherapeuticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
4
|
Tarek I, Hafez A, Fathy MM, Fahmy HM, Abdelaziz DM. Efficacy of flattening filter-free beams with the acuros XB algorithm in thoracic spine stereotactic body radiation therapy. Med Dosim 2024; 49:232-238. [PMID: 38336567 DOI: 10.1016/j.meddos.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/12/2024]
Abstract
This study aimed to determine the dosimetric value of flattening filter-free (FFF) beams compared to flattening filter (FF) beams using different algorithms in the treatment planning of thoracic spine stereotactic body radiation therapy (SBRT). A total of 120 plans were created for 15 patients using the Anisotropic Analytical Algorithm (AAA) and the Acuros External Beam (AXB) algorithm with FF and FFF beams at 6 MV and 10 MV energies. Various dosimetric parameters were evaluated, including target coverage, dose spillage, and organs-at-risk sparing of the spinal cord and esophagus. Treatment delivery parameters, such as the monitor units (MUs), modulation factors (MFs), beam-on time (BOT), and dose calculation time (DCT), were also collected. Significant differences were observed in the dosimetric parameters when AXB was used for all energies (P < 0.05). 6 XFFF energy was the best option for target coverage, dose spillage, and organs-at-risk sparing. In contrast, dosimetric parameters had no significant difference when using the AAA. The AAA and AXB calculations showed that the 6 XFFF beam had the shortest DCT. The treatment delivery parameters indicated that 10 XFF beam required the fewest MUs and MFs. In addition, the 10 XFFF beam demonstrated the shortest BOT. For effective treatment of the thoracic spine using SBRT, it is recommended to use the 10 XFFF beam because of the short BOT. Moreover, the AXB algorithm should be used because of its accurate dose calculation in regions with tissue heterogeneity.
Collapse
Affiliation(s)
- Islam Tarek
- Department of Biophysics, Faculty of Science, Cairo University, Cairo, Egypt; Department of Radiotherapy, Baheya center for early detection and treatment of breast cancer, Giza, Egypt.
| | - Abdelrahman Hafez
- Department of Radiotherapy, Baheya center for early detection and treatment of breast cancer, Giza, Egypt
| | - Mohamed M Fathy
- Department of Biophysics, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Heba M Fahmy
- Department of Biophysics, Faculty of Science, Cairo University, Cairo, Egypt
| | - Dina M Abdelaziz
- Department of Radiotherapy, Baheya center for early detection and treatment of breast cancer, Giza, Egypt; Department of Radiotherapy, National cancer institute, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Naceur A, Bienvenue C, Romano P, Chilian C, Carrier JF. Extending deterministic transport capabilities for very-high and ultra-high energy electron beams. Sci Rep 2024; 14:2796. [PMID: 38307920 PMCID: PMC11226718 DOI: 10.1038/s41598-023-51143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024] Open
Abstract
Focused Very-High Energy Electron (VHEE, 50-300 MeV) and Ultra-High Energy Electron (UHEE, > 300 MeV) beams can accurately target both large and deeply seated human tumors with high sparing properties, while avoiding the spatial requirements and cost of proton and heavy ion facilities. Advanced testing phases are underway at the CLEAR facilities at CERN (Switzerland), NLCTA at Stanford (USA), and SPARC at INFN (Italy), aiming to accelerate the transition to clinical application. Currently, Monte Carlo (MC) transport is the sole paradigm supporting preclinical trials and imminent clinical deployment. In this paper, we propose an alternative: the first extension of the nuclear-reactor deterministic chain NJOY-DRAGON for VHEE and UHEE applications. We have extended the Boltzmann-Fokker-Planck (BFP) multigroup formalism and validated it using standard radio-oncology benchmarks, complex assemblies with a wide range of atomic numbers, and comprehensive irradiation of the entire periodic table. We report that [Formula: see text] of water voxels exhibit a BFP-MC deviation below [Formula: see text] for electron energies under [Formula: see text]. Additionally, we demonstrate that at least [Formula: see text] of voxels of bone, lung, adipose tissue, muscle, soft tissue, tumor, steel, and aluminum meet the same criterion between [Formula: see text] and [Formula: see text]. For water, the thorax, and the breast intra-operative benchmark, typical average BFP-MC deviations of [Formula: see text] and [Formula: see text] were observed at [Formula: see text] and [Formula: see text], respectively. By irradiating the entire periodic table, we observed similar performance between lithium ([Formula: see text]) and cerium ([Formula: see text]). Deficiencies observed between praseodymium ([Formula: see text]) and einsteinium ([Formula: see text]) have been reported, analyzed, and quantified, offering critical insights for the ongoing development of the Evaluated Nuclear Data File mode in NJOY.
Collapse
Affiliation(s)
- Ahmed Naceur
- École Polytechnique, SLOWPOKE Nuclear Reactor Laboratory, Nuclear Engineering Institute, Montréal, H3T1J4, Canada.
- CRCHUM, Centre hospitalier de l'Université de Montréal, Montréal, H2L4M1, Canada.
| | - Charles Bienvenue
- École Polytechnique, Engineering Physics Department, Biomedical Engineering Institute, Montréal, H3T1J4, Canada
| | - Paul Romano
- Computational Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Cornelia Chilian
- École Polytechnique, SLOWPOKE Nuclear Reactor Laboratory, Nuclear Engineering Institute, Montréal, H3T1J4, Canada
| | - Jean-François Carrier
- Department of Physics, Université de Montréal, Montréal, H3T1J4, Canada
- CRCHUM, Centre hospitalier de l'Université de Montréal, Montréal, H2L4M1, Canada
| |
Collapse
|
6
|
Bogowicz M, Lustermans D, Taasti VT, Hazelaar C, Verhaegen F, Fonseca GP, van Elmpt W. Evaluation of a cone-beam computed tomography system calibrated for accurate radiotherapy dose calculation. Phys Imaging Radiat Oncol 2024; 29:100566. [PMID: 38487622 PMCID: PMC10937948 DOI: 10.1016/j.phro.2024.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Background and purpose Dose calculation on cone-beam computed tomography (CBCT) images has been less accurate than on computed tomography (CT) images due to lower image quality and discrepancies in CT numbers for CBCT. As increasing interest arises in offline and online re-planning, dose calculation accuracy was evaluated for a novel CBCT imager integrated into a ring gantry treatment machine. Materials and methods The new CBCT system allowed fast image acquisition (5.9 s) by using new hardware, including a large-size flat panel detector, and incorporated image-processing algorithms with iterative reconstruction techniques, leading to accurate CT numbers allowing dose calculation. In this study, CBCT- and CT-based dose calculations were compared based on three anthropomorphic phantoms, after CBCT-to-mass-density calibration was performed. Six plans were created on the CT scans covering various target locations and complexities, followed by CBCT to CT registrations, copying of contours, and re-calculation of the plans on the CBCT scans. Dose-volume histogram metrics for target volumes and organs-at-risk (OARs) were evaluated, and global gamma analyses were performed. Results Target coverage differences were consistently below 1.2 %, demonstrating the agreement between CT and re-calculated CBCT dose distributions. Differences in Dmean for OARs were below 0.5 Gy for all plans, except for three OARs, which were below 0.8 Gy (<1.1 %). All plans had a 3 %/1mm gamma pass rate > 97 %. Conclusions This study demonstrated comparable results between dose calculations performed on CBCT and CT acquisitions. The new CBCT system with enhanced image quality and CT number accuracy opens possibilities for off-line and on-line re-planning.
Collapse
Affiliation(s)
| | - Didier Lustermans
- Corresponding author at: Postbox 3035, 6202 NA Maastricht, The Netherlands.
| | - Vicki Trier Taasti
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
7
|
Yanagi Y, Kubo K, Ito T, Nakamura K, Hirata M, Doi H, Monzen H. Comparing Dose Calculation Algorithms for Heterogeneous Media: Analytical Anisotropic Algorithm Versus Acuros XB (Dm/Dw) With Continuous CT Value Variation. Cureus 2023; 15:e46805. [PMID: 37954761 PMCID: PMC10635741 DOI: 10.7759/cureus.46805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND To compare the doses calculated by the analytical anisotropic algorithm (AAA) and two dose reporting modes of Acuros XB (AXB(Dm) and AXB(Dw)) with varied CT values on the Eclipse (Varian Medical Systems, Palo Alto, CA). MATERIALS AND METHODS Virtual phantoms with a central layer of heterogeneous material (thickness = 2 or 5 cm) were created with Eclipse. Using single or opposed fields, the field sizes were 5 x 5 cm2 or 10 x 10 cm2. The photon energies were 6 or 10 MV, and the source-to-target distance was 100 cm. The relative doses at the center of the heterogeneous material layer were evaluated with varied CT values, from -1000 to 3000 HU. Values were normalized with the dose at 0 HU (100%) for comparative analysis. RESULTS The results obtained from continuous data for a single field, 6 MV, 5 x 5 cm2, and the heterogeneous material 5 cm, where the differences between algorithms were most pronounced, were as follows. In the low-density region (-1000 HU and -800 HU), the dose differences for AXB with reference to AAA were, respectively, -54.5% and +4.6% (AXB(Dm)) and -47.0% and +3.5% (AXB(Dw)), and in the high-density regions (1000 HU and 3000 HU) were -5.7% and -8.8% (AXB(Dm)) and +7.4% and +3.5% (AXB(Dw)), respectively. Consequently, dose differences at arbitrary CT values could be obtained. CONCLUSION Dose differences between these algorithms were clarified for heterogeneous materials. The risk of dose reduction or escalation in clinical use was clearly visible between CT values from -1000 to 3000 HU.
Collapse
Affiliation(s)
- Yuya Yanagi
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, JPN
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, JPN
| | - Kazuki Kubo
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, JPN
| | - Takaaki Ito
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, JPN
| | - Kenji Nakamura
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, JPN
| | - Makoto Hirata
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, JPN
| | - Hiroshi Doi
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, JPN
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, JPN
| |
Collapse
|
8
|
Tsimpoukelli M, Patatoukas G, Chalkia M, Kollaros N, Kougioumtzopoulou A, Michaletou D, Kouloulias V, Platoni K. Dosimetric comparison and evaluation of two computational algorithms in VMAT treatment plans. J Appl Clin Med Phys 2023; 24:e14051. [PMID: 37344987 PMCID: PMC10476991 DOI: 10.1002/acm2.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
PURPOSE This study aimed to assess the accuracy and dosimetric impact of the Acuros XB (AXB) algorithm compared to the Anisotropic Analytical Algorithm (AAA) in two situations. First, simple phantom geometries were set and analyzed; moreover, volumetric modulated arc therapy (VMAT) clinical plans for Head & Neck and lung cases were calculated and compared. METHODS First, a phantom study was performed to compare the algorithms with radiochromic EBT3 film doses using one PMMA slab phantom and two others containing foam or air gap. Subsequently, a clinical study was conducted, including 20 Head & Neck and 15 lung cases irradiated with the VMAT technique. The treatment plans calculated by AXB and AAA were evaluated in terms of planning target volume (PTV) coverage (V95% ), dose received by relevant organs at risk (OARs), and the impact of using AXB with a grid size of 1 mm. Finally, patient-specific quality assurance (PSQA) was performed and compared for 17 treatment plans. RESULTS Phantom dose calculations showed a better agreement of AXB with the film measurements. In the clinical study, AXB plans exhibited lower Conformity Index and PTV V95% , higher maximum PTV dose, and lower mean and minimum PTV doses for all anatomical sites. The most notable differences were detected in regions of intense heterogeneity. AXB predicted lower doses for the OARs, while the calculation time with a grid size of 1 mm was remarkably higher. Regarding PSQA, although AAA was found to exhibit slightly higher gamma passing rates, the difference did not affect the AXB treatment plan quality. CONCLUSIONS AXB demonstrated higher accuracy than AAA in dose calculations of both phantom and clinical conditions, specifically in interface regions, making it suitable for sites with large heterogeneities. Hence, such dosimetric differences between the two algorithms should always be considered in clinical practice.
Collapse
Affiliation(s)
- Maria Tsimpoukelli
- 2nd Department of Radiology, Medical Physics Unit, School of Medicine, Attikon University HospitalNational and Kapodistrian University of AthensAthensGreece
| | - George Patatoukas
- 2nd Department of Radiology, Medical Physics Unit, School of Medicine, Attikon University HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Marina Chalkia
- 2nd Department of Radiology, Medical Physics Unit, School of Medicine, Attikon University HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Nikolaos Kollaros
- 2nd Department of Radiology, Medical Physics Unit, School of Medicine, Attikon University HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Andromachi Kougioumtzopoulou
- 2nd Department of Radiology, Radiation Oncology Unit, School of Medicine, Attikon University HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Dimitra Michaletou
- 2nd Department of Radiology, Radiation Oncology Unit, School of Medicine, Attikon University HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Vassilis Kouloulias
- 2nd Department of Radiology, Radiation Oncology Unit, School of Medicine, Attikon University HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Kalliopi Platoni
- 2nd Department of Radiology, Medical Physics Unit, School of Medicine, Attikon University HospitalNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
9
|
Ito T, Monzen H, Kubo K, Kosaka H, Yanagi Y, Sakai Y, Inada M, Doi H, Nishimura Y. Dose difference between anisotropic analytical algorithm (AAA) and Acuros XB (AXB) caused by target's air content for volumetric modulated arc therapy of head and neck cancer. Rep Pract Oncol Radiother 2023; 28:399-406. [PMID: 37795404 PMCID: PMC10547402 DOI: 10.5603/rpor.a2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 10/06/2023] Open
Abstract
Background We clarified the dose difference between the anisotropic analytical algorithm (AAA) and Acuros XB (AXB) with increasing target's air content using a virtual phantom and clinical cases. Materials and methods Whole neck volumetric modulated arc therapy (VMAT) plan was transferred into a virtual phantom with a cylindrical air structure at the center. The diameter of the air structure was changed from 0 to 6 cm, and the target's air content defined as the air/planning target volume (PTV) in percent (air/PTV) was varied. VMAT plans were recalculated by AAA and AXB with the same monitor unit (MU) and multi-leaf collimator (MLC) motions. The dose at each air/PTV (5%-30%) was compared between each algorithm with D98%, D95%, D50% and D2% for the PTV. In addition, MUs were also compared with the same MLC motions between the D95% prescription with AAA (AAA_D95%), AXB_D95%, and the prescription to 100% minus air/PTV (AXB_D100%-air/PTV) in clinical cases of head and neck (HNC). Results When air/PTV increased (5-30%), the dose differences between AAA and AXB for D98%, D95%, D50% and D2% were 3.08-15.72%, 2.35-13.92%, 0.63-4.59%, and 0.14-6.44%, respectively. At clinical cases with air/PTV of 5.61% and 28.19%, compared to AAA_D95%, the MUs differences were, respectively, 2.03% and 6.74% for AXB_D95% and 1.80% and 0.50% for AXB_D100%-air/PTV. Conclusion The dose difference between AAA and AXB increased as the target's air content increased, and AXB_D95% resulted in a dose escalation over AAA_D95% when the target's air content was ≥ 5%. The D100%-air/PTV of PTV using AXB was comparable to the D95% of PTV using AAA.
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
- Department of Radiological Technology, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo, Japan
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Kazuki Kubo
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Hiroyuki Kosaka
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Yuya Yanagi
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Yusuke Sakai
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Masahiro Inada
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Hiroshi Doi
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| |
Collapse
|
10
|
Pokhrel D, Mallory R, Bernard ME, Kudrimoti M. How much rotational error is clinically acceptable for single-isocenter/two-lesion lung SBRT treatment on halcyon ring delivery system (RDS)? J Appl Clin Med Phys 2023:e14068. [PMID: 37311070 DOI: 10.1002/acm2.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023] Open
Abstract
PURPOSE SBRT treatment of two separate lung lesions via single-isocenter/multi-target (SIMT) plan on Halcyon RDS could improve patient comfort, compliance, patient throughput, and clinic efficiency. However, aligning two separate lung lesions synchronously via a single pre-treatment CBCT scan on Halcyon can be difficult due to rotational patient setup errors. Thus, to quantify the dosimetric impact, we simulated loss of target(s) coverage due to small, yet clinically observable rotational patient setup errors on Halcyon for SIMT treatments. METHODS Seventeen previously treated 4D-CT based SIMT lung SBRT patients with two separate lesions (total 34 lesions, 50 Gy in five fractions to each lesion) on TrueBeam (6MV-FFF) were re-planned on Halcyon (6MV-FFF) using a similar arc geometry (except couch rotation), dose engine (AcurosXB algorithm), and treatment planning objectives. Rotational patient setup errors of [± 0.5⁰ to ± 3.0⁰] on Halcyon were simulated via Velocity registration software in all three rotation axes and recalculated dose distributions in Eclipse treatment planning system. Dosimetric impact of rotational errors was evaluated for target coverage and organs at risk (OAR). RESULTS Average PTV volume and distance to isocenter were 23.7 cc and 6.1 cm. Average change in Paddick's conformity indexes were less than -5%, -10%, and -15% for 1°, 2°, and 3°, respectively for yaw, roll, and pitch rotation directions. Maximum drop off of PTV(D100%) coverage for 2° rotation was -2.0% (yaw), -2.2% (roll), and -2.5% (pitch). With ±1° rotational error, no PTV(D100%) loss was found. Due to anatomical complexity: irregular and highly variable tumor sizes and locations, highly heterogenous dose distribution, and steep dose gradient, no trend for loss of target(s) coverage as a function of distance to isocenter and PTV size was found. Change in maximum dose to OAR were acceptable per NRG-BR001 within ±1.0° rotation, but were up to 5 Gy higher to heart with 2° in the pitch rotation axis. CONCLUSION Our clinically realistic simulation results show that rotational patient setup errors up to 1.0° in any rotation axis could be acceptable for selected two separate lung lesions SBRT patients on Halcyon. Multivariable data analysis in large cohort is ongoing to fully characterize Halcyon RDS for synchronous SIMT lung SBRT.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Richard Mallory
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mark E Bernard
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mahesh Kudrimoti
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Feasibility of a multigroup Boltzmann-Fokker-Planck solution for electron beam dose calculations. Sci Rep 2023; 13:1310. [PMID: 36693824 PMCID: PMC9873679 DOI: 10.1038/s41598-023-27376-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023] Open
Abstract
Legacy nuclear-reactor Boltzmann solvers start clinical deployment as an alternative to Monte Carlo (MC) codes and Fermi-Eyges semiemprical models in radiation oncology treatment planning. Today's certified clinical solvers are limited to photon beams. In this paper, ELECTR, a state-of-the-art multigroup electron cross sections generation module in NJOY is presented and validated against Lockwood's calorimetric measurements, EGS-nrc and GEANT-4 for 1-20 MeV unidirectional electron beams. The nuclear-reactor DRAGON-5 solver is upgraded to access the library and solve the Boltzmann-Fokker-Planck (BFP) equation. A variety of heterogeneous radiotherapy and radiosurgery phantom configurations were used for validation purpose. Case studies include a thorax benchmark, that of a typical breast Intra-Operative Radiotherapy and a high-heterogeneity patient-like benchmark. For all beams, [Formula: see text] of the water voxels satisfied the American Association of Physicists in Medicine accuracy criterion for a BFP-MC dose error below [Formula: see text]. At least, [Formula: see text] of adipose, muscle, bone, lung, tumor and breast voxels satisfied the [Formula: see text] criterion. The average BFP-MC relative error was about [Formula: see text] for all voxels, beams and materials combined. By irradiating homogeneous slabs from [Formula: see text] (hydrogen) to [Formula: see text] (einsteinium), we reported performance and defects of the CEPXS mode [US. Sandia National Lab., SAND-89-1685] in ELECTR for the entire periodic table. For all Lockwood's benchmarks, NJOY-DRAGON dose predictions are within the experimental data precision for [Formula: see text] of voxels.
Collapse
|
12
|
Dosimetric accuracy of Acuros ® XB and AAA algorithms for stereotactic body radiotherapy (SBRT) lung treatments: evaluation with PRIMO Monte Carlo code. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396922000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Abstract
Purpose:
The study aimed to compare the dosimetric performance of Acuros® XB (AXB) and anisotropic analytical algorithm (AAA) for lung SBRT plans using Monte Carlo (MC) simulations.
Methods:
We compared the dose calculation algorithms AAA and either of the dose reporting modes of AXB (dose to medium (AXB-Dm) or dose to water (AXB-Dw)) algorithms implemented in Eclipse® (Varian Medical Systems, Palo Alto, CA) Treatment planning system (TPS) with MC. PRIMO code was used for the MC simulations. The TPS-calculated dose profiles obtained with a multi-slab heterogeneity phantom were compared to MC. A lung phantom with a tumour was used to validate TPS algorithms using different beam delivery techniques. 2D gamma values obtained from Gafchromic film measurements in the tumour isocentre plane were compared with TPS algorithms and MC. Ten VMAT SBRT plans generated in TPS with each algorithm were recalculated with a PRIMO MC system for identical beam parameters for the clinical plan validation. A dose–volume histogram (DVH) based plan comparison and a 3D global gamma analysis were performed.
Results:
AXB demonstrated better agreement with MC and film measurements in the lung phantom validation, with good agreement in PDD, profiles and gamma analysis. AAA showed an overestimated PDD, a significant difference in dose profiles and a lower gamma pass rate near the field borders. With AAA, there was a dose overestimation at the periphery of the tumour. For clinical plan validation, AXB demonstrated higher agreement with MC than AAA.
Conclusions:
AXB provided better agreement with MC than AAA in the phantom and clinical plan evaluations.
Collapse
|
13
|
Szpala S, Renaud J, Muir BR, Bourgouin A, Kohli K, McEwen M. Calorimeter measurements of absolute dose in aluminum, a surrogate of bone, to validate dose-to-medium in Acuros XB. Phys Med Biol 2022; 68. [PMID: 36579808 DOI: 10.1088/1361-6560/aca869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Objective. While the accuracy of dose calculations in water with Acuros XB is well established, experimental validation of dose in bone is limited. Acuros XB reports both dose-to-medium and dose-to-water, and these values differ in bone, but there are no reports of measurements of validation in bone. This work compares Acuros XB calculations to measurements of absolute dose in aluminum (medium similar to bone). The validity of using selected relative dosimeters in aluminum is also investigated.Approach. A calorimeter with an aluminum core embedded in an aluminum phantom was selected as bone surrogate for the measurement of absolute dose. Matching the medium of the core to the medium of the phantom allowed eliminating the calculation of the conversion between media. The dose was measured at the fixed depth of 3.3 cm in aluminum (∼9 g·cm-2) with 6X, 10X, 6FFF and 10FFF photon beams from a TrueBeam Varian linac. In addition, experimental cross-calibration between water and aluminum was performed for an IBA CC13 ionization chamber, a PTW microDiamond and EBT3 Gafchromic film.Main results. Calculations with Acuros XB dose-to-medium in aluminum differed from the calorimetry data by -2.8% to -3.5%, depending on the beam. Use of dose-to-water would have resulted in about 39% discrepancy. The cross calibration coefficient between water and aluminum yielded values of about 0.87 for the CC13 chamber, 0.91 for the microDiamond, and 0.88 for the film, and independent of the beam within about ±1%.Significance. It was demonstrated the value of the dose-to-medium in aluminum (surrogate of bone) computed with Acuros XB is close to the value of the absolute dose measured with a calorimeter, and there is a significant discrepancy when dose-to-water is used instead. The use of an ionization chamber, a microDiamond and Gafchromic film in aluminum required a considerable correction from calibration in water.
Collapse
Affiliation(s)
| | - James Renaud
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Bryan R Muir
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Alexandra Bourgouin
- Dosimetry for Radiation Therapy and Diagnostic Radiology, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Lower Saxony, D-38116, Germany
| | | | - Malcolm McEwen
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Shende R, Dhoble S, Gupta G. Geometrical source modeling of 6MV flattening-filter-free (FFF) beam from TrueBeam linear accelerator and its commissioning validation using Monte Carlo simulation approach for radiotherapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Abstract
Treatment planning in radiation therapy has progressed enormously over the past several decades. Such advancements came in the form of innovative hardware and algorithms, giving rise to modalities such as intensity-modulated radiation therapy and volume modulated arc therapy, greatly improving patient outcome and quality of life. While these developments have improved the overall plan quality, they have also given rise to higher treatment planning complexity. This has resulted in increased treatment planning time and higher variability in the final approved plan quality. Radiation oncology, as an already technologically advanced field, has much research and implementation involving the use of AI. The field has begun to show the efficacy of using such technologies in many of its sub-areas, such as in diagnosis, imaging, segmentation, treatment planning, quality assurance, treatment delivery, and follow-up. Some AI technologies have already been clinically implemented by commercial systems. In this article, we will provide an overview to methods involved with treatment planning in radiation therapy. In particular, we will review the recent research and literature related to automation of the treatment planning process, leading to potentially higher efficiency and higher quality plans. We will then present the current and future challenges, as well as some future perspectives.
Collapse
Affiliation(s)
- Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX.
| | - Mu-Han Lin
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - David Sher
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - Weiguo Lu
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - Xun Jia
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - Steve Jiang
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
16
|
Wang L, Zhang J, Huang M, Xu B, Li X. Radiobiological Comparison of Acuros External Beam and Anisotropic Analytical Algorithm on Esophageal Carcinoma Radiotherapy Treatment Plans. Dose Response 2022; 20:15593258221105678. [PMID: 35832770 PMCID: PMC9272482 DOI: 10.1177/15593258221105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective The present study aimed to investigate the dose differences and
radiobiological assessment between Anisotropic Analytical Algorithm (AAA)
and Acuros External Beam (AXB) with its 2 calculation models, namely,
dose-to-water (AXB-Dw) and dose-to-medium (AXB-Dm), on esophageal carcinoma
radiotherapy treatment plans. Materials and methods The AXB-Dw and AXB-Dm plans were generated by recalculating the initial 66
AAA plans using the AXB algorithm with the same monitor units and beam
parameters as those in the original plan. The dosimetric and radiobiological
assessment parameters were calculated for the planning target volume (PTV)
and organs at risk (OARs). The gamma agreement for the PTV and the
correlation between it and the volume of the air cavity and bone among the
different algorithms were compared simultaneously. The dose discrepancy
between the theoretical calculation and treatment planning system (TPS) when
switching from AXB-Dm to AXB-Dw was analyzed according to the composition of
the structures. Results The PTV dose of AXB-Dm plans was significantly smaller than that of the AAA
and AXB-Dw plans (P < .05), except for D2. The difference
values for AAA vs AXB-Dm (∆Dx,(AAA-AXB,Dm)) and
AXB-Dw vs AXB-Dm (∆Dx,(AXB,Dw-AXB,Dm)) were
1.94% [1.27%, 2.64%] and 1.95% [1.56%, 2.27%], respectively. For the spinal
cord and heart, there were obvious differences between the AAA vs AXB-Dm
(spinal cord: 1.15%, heart: 2.89%) and AXB-Dw vs AXB-Dm (spinal cord: 1.88%,
heart: 3.25%) plans. For the lung, the differences between AAA vs AXB-Dm and
AAA vs AXB-Dw were significantly larger than those of AXB-Dm vs AXB-Dw.
Compared to the case of AAA and AXB-Dw, the decrease in biologically
effective dose (BED10, αβ=10 ) of AXB-Dm due to dose non-uniformity exceeded 6.5%, even
for a small σ. The average values of equivalent uniform dose in the AAA,
AXB-Dw, and AXB-Dm plans were 52.03±.39 Gy, 52.24 ± .81 Gy, and 51.13 ±
.47 Gy, respectively. The tumor control probability (TCP) results for PTV in
the AAA, AXB-Dw, and AXB-Dm plans were 62.29 ± 1.57%, 62.82 ± 1.69%, and
58.68±1.88%, respectively. With the 2%/2 mm and 3%/3 mm acceptance criteria,
the mean values of ΔγAAAAXB−Dw, ΔγAAAAXB−Dm, and ΔγAXB−DmAXB−Dw were 87.24, 63.3, and 64.81% vs 97.86, 91.77, and 89.25%,
respectively. The dose discrepancy between the theoretical calculation and
TPS when switching from AXB-Dm to AXB-Dw was approximately 1.63%. Conclusions The AAA and AXB-Dw algorithms overestimated the radiobiological parameters
when the tumor particularly consisted of nonuniform tissues. A relatively
small dose difference could cause a significant reduction in the
corresponding TCP. Dose distribution algorithms should be carefully chosen
by physicists and oncologists to improve tumor control, as well as to
optimize OARs protection.
Collapse
Affiliation(s)
- Lin Wang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.,Clinical Research Center for Radiology and Radiotherapy of Fujian Province Digestive, Hematological and Breast Malignancies, Fuzhou, China
| | - Jianping Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.,Clinical Research Center for Radiology and Radiotherapy of Fujian Province Digestive, Hematological and Breast Malignancies, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Miaoyun Huang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.,Clinical Research Center for Radiology and Radiotherapy of Fujian Province Digestive, Hematological and Breast Malignancies, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.,Clinical Research Center for Radiology and Radiotherapy of Fujian Province Digestive, Hematological and Breast Malignancies, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.,Clinical Research Center for Radiology and Radiotherapy of Fujian Province Digestive, Hematological and Breast Malignancies, Fuzhou, China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Vassiliev ON, Peterson CB, Chang JY, Mohan R. Monte Carlo evaluation of target dose coverage in lung stereotactic body radiation therapy with flattening filter-free beams. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022; 21:81-87. [PMID: 35401050 PMCID: PMC8992779 DOI: 10.1017/s1460396920000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aim Previous studies showed that replacing conventional flattened beams (FF) with flattening filter-free (FFF) beams improves the therapeutic ratio in lung stereotactic body radiation therapy (SBRT), but these findings could have been impacted by dose calculation uncertainties caused by the heterogeneity of the thoracic anatomy and by respiratory motion, which were particularly high for target coverage. In this study, we minimized such uncertainties by calculating doses using high-spatial-resolution Monte Carlo and four-dimensional computed tomography (4DCT) images. We aimed to evaluate more reliably the benefits of using FFF beams for lung SBRT. Materials and methods For a cohort of 15 patients with early stage lung cancer that we investigated in a previous treatment planning study, we recalculated dose distributions with Monte Carlo using 4DCT images. This included fifteen FF and fifteen FFF treatment plans. Results Compared to Monte Carlo, the treatment planning system (TPS) over-predicted doses in low-dose regions of the planning target volume. For most patients, replacing FF beams with FFF beams improved target coverage, tumor control, and uncomplicated tumor control probabilities. Conclusions Monte Carlo tends to reveal deficiencies in target coverage compared to coverage predicted by the TPS. Our data support previously reported benefits of using FFF beams for lung SBRT.
Collapse
Affiliation(s)
- Oleg N Vassiliev
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Cheung MLM, Kan MWK, Yeung VTY, Poon DMC, Kam MKM, Lee LKY, Chan ATC. The radiobiological effect of using Acuros XB vs anisotropic analytical algorithm on hepatocellular carcinoma stereotactic body radiation therapy. Med Dosim 2022; 47:161-165. [PMID: 35241348 DOI: 10.1016/j.meddos.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022]
Abstract
The purpose of this work was to study the radiobiological effect of using Acuros XB (AXB) vs Analytic Anisotropic Algorithm (AAA) on hepatocellular carcinoma (HCC) stereotactic body radiation therapy (SBRT). Seventy SBRT volumetric modulated arc therapy (VMAT) plans for HCC were calculated using AAA and AXB respectively with the same treatment parameters. Published tumor control probability (TCP) and normal tissue complication probability (NTCP) models were used to quantify the effect of dosimetric difference between AAA and AXB on TCP, NTCP and uncomplicated tumor control probability (UTCP). There was an average decrease of 2.5% in 6-month TCP. Normal liver has the largest average decrease in NTCP which was 59.7%. Bowels followed with 26.6% average decrease in NTCP. Duodenum, stomach and esophagus had 10.2%, 5.1%, and 4.3% average decrease in NTCP. There was an average decrease of 1.8% and up to 7.2% in 6-month UTCP. There was an overall decrease in TCP, NTCP, and UTCP for HCC SBRT plans calculated using AXB compared to AAA which could be clinically significant.
Collapse
Affiliation(s)
- Michael L M Cheung
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Monica W K Kan
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vanessa T Y Yeung
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Darren M C Poon
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Michael K M Kam
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Louis K Y Lee
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthony T C Chan
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Qi M, Li Y, Wu A, Lu X, Zhou L, Song T. Multi-sequence MR generated sCT is promising for HNC MR-only RT: a comprehensive evaluation of previously developed sCT generation networks. Med Phys 2022; 49:2150-2158. [PMID: 35218040 DOI: 10.1002/mp.15572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/01/2022] [Accepted: 02/20/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To verify the feasibility of our in-house developed multi-sequence magnetic resonance (MR)-generated synthetic computed tomography (sCT) for the accurate dose calculation and fractional positioning for head and neck MR-only radiation therapy (RT). MATERIALS AND METHODS Forty-five patients with nasopharyngeal carcinoma were retrospectively studied. By applying our previously in-house developed network, a patient's sCT can rapidly be generated with respect to feeding the sole T1 image, T1C image, T1DixonC image, T2 image, and their combination respectively (five pipelines in total). A k(5)-fold strategy was implemented during model establishment. Dose recalculation was performed for each pipeline generation to attain a dosimetric feasibility evaluation. Fractional positioning evaluation was performed by calculating the digitally reconstructed radiograph (DRR) of the sCT and planning CT and their offset to the portal image. RESULTS The dose mean absolute error values are (0.47±0.16)%, (0.48±0.15)% (p<0.05), (0.50±0.16)% (p<0.05), (0.50±0.15)% (p<0.05), and (0.45±0.16)% (p<0.05) for the T1, T1C, T1Dixon C, T2, and 4-channel generated sCT to the prescription dose, respectively. The 4-channel-generated sCT outperforms any other single-sequence pipelines. Among the single-sequence MR imaging-generated sCTs, the T1-generated shows the most accurate HU image quality and provide a reliable dose result. Quantified positioning errors with calculation of the difference to the planning CT offsets are (-0.26±0.50)mm, (-0.58±0.52)mm (p<0.05), (-0.27±0.57)mm (p>0.05), (-0.31±0.44)mm (p>0.05), and (-0.19±0.37)mm (p>0.05) at LNG and (0.34±0.53)mm, (0.48±0.56)mm (p>0.05), (0.55±0.56)mm (p>0.05), (0.37±0.61)mm (p>0.05), and (0.24±0.43)mm (p>0.05) at LAT of the anterior-posterior direction for the five pipelines. CONCLUSION Multi-sequence MR-generated sCT allows for accurate dose calculation and fractional positioning for head and neck MR-only RT. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengke Qi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yongbao Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Aiqian Wu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China.,Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Xingyu Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Linghong Zhou
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Song
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
20
|
Feygelman V, Latifi K, Bowers M, Greco K, Moros EG, Isacson M, Angerud A, Caudell J. Maintaining dosimetric quality when switching to a Monte Carlo dose engine for head and neck volumetric-modulated arc therapy planning. J Appl Clin Med Phys 2022; 23:e13572. [PMID: 35213089 PMCID: PMC9121035 DOI: 10.1002/acm2.13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck cancers present challenges in radiation treatment planning due to the large number of critical structures near the target(s) and highly heterogeneous tissue composition. While Monte Carlo (MC) dose calculations currently offer the most accurate approximation of dose deposition in tissue, the switch to MC presents challenges in preserving the parameters of care. The differences in dose‐to‐tissue were widely discussed in the literature, but mostly in the context of recalculating the existing plans rather than reoptimizing with the MC dose engine. Also, the target dose homogeneity received less attention. We adhere to strict dose homogeneity objectives in clinical practice. In this study, we started with 21 clinical volumetric‐modulated arc therapy (VMAT) plans previously developed in Pinnacle treatment planning system. Those plans were recalculated “as is” with RayStation (RS) MC algorithm and then reoptimized in RS with both collapsed cone (CC) and MC algorithms. MC statistical uncertainty (0.3%) was selected carefully to balance the dose computation time (1–2 min) with the planning target volume (PTV) dose‐volume histogram (DVH) shape approaching that of a “noise‐free” calculation. When the hot spot in head and neck MC‐based treatment planning is defined as dose to 0.03 cc, it is exceedingly difficult to limit it to 105% of the prescription dose, as we were used to with the CC algorithm. The average hot spot after optimization and calculation with RS MC was statistically significantly higher compared to Pinnacle and RS CC algorithms by 1.2 and 1.0 %, respectively. The 95% confidence interval (CI) observed in this study suggests that in most cases a hot spot of ≤107% is achievable. Compared to the 95% CI for the previous clinical plans recalculated with RS MC “as is” (upper limit 108%), in real terms this result is at least as good or better than the historic plans.
Collapse
Affiliation(s)
- Vladimir Feygelman
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Mark Bowers
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kevin Greco
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Max Isacson
- RaySearch Laboratories AB, Stockholm, Sweden
| | | | - Jimmy Caudell
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
21
|
Dosiomic feature comparison between dose-calculation algorithms used for lung stereotactic body radiation therapy. Radiol Phys Technol 2022; 15:63-71. [DOI: 10.1007/s12194-022-00651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
22
|
Cheung MLM, Kan MW, Yeung VT, Poon DM, Kam MK, Lee LK, Chan AT. The effect on tumour control probability of using AXB algorithm in replacement of AAA for SBRT of hepatocellular carcinoma located at lung-liver boundary region. BJR Open 2021; 3:20210041. [PMID: 34877460 PMCID: PMC8611685 DOI: 10.1259/bjro.20210041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Objective: To retrospectively analyze the clinical impact on stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma (HCC) located at lung–liver boundary due to the use of Acuros XB algorithm (AXB) in replacement of anisotropic analytical algorithm (AAA). Methods: 23 SBRT volumetric modulated arc therapy (VMAT) plans for HCC located at lung–liver boundary were calculated using AAA and AXB respectively with the same treatment parameters. The dose–volume data of the planned target volumes (PTVs) were compared. A published tumour control probability (TCP) model was used to calculate the effect of dosimetric difference between AAA and AXB on tumour control probability. Results: For dose calculated by AXB (Dose to medium), the D95% and D98% of the PTV were on average 2.4 and 3.1% less than that calculated by AAA. For dose calculated by AXB (dose to water), the D95% and D98% of the PTV were on average 1.8%, and 2.7% less than that calculated by AAA. Up to 5% difference in D95% and 8% difference in D98% were observed in the worst cases. The significant decrease in D95% calculated by AXB compared to AAA could result in a % decrease in 2 year TCP up to 8% in the worst case (from 46.8 to 42.9%). Conclusion: The difference in dose calculated by AAA and AXB could lead to significant difference in TCP for HCC SBRT located at lung–liver boundary region. Advances in knowledge: The difference in calculated dose and tumour control probability for HCC SBRT between AAA and AXB algorithm at lung–liver boundary region was compared.
Collapse
Affiliation(s)
| | | | | | - Darren Mc Poon
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Michael Km Kam
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Louis Ky Lee
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | | |
Collapse
|
23
|
Webster M, Tanny S, Joyce N, Herman A, Chen Y, Milano M, Usuki K, Constine L, Singh D, Yeo I. New dosimetric guidelines for linear Boltzmann transport equations through comparative evaluation of stereotactic body radiation therapy for lung treatment planning. J Appl Clin Med Phys 2021; 22:115-124. [PMID: 34783438 PMCID: PMC8664148 DOI: 10.1002/acm2.13464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To propose guidelines for lung stereotactic body radiation therapy (SBRT) when using Acuros XB (AXB) equivalent to the existing ones developed for convolution algorithms such as analytic anisotropic algorithm (AAA), considering the difference between the algorithms. METHODS A retrospective analysis was performed on 30 lung patients previously treated with SBRT. The original AAA plans, which were developed using dynamic conformal arcs, were recalculated and then renormalized for planning target volume (PTV) coverage using AXB. The recalculated and renormalized plans were compared to the original plans based on V100% and V90% PTV coverage, as well as V105%, conformality index, D2cm , Rx/Dmax , R50, and Dmin . These metrics were analyzed nominally and on variations according to RTOG and NRG guidelines. Based on the relative difference between each metric in the AAA and AXB plans, new guidelines were developed. The relative differences in our cohort were compared to previously documented AAA to AXB comparisons found in the literature. RESULTS AAA plans recalculated in AXB had a significant reduction in most dosimetric metrics. The most notable changes were in V100% (4%) and the conformality index (7.5%). To achieve equal PTV coverage, AXB required an average of 1.8% more monitor units (MU). This fits well with previously published data. Applying the new guidelines to the AXB plans significantly increased the number of minor violations with no change in major violations, making them comparable to those of the original AAA plans. CONCLUSION The relative difference found between AAA and AXB for SBRT lung plans has been shown to be consistent with previous works. Based on these findings, new guidelines for lung SBRT are recommended when planning with AXB.
Collapse
Affiliation(s)
- Matthew Webster
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Sean Tanny
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Neil Joyce
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Amy Herman
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Yuhchyau Chen
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Michael Milano
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Kenneth Usuki
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Louis Constine
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Deepinder Singh
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| | - Inhwan Yeo
- Department of Radiation OncologyUniversity of RochesterRochesterNew YorkUSA
| |
Collapse
|
24
|
Principi S, Lu Y, Liu Y, Wang A, Maslowski A, Wareing T, Van Heteren J, Schmidt TG. Validation of a deterministic linear Boltzmann transport equation solver for rapid CT dose computation using physical dose measurements in pediatric phantoms. Med Phys 2021; 48:8075-8088. [PMID: 34669975 DOI: 10.1002/mp.15301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The risk of inducing cancer to patients undergoing CT examinations has motivated efforts for CT dose estimation, monitoring, and reduction, especially among pediatric population. The method investigated in this study is Acuros CTD (Varian Medical Systems, Palo Alto, CA), a deterministic linear Boltzmann transport equation (LBTE) solver aimed at generating rapid and reliable dose maps of CT exams. By applying organ contours, organ doses can also be obtained, thus patient-specific organ dose estimates can be provided. This study experimentally validated Acuros against measurements performed on a clinical CT system using a range of physical pediatric anthropomorphic phantoms and acquisition protocols. METHODS The study consisted of (1) the acquisition of dose measurements on a clinical CT scanner through thermoluminescent dosimeters (TLDs), and (2) the modeling in the Acuros platform of the measurement set up, which includes the modeling of the CT scanner and of the anthropomorphic phantoms. For the measurements, 1-year-old, 5-year-old, and 10-year-old anthropomorphic phantoms of the CIRS ATOM family were used. TLDs were placed in selected organ locations such as stomach, liver, lungs, and heart. The pediatric phantoms were scanned helically with the GE Discovery 750 HD clinical scanner for several examination protocols. For the simulations in Acuros, scanner-specific input, such as bowtie filters, overrange collimation, and tube current modulation schemes, were modeled. These scanner complexities were implemented by defining discretized X-ray beams whose spectral distribution, defined in Acuros by only six energy bins, varied across fan angle, cone angle, and slice position. The images generated during the CT acquisitions were used to create the geometrical models, by applying thresholding algorithms and assigning materials to the HU values. The TLDs were contoured in the phantom models as sensitive cylindrical volumes at the locations selected for dosimeters placement, to provide dose estimates, in terms of dose per unit photon. To compare measured doses with dose estimates, a calibration factor was derived from the CTDIvol displayed by the scanner, to account for the number of photons emitted by the X-ray tube during the procedure. RESULTS The differences of the measured and estimated doses, in terms of absolute % errors, were within 13% for 153 TLD locations, with an error of 17% at the stomach for one study with the 10-year-old phantom. Root-mean-squared-errors (RMSE) across all TLD locations for all configurations were in the range of 3%-8%, with Acuros providing dose estimates in a time range of a few seconds up to 2 min. CONCLUSIONS An overall good agreement between measurements and simulations was achieved, with average RMSE of 6% across all cases. The results demonstrate that Acuros can model a specific clinical scanner despite the required discretization in spatial and energy domains. The proposed deterministic tool has the potential to be part of a near real-time individualized dosimetry monitoring system for CT applications, providing patient-specific organ dose estimates.
Collapse
Affiliation(s)
- Sara Principi
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin, USA
| | - Yonggang Lu
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yu Liu
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adam Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Todd Wareing
- Varian Medical Systems, Palo Alto, California, USA
| | | | - Taly Gilat Schmidt
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
25
|
NanoDot™ OSLDs in verifying radiotherapy dose calculations in the presence of metal implants: A Monte Carlo assisted research. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Visak J, Webster A, Bernard ME, Kudrimoti M, Randall ME, McGarry RC, Pokhrel D. Fast generation of lung SBRT plans with a knowledge-based planning model on ring-mounted Halcyon Linac. J Appl Clin Med Phys 2021; 22:54-63. [PMID: 34562308 PMCID: PMC8598154 DOI: 10.1002/acm2.13427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose To demonstrate fast treatment planning feasibility of stereotactic body radiation therapy (SBRT) for centrally located lung tumors on Halcyon Linac via a previously validated knowledge‐based planning (KBP) model to support offline adaptive radiotherapy. Materials/methods Twenty previously treated non‐coplanar volumetric‐modulated arc therapy (VMAT) lung SBRT plans (c‐Truebeam) on SBRT‐dedicated C‐arm Truebeam Linac were selected. Patients received 50 Gy in five fractions. c‐Truebeam plans were re‐optimized for Halcyon manually (m‐Halcyon) and with KBP model (k‐Halcyon). Both m‐Halcyon and k‐Halcyon plans were normalized for identical or better target coverage than clinical c‐Truebeam plans and compared for target conformity, dose heterogeneity, dose fall‐off, and dose tolerances to the organs‐at‐risk (OAR). Treatment delivery parameters and planning times were evaluated. Results k‐Halcyon plans were dosimetrically similar or better than m‐Halcyon and c‐Truebeam plans. k‐Halcyon and m‐Halcyon plan comparisons are presented with respect to c‐Truebeam. Differences in conformity index were statistically insignificant in k‐Halcyon and on average 0.02 higher (p = 0.04) in m‐Halcyon plans. Gradient index was on average 0.43 (p = 0.006) lower and 0.27 (p = 0.02) higher for k‐Halcyon and m‐Halcyon, respectively. Maximal dose 2 cm away in any direction from target was statistically insignificant. k‐Halcyon increased maximal target dose on average by 2.9 Gy (p < 0.001). Mean lung dose was on average reduced by 0.10 Gy (p = 0.004) in k‐Halcyon and increased by 0.14 Gy (p < 0.001) in m‐Halcyon plans. k‐Halcyon plans lowered bronchial tree dose on average by 1.2 Gy. Beam‐on‐time (BOT) was increased by 2.85 and 1.67 min, on average for k‐Halcyon and m‐Halcyon, respectively. k‐Halcyon plans were generated in under 30 min compared to estimated dedicated 180 ± 30 min for m‐Halcyon or c‐Truebeam plan. Conclusion k‐Halcyon plans were generated in under 30 min with excellent plan quality. This adaptable KBP model supports high‐volume clinics in the expansion or transfer of lung SBRT patients to Halcyon.
Collapse
Affiliation(s)
- Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Aaron Webster
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mark E Bernard
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mahesh Kudrimoti
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Marcus E Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
27
|
Bagdare P, Dubey S, Ghosh S. Validation of absolute point dosimetry by the analytical anisotropic algorithm and Acuros XB algorithm employing intensity-modulated radiotherapy technique on an in-house develop cost-effective heterogeneous thorax phantom. J Cancer Res Ther 2021; 17:859-864. [PMID: 34528532 DOI: 10.4103/jcrt.jcrt_1072_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Dose validation inside the human body needs a medium which can simulate the actual heterogeneities of a specific body site. The aim of the present work is to study the properties of a cost-effective heterogeneous thorax phantom (HTP) developed in-house by the author and its application for the evaluation of patient-specific absolute point dosimetry by employing analytic anisotropic algorithm (AAA) and Acuros XB (AXB) algorithm. Materials and Methods HTP was made from the dust of porous pinewood, rib cage, and honeybee's wax. Density and central axis isodose depth distribution was measured on computed tomography images of actual patient and on HTP. Absolute point dose verification of 35 patients was done using AAA and AXB algorithm. The difference in the calculated dose by AAA and AXB was compared using the Wilcoxon signed-rank test. Results Density distribution and central axis depth dose inside the HTP compare well with that of an actual patient. The mean percentage variation between the planned and the measured doses inside the HTP was found to be 4.85 (standard deviation [SD] = 3.38) and 1.3 (SD = 2.93), respectively, using AAA and AXB algorithm. The difference in the measured dose and the planned dose was found to be significant for AAA with the significance level of 0.01 (p-value < 0.00001), whereas it was found to be insignificant (p-value < 0.00001) for AXB. Conclusion The results of this study showed that the HTP is resembled with the human thorax in terms of its heterogeneities and radiological properties and can be used for pretreatment plan verification.
Collapse
Affiliation(s)
- Priyusha Bagdare
- School of Studies in Physics, Vikram University, Ujjain, Madhya Pradesh, India
| | - Swati Dubey
- School of Studies in Physics, Vikram University, Ujjain, Madhya Pradesh, India
| | - Sanjay Ghosh
- School of Studies in Physics, Vikram University, Ujjain, Madhya Pradesh, India
| |
Collapse
|
28
|
Kinkopf P, Modiri A, Yu KC, Yan Y, Mohindra P, Timmerman R, Sawant A, Vicente E. Virtual bronchoscopy-guided lung SAbR: dosimetric implications of using AAA versus Acuros XB to calculate dose in airways. Biomed Phys Eng Express 2021; 7. [PMID: 34488197 DOI: 10.1088/2057-1976/ac240c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022]
Abstract
In previous works, we showed that incorporating individual airways as organs-at-risk (OARs) in the treatment of lung stereotactic ablative radiotherapy (SAbR) patients potentially mitigates post-SAbR radiation injury. However, the performance of common clinical dose calculation algorithms in airways has not been thoroughly studied. Airways are of particular concern because their small size and the density differences they create have the potential to hinder dose calculation accuracy. To address this gap in knowledge, here we investigate dosimetric accuracy in airways of two commonly used dose calculation algorithms, the anisotropic analytical algorithm (AAA) and Acuros-XB (AXB), recreating clinical treatment plans on a cohort of four SAbR patients. A virtual bronchoscopy software was used to delineate 856 airways on a high-resolution breath-hold CT (BHCT) image acquired for each patient. The planning target volumes (PTVs) and standard thoracic OARs were contoured on an average CT (AVG) image over the breathing cycle. Conformal and intensity-modulated radiation therapy plans were recreated on the BHCT image and on the AVG image, for a total of four plan types per patient. Dose calculations were performed using AAA and AXB, and the differences in maximum and mean dose in each structure were calculated. The median differences in maximum dose among all airways were ≤0.3Gy in magnitude for all four plan types. With airways grouped by dose-to-structure or diameter, median dose differences were still ≤0.5Gy in magnitude, with no clear dependence on airway size. These results, along with our previous airway radiosensitivity works, suggest that dose differences between AAA and AXB correspond to an airway collapse variation ≤0.7% in magnitude. This variation in airway injury risk can be considered as not clinically relevant, and the use of either AAA or AXB is therefore appropriate when including patient airways as individual OARs so as to reduce risk of radiation-induced lung toxicity.
Collapse
Affiliation(s)
- P Kinkopf
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - A Modiri
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kun-Chang Yu
- Broncus Medical, Inc., San Jose, CA, United States of America
| | - Y Yan
- UT Southwestern Medical Center, Dallas, TX, United States of America
| | - P Mohindra
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - R Timmerman
- UT Southwestern Medical Center, Dallas, TX, United States of America
| | - A Sawant
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - E Vicente
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
29
|
Hughes J, Lye JE, Kadeer F, Alves A, Shaw M, Supple J, Keehan S, Gibbons F, Lehmann J, Kron T. Calculation algorithms and penumbra: Underestimation of dose in organs at risk in dosimetry audits. Med Phys 2021; 48:6184-6197. [PMID: 34287963 DOI: 10.1002/mp.15123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this study is to investigate overdose to organs at risk (OARs) observed in dosimetry audits in Monte Carlo (MC) algorithms and Linear Boltzmann Transport Equation (LBTE) algorithms. The impact of penumbra modeling on OAR dose was assessed with the adjustment of MC modeling parameters and the clinical relevance of the audit cases was explored with a planning study of spine and head and neck (H&N) patient cases. METHODS Dosimetric audits performed by the Australian Clinical Dosimetry Service (ACDS) of 43 anthropomorphic spine plans and 1318 C-shaped target plans compared the planned dose to doses measured with ion chamber, microdiamond, film, and ion chamber array. An MC EGSnrc model was created to simulate the C-shape target case. The electron cut-off energy Ecut(kinetic) was set at 500, 200, and 10 keV, and differences between 1 and 3 mm voxel were calculated. A planning study with 10 patient stereotactic body radiotherapy (SBRT) spine plans and 10 patient H&N plans was calculated in both Acuros XB (AXB) v15.6.06 and Anisotropic Analytical Algorithm (AAA) v15.6.06. The patient contour was overridden to water as only the penumbral differences between the two different algorithms were under investigation. RESULTS The dosimetry audit results show that for the SBRT spine case, plans calculated in AXB are colder than what is measured in the spinal cord by 5%-10%. This was also observed for other audit cases where a C-shape target is wrapped around an OAR where the plans were colder by 3%-10%. Plans calculated with Monaco MC were colder than measurements by approximately 7% with the OAR surround by a C-shape target, but these differences were not noted in the SBRT spine case. Results from the clinical patient plans showed that the AXB was on average 7.4% colder than AAA when comparing the minimum dose in the spinal cord OAR. This average difference between AXB and AAA reduced to 4.5% when using the more clinically relevant metric of maximum dose in the spinal cord. For the H&N plans, AXB was cooler on average than AAA in the spinal cord OAR (1.1%), left parotid (1.7%), and right parotid (2.3%). The EGSnrc investigation also noted similar, but smaller differences. The beam penumbra modeled by Ecut(kinetic) = 500 keV was steeper than the beam penumbra modeled by Ecut(kinetic) = 10 keV as the full scatter is not accounted for, which resulted in less dose being calculated in a central OAR region where the penumbra contributes much of the dose. The dose difference when using 2.5 mm voxels of the center of the OAR between 500 and 10 keV was 3%, reducing to 1% between 200 and 10 keV. CONCLUSIONS Lack of full penumbral modeling due to approximations in the algorithms in MC based or LBTE algorithms are a contributing factor as to why these algorithms under-predict the dose to OAR when the treatment volume is wrapped around the OAR. The penumbra modeling approximations also contribute to AXB plans predicting colder doses than AAA in areas that are in the vicinity of beam penumbra. This effect is magnified in regions where there are many beam penumbras, for example in the spinal cord for spine SBRT cases.
Collapse
Affiliation(s)
- Jeremy Hughes
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia.,Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jessica Elizabeth Lye
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia.,Physical Sciences, Olivia Newton-John Cancer Wellness Centre, Heidelberg, Victoria, Australia
| | - Fayz Kadeer
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia
| | - Andrew Alves
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia
| | - Maddison Shaw
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia.,Applied Sciences Physics Department, RMIT University, Melbourne, Victoria, Australia
| | - Jeremy Supple
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia
| | - Stephanie Keehan
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia.,Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Francis Gibbons
- Australian Clinical Dosimetry Service, ARPANSA, Yallambie, Victoria, Australia.,Physical Sciences, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Joerg Lehmann
- Applied Sciences Physics Department, RMIT University, Melbourne, Victoria, Australia.,Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, New South Wales, Australia.,Institute of Medical Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Applied Sciences Physics Department, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Shen Z, Tan X, Li S, Tian X, Luo H, Wang Y, Jin F. Correlation between the γ passing rates of IMRT plans and the volumes of air cavities and bony structures in head and neck cancer. Radiat Oncol 2021; 16:134. [PMID: 34289863 PMCID: PMC8296469 DOI: 10.1186/s13014-021-01861-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
Background Both patient-specific dose recalculation and γ passing rate analysis are important for the quality assurance (QA) of intensity modulated radiotherapy (IMRT) plans. The aim of this study was to analyse the correlation between the γ passing rates and the volumes of air cavities (Vair) and bony structures (Vbone) in target volume of head and neck cancer. Methods Twenty nasopharyngeal carcinoma and twenty nasal natural killer T-cell lymphoma patients were enrolled in this study. Nine-field sliding window IMRT plans were produced and the dose distributions were calculated by anisotropic analytical algorithm (AAA), Acuros XB algorithm (AXB) and SciMoCa based on the Monte Carlo (MC) technique. The dose distributions and γ passing rates of the targets, organs at risk, air cavities and bony structures were compared among the different algorithms. Results The γ values obtained with AAA and AXB were 95.6 ± 1.9% and 96.2 ± 1.7%, respectively, with 3%/2 mm criteria (p > 0.05). There were significant differences (p < 0.05) in the γ values between AAA and AXB in the air cavities (86.6 ± 9.4% vs. 98.0 ± 1.7%) and bony structures (82.7 ± 13.5% vs. 99.0 ± 1.7%). Using AAA, the γ values were proportional to the natural logarithm of Vair (R2 = 0.674) and inversely proportional to the natural logarithm of Vbone (R2 = 0.816). When the Vair in the targets was smaller than approximately 80 cc or the Vbone in the targets was larger than approximately 6 cc, the γ values of AAA were below 95%. Using AXB, no significant relationship was found between the γ values and Vair or Vbone. Conclusion In clinical head and neck IMRT QA, greater attention should be paid to the effect of Vair and Vbone in the targets on the γ passing rates when using different dose calculation algorithms.
Collapse
Affiliation(s)
- Zhengwen Shen
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xia Tan
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shi Li
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiumei Tian
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huanli Luo
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Fu Jin
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
31
|
Zhu TC, Stathakis S, Clark JR, Feng W, Georg D, Holmes SM, Kry SF, Ma CMC, Miften M, Mihailidis D, Moran JM, Papanikolaou N, Poppe B, Xiao Y. Report of AAPM Task Group 219 on independent calculation-based dose/MU verification for IMRT. Med Phys 2021; 48:e808-e829. [PMID: 34213772 DOI: 10.1002/mp.15069] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 11/06/2022] Open
Abstract
Independent verification of the dose per monitor unit (MU) to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance (QA). We discuss the role of secondary dose/MU calculation programs as part of a comprehensive QA program. This report provides guidelines on calculation-based dose/MU verification for intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) provided by various modalities. We provide a review of various algorithms for "independent/second check" of monitor unit calculations for IMRT/VMAT. The report makes recommendations on the clinical implementation of secondary dose/MU calculation programs; on commissioning and acceptance of various commercially available secondary dose/MU calculation programs; on benchmark QA and periodic QA; and on clinically reasonable action levels for agreement of secondary dose/MU calculation programs.
Collapse
Affiliation(s)
- Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Wenzheng Feng
- Department of Radiation Oncology, Columbia University, New York, NY, USA
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| | | | - Stephen F Kry
- IROC, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Moyed Miften
- Department of Radiation Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Dimitris Mihailidis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Bjorn Poppe
- Pius Hospital & Carl von Ossietzky University, Oldenburg, Germany
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Critchfield LS, Bernard ME, Randall ME, McGarry RC, Pokhrel D. A novel restricted single-isocenter stereotactic body radiotherapy (RESIST) method for synchronous multiple lung lesions to minimize setup uncertainties. Med Dosim 2021; 46:419-425. [PMID: 34148728 DOI: 10.1016/j.meddos.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Treating multiple lung lesions synchronously using a single-isocenter volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) plan can improve treatment efficiency and patient compliance. However, due to set up uncertainty, aligning multiple lung tumors on a single daily cone beam CT (CBCT) image has shown clinically unacceptable loss of target(s) coverage. Herein, we propose a Restricted Single-Isocenter Stereotactic Body Radiotherapy (RESIST), an alternative treatment that mitigates patient setup uncertainties. Twenty-one patients with two lung lesions were treated with single-isocenter VMAT-SBRT using a 6MV-FFF beam to 54 Gy in 3 fractions (n = 7) or 50 Gy in 5 fractions (n = 14) prescribed to 70-80% isodose line. To minimize setup uncertainties, each plan was re-planned using the RESIST method, utilizing a single-isocenter placed at the patient's mediastinum. It allows for an individual plan to be created for each tumor, using the first plan as the base-dose for the second plan, while still allowing both tumors to be treated in the same session. The technique uses novel features in Eclipse, including dynamic conformal arc (DCA)-based dose and aperture shape controller before each VMAT optimization. RESIST plans provided better target dose conformity (p < 0.001) and gradient indices (p < 0.001) and lower dose to adjacent critical organs. Using RESIST to treat synchronous lung lesions with VMAT-SBRT significantly reduces plan complexity as demonstrated by smaller beam modulation factors (p < 0.001), without unreasonably increasing treatment time. RESIST reduces the chance of a geometric miss due by allowing CBCT matching of one tumor at a time. Placement of isocenter at the mediastinum avoids potential patient/gantry collisions, provides greater flexibility of noncoplanar arcs and eliminates the need for multiple couch movements during CBCT imaging. Efficacy of RESIST has been demonstrated for two lesions and can potentially be used for more lesions. Clinical implementation of this technique is ongoing.
Collapse
Affiliation(s)
- Lana Sanford Critchfield
- Medical Physics Graduate Program, Department of Radiation Oncology, University of Kentucky, Lexington KY, USA
| | - Mark E Bernard
- Medical Physics Graduate Program, Department of Radiation Oncology, University of Kentucky, Lexington KY, USA
| | - Marcus E Randall
- Medical Physics Graduate Program, Department of Radiation Oncology, University of Kentucky, Lexington KY, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Oncology, University of Kentucky, Lexington KY, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Oncology, University of Kentucky, Lexington KY, USA
| |
Collapse
|
33
|
Srivastava RP, Basta K, De Gersem W, De Wagter C. A comparative analysis of Acuros XB and the analytical anisotropic algorithm for volumetric modulation arc therapy. REPORTS OF PRACTICAL ONCOLOGY AND RADIOTHERAPY : JOURNAL OF GREATPOLAND CANCER CENTER IN POZNAN AND POLISH SOCIETY OF RADIATION ONCOLOGY 2021; 26:481-488. [PMID: 34277105 PMCID: PMC8281916 DOI: 10.5603/rpor.a2021.0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/23/2021] [Indexed: 11/25/2022]
Abstract
Background This study aimed to verify the dosimetric impact of Acuros XB (AXB) (AXB, Varian Medical Systems Palo Alto CA, USA), a two model-based algorithm, in comparison with Anisotropic Analytical Algorithm (AAA ) calculations for prostate, head and neck and lung cancer treatment by volumetric modulated arc therapy (VMAT ), without primary modification to AA. At present, the well-known and validated AA algorithm is clinically used in our department for VMAT treatments of different pathologies. AXB could replace it without extra measurements. The treatment result and accuracy of the dose delivered depend on the dose calculation algorithm. Materials and method Ninety-five complex VMAT plans for different pathologies were generated using the Eclipse version 15.0.4 treatment planning system (TPS). The dose distributions were calculated using AA and AXB (dose-to-water, AXBw and dose-to-medium, AXBm), with the same plan parameters for all VMAT plans. The dosimetric parameters were calculated for each planning target volume (PTV) and involved organs at risk (OA R). The patient specific quality assurance of all VMAT plans has been verified by Octavius®-4D phantom for different algorithms. Results The relative differences among AA, AXBw and AXBm, with respect to prostate, head and neck were less than 1% for PTV D95%. However, PTV D95% calculated by AA tended to be overestimated, with a relative dose difference of 3.23% in the case of lung treatment. The absolute mean values of the relative differences were 1.1 ± 1.2% and 2.0 ± 1.2%, when comparing between AXBw and AA, AXBm and AA, respectively. The gamma pass rate was observed to exceed 97.4% and 99.4% for the measured and calculated doses in most cases of the volumetric 3D analysis for AA and AXBm, respectively. Conclusion This study suggests that the dose calculated to medium using AXBm algorithm is better than AAA and it could be used clinically. Switching the dose calculation algorithm from AA to AXB does not require extra measurements.
Collapse
Affiliation(s)
- Raju P Srivastava
- Radiotherapy Association Meuse Picardie, Centre Hospitalier Mouscron, Mouscron, Belgium.,Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - K Basta
- Radiotherapy Association Meuse Picardie, Centre Hospitalier Mouscron, Mouscron, Belgium
| | - Werner De Gersem
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium.,Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium
| | - Carlos De Wagter
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium.,Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Belgium
| |
Collapse
|
34
|
Muñoz-Montplet C, Fuentes-Raspall R, Jurado-Bruggeman D, Agramunt-Chaler S, Onsès-Segarra A, Buxó M. Dosimetric Impact of Acuros XB Dose-to-Water and Dose-to-Medium Reporting Modes on Lung Stereotactic Body Radiation Therapy and Its Dependency on Structure Composition. Adv Radiat Oncol 2021; 6:100722. [PMID: 34258473 PMCID: PMC8256186 DOI: 10.1016/j.adro.2021.100722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/28/2022] Open
Abstract
Purpose Our purpose was to assess the dosimetric effect of switching from the analytical anisotropic algorithm (AAA) to Acuros XB (AXB), with dose-to-medium (Dm) and dose-to-water (Dw) reporting modes, in lung stereotactic body radiation therapy patients and determine whether planning-target-volume (PTV) dose prescriptions and organ-at-risk constraints should be modified under these circumstances. Methods and Materials We included 54 lung stereotactic body radiation therapy patients. We delineated the PTV, the ipsilateral lung, the contralateral lung, the heart, the spinal cord, the esophagus, the trachea, proximal bronchi, the ribs, and the great vessels. We performed dose calculations with AAA and AXB, then compared clinically relevant dose-volume parameters. Paired t tests were used to analyze differences of means. We propose a method, based on the composition of the involved structures, for predicting differences between AXB Dw and Dm calculations. Results The largest difference between the algorithms was 4%. Mean dose differences between AXB Dm and AXB Dw depended on the average composition of the volumes. Compared with AXB, AAA underestimated all PTV dose-volume parameters (-0.7 Gy to -0.1 Gy) except for gradient index, which was significantly higher (4%). It also underestimated V5 of the contralateral lung (-0.3%). Significant differences in near-maximum doses (D2) to the ribs were observed between AXB Dm and AAA (1.7%) and between AXB Dw and AAA (-1.6%). AAA-calculated D2 was slightly higher in the remaining organs at risk. Conclusions Differences between AXB and AAA are below the threshold of clinical detectability (5%) for most patients. For a small subgroup, the difference in maximum doses to the ribs between AXB Dw and AXB Dm may be clinically significant. The differences in dose volume parameters between AXB Dw and AXB Dm can be predicted with reference to structure composition.
Collapse
Affiliation(s)
- Carles Muñoz-Montplet
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Avda. França s/n, 17007 Girona, Spain.,Department of Medical Sciences, University of Girona, C/Emili Grahit 77, 17003 Girona, Spain
| | - Rafael Fuentes-Raspall
- Department of Medical Sciences, University of Girona, C/Emili Grahit 77, 17003 Girona, Spain.,Radiation Oncology Department, Institut Català d'Oncologia, Avda. França s/n, 17007 Girona, Spain
| | - Diego Jurado-Bruggeman
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Avda. França s/n, 17007 Girona, Spain
| | - Sebastià Agramunt-Chaler
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Avda. França s/n, 17007 Girona, Spain
| | - Albert Onsès-Segarra
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Avda. França s/n, 17007 Girona, Spain
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, Edifici M2, 17190, Salt, Spain
| |
Collapse
|
35
|
Cheng ZJ, Bromley RM, Oborn B, Booth JT. Radiotherapy dose calculations in high-Z materials: comprehensive comparison between experiment, Monte Carlo, and conventional planning algorithms. Biomed Phys Eng Express 2021; 7. [PMID: 33836524 DOI: 10.1088/2057-1976/abf6ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/09/2021] [Indexed: 11/12/2022]
Abstract
Purpose. To compare the accuracies of the AAA and AcurosXB dose calculation algorithms and to predict the change in the down-stream and lateral dose deposition of high energy photons in the presence of material with densities higher that commonly found in the body.Method. Metal rods of titanium (d = 4.5 g cm-3), stainless steel (d = 8 g cm-3) and tungsten (d = 19.25 g cm-3) were positioned in a phantom. Film was position behind and laterally to the rods to measure the dose distribution for a 6 MV, 18 MV and 10 FFF photon beams. A DOSXYZnrc Monte Carlo simulation of the experimental setup was performed. The AAA and AcurosXB dose calculation algorithms were used to predict the dose distributions. The dose from film and DOSXYZnrc were compared with the dose predicted by AAA and AcurosXB.Results. AAA overestimated the dose behind the rods by 15%-25% and underestimated the dose laterally to the rods by 5%-15% depending on the range of materials and energies investigated. AcurosXB overestimated the dose behind the rods by 1%-18% and underestimated the dose laterally to the rods by up to 5% depending on the range of material and energies investigated.Conclusion. AAA cannot deliver clinically acceptable dose calculation results at a distance less than 10 mm from metals, for a single field treatment. Acuros XB is able to handle metals of low atomic numbers (Z ≤ 26), but not tungsten (Z = 74). This can be due to the restriction of the CT-density table in EclipseTMTPS, which has an upper HU limit of 10501.
Collapse
Affiliation(s)
- Zhangkai J Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,School of Physics, University of Sydney, Sydney NSW, Australia
| | - Regina M Bromley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Australia
| | - Brad Oborn
- Illawarra Cancer Care Centre, Wollongong Hospital, Australia.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Australia
| | - Jeremy T Booth
- School of Physics, University of Sydney, Sydney NSW, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, Australia
| |
Collapse
|
36
|
Martin-Martin G, Walter S, Guibelalde E. Dose accuracy improvement on head and neck VMAT treatments by using the Acuros algorithm and accurate FFF beam calibration. ACTA ACUST UNITED AC 2021; 26:73-85. [PMID: 33948305 DOI: 10.5603/rpor.a2021.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
Background The purpose of this study was to assess dose accuracy improvement and dosimetric impact of switching from the anisotropic analytical algorithm (AA) to the Acuros XB algorithm (AXB) when performing an accurate beam calibration in head and neck (H&N) FFF-VMAT treatments. Materials and methods Twenty H&N cancer patients treated with FFF-VMAT techniques were included. Calculations were performed with the AA and AXB algorithm (dose-to-water - AXBw- and dose-to-medium - AXBm-). An accurate beam calibration was used for AXB calculations. Dose prescription to the tumour (PTV70) and at-risk-nodal region (PTV58.1) were 70 Gy and 58.1 Gy, respectively. A PTV70_bone including bony structures in PTV70 was contoured. Dose-volume parameters were compared between the algorithms. Statistical tests were used to analyze the differences in mean values and the correlation between compliance with the D95 > 95% requirement and occurrence of local recurrence. Results AA systematically overestimated the dose compared to AXB algorithm with mean dose differences within 1.3 Gy/2%, except for the PTV70_bone (2.2 Gy/3.2%). Dose differences were significantly higher for AXBm calculations when including accurate beam calibration (maximum dose differences up to 2.8 Gy/4.1% and 4.2 Gy/6.3% for PTV70 and PTV70_bone, respectively). 80% of AA-calculated plans did not meet the D95 > 95% requirement after recalculation with AXBm and accurate beam calibration. The reduction in D95 coverage in the tumour was not clinically relevant. Conclusions Using the AXBm algorithm and carefully reviewing the beam calibration procedure in H&N FFF-VMAT treatments ensures (1) dose accuracy increase by approximately 3%; (2) a consequent dose increase in targets; and (3) a dose reporting mode that is consistent with the trend of current algorithms.
Collapse
Affiliation(s)
- Guadalupe Martin-Martin
- Medical Physics and Radiation Protection Service, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Stefan Walter
- Department of Medicine and Public Health, Rey Juan Carlos University, Alcorcón, Spain
| | - Eduardo Guibelalde
- Medical Physics Group, Department of Radiology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
37
|
Halvorsen PH, Hariharan N, Morelli ZT, Iftimia IN. Modeling of kyphoplasty cement for accurate dose calculations. J Appl Clin Med Phys 2021; 22:261-272. [PMID: 33599374 PMCID: PMC7984498 DOI: 10.1002/acm2.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/30/2020] [Accepted: 12/29/2020] [Indexed: 12/01/2022] Open
Abstract
We have determined the optimal method for modeling kyphoplasty cement to enable accurate dose calculations in the Eclipse treatment planning system (TPS). The cement studied (Medtronic Kyphon HV‐R®) consists of 30% Barium, 68% polymethylmethacrylate (PMMA), and 2% benzoyl peroxide, formulated to be radiopaque with kV imaging systems. Neither Barium nor PMMA have a high physical density, resulting in different interaction characteristics for megavoltage treatment beams compared to kV imaging systems. This can lead to significant calculation errors if density mapping is performed using a standard CT number to density curve. To properly characterize the cement for dose calculation, we 3D printed a hemi‐cylindrical container to fit adjacent to a micro‐chamber insert for an anthropomorphic phantom, and filled the container with Kyphon cement. We CT scanned the combination, modeled the cement with multiple material assignments in the TPS, designed plans with different field sizes and beam geometry for five photon modes, and measured the doses for all plans. All photon energies show significant error in calculated dose when the cement is modeled based on the CT number. Of the material assignments we evaluated, polytetrafluoroethylene (PTFE) showed the best overall agreement with measurement. Calculated and measured doses agree within 3.5% for a 340‐degree arc technique (which averages transmission and scatter effects) with the Acuros XB algorithm and PTFE as the assigned material. To confirm that PTFE is a reasonable substitute for kyphoplasty cement, we performed measurements in a slab phantom using rectangular inserts of cement and PTFE, showing average agreement of all photon modes within 2%. Based on these findings, we conclude that the PTFE material assignment provides acceptable dose calculation accuracy for the AAA and Acuros XB photon algorithms in the Eclipse TPS. We recommend that the cement be delineated as a structure and assigned the PTFE material for accurate dose calculation.
Collapse
Affiliation(s)
- Per H Halvorsen
- Department of Radiation Oncology, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, MA, USA
| | - Navneeth Hariharan
- Department of Radiation Oncology, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, MA, USA
| | - Zackary T Morelli
- Department of Radiation Oncology, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, MA, USA
| | - Ileana N Iftimia
- Department of Radiation Oncology, Lahey Hospital and Medical Center, Beth Israel Lahey Health, Burlington, MA, USA
| |
Collapse
|
38
|
Azzi A, Ryangga D, Pawiro SA. Comparison of Air-Gaps Effect in a Small Cavity on Dose Calculation for 6 MV Linac. J Biomed Phys Eng 2021; 11:17-28. [PMID: 33564636 PMCID: PMC7859373 DOI: 10.31661/jbpe.v0i0.2004-1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
Abstract
Background: Many authors stated that cavities or air-gaps were the main challenge of dose calculation for head and neck with flattening filter medical linear accelerator (Linac) irradiation. Objective: The study aimed to evaluate the effect of air-gap dose calculation on flattening-filter-free (FFF) small field irradiation. Material and Methods: In this comparative study, we did the experimental and Monte Carlo (MC) simulation to evaluate the presence of heterogeneities in radiotherapy. We simulated the dose distribution on virtual phantom and the patient’s CT image to determine the air-gap effect of open small field and modulated photon beam, respectively. The dose ratio of air-gaps to tissue-equivalent was calculated both in Analytical Anisotropic Algorithm (AAA) and MC. Results: We found that the dose ratio of air to tissue-equivalent tends to decrease with a larger field size. This correlation was linear with a slope of -0.198±0.001 and -0.161±0.014 for both AAA and MC, respectively. On the other hand, the dose ratio below the air-gap was field size-dependent. The AAA to MC dose calculation as the impact of air-gap thickness and field size varied from 1.57% to 5.35% after the gap. Besides, patient’s skin and oral cavity on head and neck case received a large dose discrepancy according to this study. Conclusion: The dose air to tissue-equivalent ratio decreased with smaller air gaps and larger field sizes. Dose correction for AAA calculation of open small field size should be considered after small air-gaps. However, delivered beam from others gantry angle reduced this effect on clinical case.
Collapse
Affiliation(s)
- A Azzi
- MSc, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, West Java, 16424, Indonesia
| | - D Ryangga
- MSc, Department of Radiotherapy, Pasar Minggu Regional General Hospital, South Jakarta, Jakarta, 12550, Indonesia
| | - S A Pawiro
- PhD, Department of Physics, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, West Java, 16424, Indonesia
| |
Collapse
|
39
|
Bagdare P, Dubey S, Ghosh S. Dosimetric evaluation of analytic anisotropic algorithm and Acuros XB algorithm using in-house developed heterogeneous thorax phantom and homogeneous slab phantom for stereotactic body radiation therapy technique. RADIATION PROTECTION AND ENVIRONMENT 2021. [DOI: 10.4103/rpe.rpe_52_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Swan A, Yang R, Zelyak O, St-Aubin J. Feasibility of streamline upwind Petrov-Galerkin angular stabilization of the linear Boltzmann transport equation with magnetic fields. Biomed Phys Eng Express 2020; 7. [PMID: 34037544 DOI: 10.1088/2057-1976/abd239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 11/11/2022]
Abstract
To accurately model dose in a magnetic field, the Lorentz force must be included in the traditional linear Boltzmann transport equation (LBTE). Both angular and spatial stabilization are required to deterministically solve this equation. In this work, a streamline upwind Petrov-Galerkin (SUPG) method is applied to achieve angular stabilization of the LBTE with magnetic fields. The spectral radius of the angular SUPG method is evaluated using a Fourier analysis method to characterize the convergence properties. Simulations are then performed on homogeneous phantoms and two heterogeneous slab geometry phantoms containing water, bone, lung/air and water for 0.5 T parallel and 1.5 T perpendicular magnetic field configurations. Fourier analysis determined that the spectral radius of the SUPG scheme is unaffected by magnetic field strength and the SUPG free parameter, indicating that the Gauss-Seidel source iteration method is unconditionally stable and the convergence rate is not degraded with increasing magnetic field strength. 100% of simulation points passed a 3D gamma analysis at a 2%/2 mm (3%/3 mm) gamma criterion for both magnetic field configurations in the homogeneous phantom study, with the exception of the 1.5 T perpendicular magnetic field in the pure lung phantom where a 77.4% (87.0%) pass rate was achieved. Simulations in the lung slab geometry phantom resulted in 100% of points passing a 2%/2 mm gamma analysis in a 0.5 T parallel magnetic field, and 97.7% (98.8%) of points passing a 2%/2 mm (3%/3 mm) gamma criterion in a 1.5 T perpendicular magnetic field. For the air slab geometry phantom, 72.1% (79.2%) of points passed a 2%/2 mm gamma criterion in a 0.5 T parallel magnetic field and 90.3% (92.8%) passed the same gamma criterion in a 1.5 T perpendicular magnetic field. While the novel SUPG angular stabilization method shows feasibility in some cases, it was found that the accuracy of this method was degraded for very low density media such as air.
Collapse
Affiliation(s)
- Amanda Swan
- Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Ray Yang
- BC Cancer Agency Sindi Ahluwalia Hawkins Centre for the Southern Interior, Kelowna, British Columbia, Canada
| | | | - Joel St-Aubin
- University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
41
|
Critchfield LC, Bernard ME, Randall ME, McGarry RC, Pokhrel D. Risk of target coverage loss for stereotactic body radiotherapy treatment of synchronous lung lesions via single-isocenter volumetric modulated arc therapy. J Appl Clin Med Phys 2020; 22:251-260. [PMID: 33342042 PMCID: PMC7856510 DOI: 10.1002/acm2.13145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Treating multiple lung lesions synchronously via single‐isocenter volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) improves treatment efficiency and patient compliance. However, aligning multiple lung tumors accurately on single pretreatment cone beam CTs (CBCTs) can be problematic. Tumors misaligned could lead to target coverage loss. To quantify this potential target coverage loss due to small, clinically realistic setup errors, a novel simulation method was developed. This method was used on 26 previously treated patients with two metastatic lung lesions. Patients were treated with 4D CT‐based, highly conformal noncoplanar VMAT plans (clinical VMAT) with 6MV‐flattening filter free (FFF) beam using AcurosXB dose calculation algorithm with heterogeneity corrections. A single isocenter was placed approximately between the lesions to improve patient convenience and clinic workflow. Average isocenter to tumor distance was 5.9 cm. Prescription dose was 54 Gy/50 Gy in 3/5 fractions. For comparison, a plan summation (simulated VMAT) was executed utilizing randomly simulated, clinically relevant setup errors, obtained from pretreatment setup, per treatment fraction, in Eclipse treatment planning system for each of the six degrees of freedom within ± 5.0 mm and ± 2°. Simulations yielded average deviations of 27.4% (up to 72% loss) (P < 0.001) from planned target coverage when treating multiple lung lesions using a single‐isocenter plan. The largest deviations from planned coverage and desired biological effective dose (BED10, with α/β = 10 Gy) were seen for the smallest targets (<10 cc), some of which received < 100 Gy BED10. Patient misalignment resulted in substantial decrease in conformity and increase in the gradient index, violating major characteristics of SBRT. Statistically insignificant differences were seen for normal tissue dose. Although, clinical follow‐up of these patients is ongoing, the authors recommend an alternative treatment planning strategy to minimize the probability of a geometric miss when treating small lung lesions synchronously with single‐isocenter VMAT SBRT plans.
Collapse
Affiliation(s)
- Lana C Critchfield
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Mark E Bernard
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Marcus E Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| |
Collapse
|
42
|
Visak J, McGarry RC, Randall ME, Pokhrel D. Development and clinical validation of a robust knowledge-based planning model for stereotactic body radiotherapy treatment of centrally located lung tumors. J Appl Clin Med Phys 2020; 22:146-155. [PMID: 33285034 PMCID: PMC7856508 DOI: 10.1002/acm2.13120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To develop a robust and adaptable knowledge-based planning (KBP) model with commercially available RapidPlanTM for early stage, centrally located non-small-cell lung tumors (NSCLC) treated with stereotactic body radiotherapy (SBRT) and improve a patient's"simulation to treatment" time. METHODS The KBP model was trained using 86 clinically treated high-quality non-coplanar volumetric modulated arc therapy (n-VMAT) lung SBRT plans with delivered prescriptions of 50 or 55 Gy in 5 fractions. Another 20 independent clinical n-VMAT plans were used for validation of the model. KBP and n-VMAT plans were compared via Radiation Therapy Oncology Group (RTOG)-0813 protocol compliance criteria for conformity (CI), gradient index (GI), maximal dose 2 cm away from the target in any direction (D2cm), dose to organs-at-risk (OAR), treatment delivery efficiency, and accuracy. KBP plans were re-optimized with larger calculation grid size (CGS) of 2.5 mm to assess feasibility of rapid adaptive re-planning. RESULTS Knowledge-based plans were similar or better than n-VMAT plans based on a range of target coverage and OAR metrics. Planning target volume (PTV) for validation cases was 30.5 ± 19.1 cc (range 7.0-71.7 cc). KBPs provided an average CI of 1.04 ± 0.04 (0.97-1.11) vs. n-VMAT plan'saverage CI of 1.01 ± 0.04 (0.97-1.17) (P < 0.05) with slightly improved GI with KBPs (P < 0.05). D2cm was similar between the KBPs and n-VMAT plans. KBPs provided lower lung V10Gy (P = 0.003), V20Gy (P = 0.007), and mean lung dose (P < 0.001). KBPs had overall better sparing of OAR at the minimal increased of average total monitor units and beam-on time by 460 (P < 0.05) and 19.2 s, respectively. Quality assurance phantom measurement showed similar treatment delivery accuracy. Utilizing a CGS of 2.5 mm in the final optimization improved planning time (mean, 5 min) with minimal or no cost to the plan quality. CONCLUSION The RTOG-compliant adaptable RapidPlan model for early stage SBRT treatment of centrally located lung tumors was developed. All plans met RTOG dosimetric requirements in less than 30 min of planning time, potentially offering shorter "simulation to treatment" times. OAR sparing via KBPs may permit tumorcidal dose escalation with minimal penalties. Same day adaptive re-planning is plausible with a 2.5-mm CGS optimizer setting.
Collapse
Affiliation(s)
- Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Marcus E Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| |
Collapse
|
43
|
Visak J, Ge GY, McGarry RC, Randall M, Pokhrel D. An Automated knowledge-based planning routine for stereotactic body radiotherapy of peripheral lung tumors via DCA-based volumetric modulated arc therapy. J Appl Clin Med Phys 2020; 22:109-116. [PMID: 33270975 PMCID: PMC7856484 DOI: 10.1002/acm2.13114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To develop a knowledge‐based planning (KBP) routine for stereotactic body radiotherapy (SBRT) of peripherally located early‐stage non‐small‐cell lung cancer (NSCLC) tumors via dynamic conformal arc (DCA)‐based volumetric modulated arc therapy (VMAT) using the commercially available RapidPlanTM software. This proposed technique potentially improves plan quality, reduces complexity, and minimizes interplay effect and small‐field dosimetry errors associated with treatment delivery. Methods KBP model was developed and validated using 70 clinically treated high quality non‐coplanar VMAT lung SBRT plans for training and 20 independent plans for validation. All patients were treated with 54 Gy in three treatments. Additionally, a novel k‐DCA planning routine was deployed to create plans incorporating historical three‐dimensional‐conformal SBRT planning practices via DCA‐based approach prior to VMAT optimization in an automated planning engine. Conventional KBPs and k‐DCA plans were compared with clinically treated plans per RTOG‐0618 requirements for target conformity, tumor dose heterogeneity, intermediate dose fall‐off and organs‐at‐risk (OAR) sparing. Treatment planning time, treatment delivery efficiency, and accuracy were recorded. Results KBPs and k‐DCA plans were similar or better than clinical plans. Average planning target volume for validation was 22.4 ± 14.1 cc (7.1–62.3 cc). KBPs and k‐DCA plans provided similar conformity to clinical plans with average absolute differences of 0.01 and 0.01, respectively. Maximal doses to OAR were lowered in both KBPs and k‐DCA plans. KBPs increased monitor units (MU) on average 1316 (P < 0.001) while k‐DCA reduced total MU on average by 1114 (P < 0.001). This routine can create k‐DCA plan in less than 30 min. Independent Monte Carlo calculation demonstrated that k‐DCA plans showed better agreement with planned dose distribution. Conclusion A k‐DCA planning routine was developed in concurrence with a knowledge‐based approach for the treatment of peripherally located lung tumors. This method minimizes plan complexity associated with model‐based KBP techniques and improve plan quality and treatment planning efficiency.
Collapse
Affiliation(s)
- Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Gary Y Ge
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Marcus Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| |
Collapse
|
44
|
Principi S, Wang A, Maslowski A, Wareing T, Jordan P, Schmidt TG. Deterministic linear Boltzmann transport equation solver for patient-specific CT dose estimation: Comparison against a Monte Carlo benchmark for realistic scanner configurations and patient models. Med Phys 2020; 47:6470-6483. [PMID: 32981038 PMCID: PMC7837758 DOI: 10.1002/mp.14494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Epidemiological evidence suggests an increased risk of cancer related to computed tomography (CT) scans, with children exposed to greater risk. The purpose of this work is to test the reliability of a linear Boltzmann transport equation (LBTE) solver for rapid and patient-specific CT dose estimation. This includes building a flexible LBTE framework for modeling modern clinical CT scanners and to validate the resulting dose maps across a range of realistic scanner configurations and patient models. METHODS In this study, computational tools were developed for modeling CT scanners, including a bowtie filter, overrange collimation, and tube current modulation. The LBTE solver requires discretization in the spatial, angular, and spectral dimensions, which may affect the accuracy of scanner modeling. To investigate these effects, this study evaluated the LBTE dose accuracy for different discretization parameters, scanner configurations, and patient models (male, female, adults, pediatric). The method used to validate the LBTE dose maps was the Monte Carlo code Geant4, which provided ground truth dose maps. LBTE simulations were implemented on a GeForce GTX 1080 graphic unit, while Geant4 was implemented on a distributed cluster of CPUs. RESULTS The agreement between Geant4 and the LBTE solver quantifies the accuracy of the LBTE, which was similar across the different protocols and phantoms. The results suggest that 18 views per rotation provides sufficient accuracy, as no significant improvement in the accuracy was observed by increasing the number of projection views. Considering this discretization, the LBTE solver average simulation time was approximately 30 s. However, in the LBTE solver the phantom model was implemented with a lower voxel resolution with respect to Geant4, as it is limited by the memory of the GPU. Despite this discretization, the results showed a good agreement between the LBTE and Geant4, with root mean square error of the dose in organs of approximately 3.5% for most of the studied configurations. CONCLUSIONS The LBTE solver is proposed as an alternative to Monte Carlo for patient-specific organ dose estimation. This study demonstrated accurate organ dose estimates for the rapid LBTE solver when considering realistic aspects of CT scanners and a range of phantom models. Future plans will combine the LBTE framework with deep learning autosegmentation algorithms to provide near real-time patient-specific organ dose estimation.
Collapse
Affiliation(s)
- Sara Principi
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI 53201, USA
| | - Adam Wang
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | - Todd Wareing
- Varian Medical Systems, Palo Alto, CA 94304, USA
| | - Petr Jordan
- Varian Medical Systems, Palo Alto, CA 94304, USA
| | - Taly Gilat Schmidt
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI 53201, USA
| |
Collapse
|
45
|
Dosimetric impact of switching from AAA to Acuros dose-to-water and dose-to-medium for RapidArc plans of nasopharyngeal carcinomas. Cancer Radiother 2020; 24:842-850. [PMID: 33153875 DOI: 10.1016/j.canrad.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 11/22/2022]
Abstract
PURPOSE This work aims to evaluate the dosimetric consequences of replacing the Anisotropic Analytical Algorithm (AAA) by Acuros XB (AXB), dose-to-water (Dw) or dose-to-medium (Dm), for RapidArc plans of nasopharyngeal carcinomas (NPC). MATERIALS AND METHODS Seventeen NPC plans created with AAA (v15.6) were recalculated with AXB (v15.6) Dw and Dm. The dose-volume parameters to the planning target volumes (PTV) and relevant organs at risk (OAR) were compared. The high dose PTV was divided into bone, air and tissue components and the comparison was performed for each of them. RESULTS AXB Dw revealed no significant differences in the PTVs compared to AAA. Lower values were observed to spinal cord, brainstem, oral cavity and parotids (0.5% to 2.3%), and higher values to cochleas (up to 5.4%) and mandible (up to 6.7%). AXB Dm predicted lower values than AAA for all PTVs and OARs (2.0% to 6.1%). For the bone PTV subvolume, AXB Dw and Dm predicted respectively higher (2.4%) and lower (2.2% to 3.4%) values. No significant differences were noted in air. AXB predicted lower values than AAA in soft tissues (0.4% to 1.6%). The largest difference was found to the mandible V60Gy parameter, with median differences of 6.7% for AXB Dw and -6.0% for AXB Dm. CONCLUSION Significant dose differences are expected when switching from AAA to AXB in NPC cases. The dose prescriptions and the tolerance limits for some OARs, especially those of high density, may need to be adjusted depending on the selected dose calculation algorithm and reporting mode.
Collapse
|
46
|
Kinhikar R, Saini V, Upreti RR, Kale S, Sutar A, Tambe C, Kadam S. Measurement of the small field output factors for 10 MV photon beam using IAEA TRS-483 dosimetry protocol and implementation in Eclipse TPS commissioning. Biomed Phys Eng Express 2020; 6. [DOI: 10.1088/2057-1976/abb319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Abstract
Abstract
Dosimetry of small fields (SF) is vital for the success of highly conformal techniques. IAEA along with AAPM recently published a code of practice TRS-483 for SF dosimetry. The scope of this paper is to investigate the performance of three different detectors with 10 MV with-flatting-filter (WFF) beam using TRS-483 for SF dosimetry and subsequent commissioning of the Eclipse treatment planning system (TPS version-13.6) for SF data. SF dosimetry data (beam-quality TPR
20,10(10), cross-calibration, beam-profile, and field-output-factor (F.O.F)) measurements were performed for PTW31006-pinpoint, IBA-CC01 and IBA-EFD-3G diode detectors in nominal field size (F.S) range 0.5 × 0.5cm2 to 10 × 10 cm2 with water and solid water medium using Varian Truebeam linac. However, Eclipse-TPS commissioning data was acquired using IBA-EFD-3G diode, and absolute dose calibration was performed with FC-65G detector. The dosimetric performance of the Eclipse-TPS was validated using TLD-LiF chips, IBA-PFD, and IBA-EFD-3G diodes. Dosimetric performance of the PTW31006-pinpoint, IBA-CC01, and IBA-EFD-3G detectors was successfully tested for SF dosimetry. The F.O.Fs were generated and found in close agreement for all F.S except 0.5 × 0.5cm2. It is also found that TPR20,10(10) value can be derived within 0.5% accuracy from a non-reference field using Palmans equation. Cross-calibration can be performed in F.S 6 × 6 cm2 with a maximum variation of 0.5% with respect to 10 × 10cm2. During profile measurement, the full-width half-maxima (FWHM) of F.S 0.5 × 0.5cm2 was found maximum deviated from the geometric F.S. In addition, Eclipse-TPS was commissioned along with some limitations: F.O.F below F.S 1 × 1cm2 was ignored by TPS, PDD and profiles were dropped from configuration below F.S 2 × 2 cm2, and F.O.F which does not satisfy the condition 0.7 < A/B < 1.4 (A and B are FWHM in cross-line and in-line direction) have higher uncertainty than specified in TRS-483. Validation tests for Eclipse-TPS generated plans were also performed. The measured dose was in close agreement (3%) with TPS calculated dose up to F.S 1.5 × 1.5cm2.
Collapse
|
47
|
Hu Y, Byrne M, Archibald-Heeren B, Collett N, Liu G, Aland T. Validation of the preconfigured Varian Ethos Acuros XB Beam Model for treatment planning dose calculations: A dosimetric study. J Appl Clin Med Phys 2020; 21:27-42. [PMID: 33068070 PMCID: PMC7769396 DOI: 10.1002/acm2.13056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022] Open
Abstract
Varian (Palo Alto, California, United States) recently released an online adaptation treatment platform, Ethos, which has introduced a new Dose Preview and Automated Plan Generation module despite sharing identical beam data with the existing Halcyon linac. The module incorporates a preconfigured beam model and the Acuros XB algorithm (Ethos AXB model) to generate final dose calculations from an initial fluence optimization. In this study, we comprehensively validated the accuracy of the Ethos AXB model by comparing it against the Halcyon AXB model, the Halcyon Anisotropic Analytical Algorithm (AAA) model, and measurements acquired on an Ethos linac. Results indicated that the Ethos AXB model demonstrated a comparable if not superior dosimetric accuracy to the Halcyon AXB model in basic and complex calculations, and at the same time its dosimetric accuracy in modulated and heterogeneous plans was better than that of the Halcyon AAA model. Despite the fact that the same algorithm was utilized, the Ethos AXB model and the Halcyon AXB model still exhibited variations across a range of tests, although these variations were predominantly insignificant in the clinical environment. The accuracy of the Ethos AXB model has been successfully verified in this study and is considered appropriate for the current clinical scope. On the basis of this study, clinical physicists can perform a data validation instead of a full data commissioning when implementing the Ethos system, thereby adopting a more efficient approach for Ethos installation.
Collapse
Affiliation(s)
- Yunfei Hu
- Icon Cancer Center Gosford, Gosford, NSW, Australia
| | - Mikel Byrne
- Icon Cancer Centre Wahroonga, Wahroonga, NSW, Australia
| | | | - Nick Collett
- Icon Cancer Centre Wahroonga, Wahroonga, NSW, Australia
| | - Guilin Liu
- Icon Cancer Centre Wahroonga, Wahroonga, NSW, Australia
| | - Trent Aland
- Icon Core Office, South Brisbane, QLD, Australia
| |
Collapse
|
48
|
Ohira S, Takegawa H, Miyazaki M, Koizumi M, Teshima T. Monte Carlo Modeling of the Agility MLC for IMRT and VMAT Calculations. In Vivo 2020; 34:2371-2380. [PMID: 32871762 DOI: 10.21873/invivo.12050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The Purpose of this study was to develop a Monte Carlo (MC) model for the Agility multileaf collimator (MLC) mounted and to validate its accuracy. MATERIALS AND METHODS To describe the Agility MLC in the BEAMnrc MC code, an existing component module code was modified to include its characteristics. The leaf characterization of the MC model was validated by comparing the calculated interleaf transmission and tongue-and-groove effect with EBT2 film and diode measurements and IMRT and VMAT calculations with film measurements. RESULTS Agreement between mean calculated and measured leaf transmissions was within 0.1%. The discrepancy between MC calculation and measurement in a static irregular field was less than 2%/2 mm. Gamma analysis of the comparison of MC and EBT2 film measurements in IMRT and VMAT fields yielded pass rates of 99.1% and 99.5% with 3%/3 mm criteria, respectively. CONCLUSION Our findings demonstrate the accuracy of the MC model using an adapted BEAMnrc component module for the Agility MLC.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan .,Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Takegawa
- Department of Radiation Oncology, Kansai Medical University Hospital, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
49
|
Fogliata A, Esposito E, Paganini L, Reggiori G, Tomatis S, Scorsetti M, Cozzi L. The impact of scanning data measurements on the Acuros dose calculation algorithm configuration. Radiat Oncol 2020; 15:169. [PMID: 32650815 PMCID: PMC7350585 DOI: 10.1186/s13014-020-01610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022] Open
Abstract
Background Many dose calculation algorithms for radiotherapy planning need to be configured for each clinical beam using pre-defined measurements. An optimization process adjusts the physical parameters able to estimate the energy released in the medium in any geometrical condition. This work investigates the impact of measured input data quality on the configuration of the type “c” Acuros-XB dose calculation algorithm in the Eclipse (Varian Medical Systems) treatment planning system. Methods Different datasets were acquired with the BeamScan water phantom (PTW) to configure 6 MV beams, for both flattened (6X) and flattening filter free mode (6FFF) for a Varian TrueBeam: (i) a correct dataset measured using a Semiflex-3D ion chamber, (ii) a set in missing lateral scatter conditions (MLS), (iii) a set with incorrect effective point of measurement (EPoM), (iv) sets acquired with PinPoint-3D chamber, DiodeP, microDiamond detectors. The Acuros-XB dose calculation algorithm (version 15.6) was configured using the reference dataset, the sets measured with the different detectors, with intentional errors, and using the representative beam data (RBD) made available by the vendor. The physical parameters obtained from each optimization process (spectrum, mean radial energy, electron contamination), were analyzed and compared. Calculated data were finally compared against the input and reference measurements. Results Concerning the physical parameters, the configurations presenting the largest differences were the MLS conditions (mean radial energy) and the incorrect EPoM (electron contamination). The calculation doses relative to the input data present low accuracy, with mean differences > 2% in some conditions. The PinPoint-3D ion chamber presented lower accuracy for the 6FFF beam. Regarding the RBD, calculations compared well with the input data used for the configuration, but not with the reference data. Conclusion The MLS conditions and the incorrect setting of the EPoM lead to erroneous configurations and should be avoided. The choice of an appropriate detector is important. Whenever the representative beam data is used, a careful check under more clinical geometrical conditions is advised.
Collapse
Affiliation(s)
- A Fogliata
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy.
| | - E Esposito
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy
| | - L Paganini
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy
| | - G Reggiori
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy
| | - S Tomatis
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy
| | - M Scorsetti
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan-Pieve Emanuele, Italy
| | - L Cozzi
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Milan-Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan-Pieve Emanuele, Italy
| |
Collapse
|
50
|
Xing Y, Zhang Y, Nguyen D, Lin MH, Lu W, Jiang S. Boosting radiotherapy dose calculation accuracy with deep learning. J Appl Clin Med Phys 2020; 21:149-159. [PMID: 32559018 PMCID: PMC7484829 DOI: 10.1002/acm2.12937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
In radiotherapy, a trade‐off exists between computational workload/speed and dose calculation accuracy. Calculation methods like pencil‐beam convolution can be much faster than Monte‐Carlo methods, but less accurate. The dose difference, mostly caused by inhomogeneities and electronic disequilibrium, is highly correlated with the dose distribution and the underlying anatomical tissue density. We hypothesize that a conversion scheme can be established to boost low‐accuracy doses to high‐accuracy, using intensity information obtained from computed tomography (CT) images. A deep learning‐driven framework was developed to test the hypothesis by converting between two commercially available dose calculation methods: Anisotropic analytic algorithm (AAA) and Acuros XB (AXB). A hierarchically dense U‐Net model was developed to boost the accuracy of AAA dose toward the AXB level. The network contained multiple layers of varying feature sizes to learn their dose differences, in relationship to CT, both locally and globally. Anisotropic analytic algorithm and AXB doses were calculated in pairs for 120 lung radiotherapy plans covering various treatment techniques, beam energies, tumor locations, and dose levels. For each case, the CT and the AAA dose were used as the input and the AXB dose as the “ground‐truth” output, to train and test the model. The mean squared errors (MSEs) and gamma passing rates (2 mm/2% & 1 mm/1%) were calculated between the boosted AAA doses and the “ground‐truth” AXB doses. The boosted AAA doses demonstrated substantially improved match to the “ground‐truth” AXB doses, with average (± s.d.) gamma passing rate (1 mm/1%) 97.6% (±2.4%) compared to 87.8% (±9.0%) of the original AAA doses. The corresponding average MSE was 0.11(±0.05) vs 0.31(±0.21). Deep learning is able to capture the differences between dose calculation algorithms to boost the low‐accuracy algorithms. By combining a less accurate dose calculation algorithm with a trained deep learning model, dose calculation can potentially achieve both high accuracy and efficiency.
Collapse
Affiliation(s)
- Yixun Xing
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - You Zhang
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mu-Han Lin
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weiguo Lu
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steve Jiang
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|