1
|
Buteau JP, Kostos L, Alipour R, Jackson P, McInstosh L, Emmerson B, Haskali MB, Xie J, Medhurst E, Ravi R, Gonzalez BD, Fettke H, Blyth B, Furic L, Owen K, Sandhu S, Murphy DG, Azad AA, Hofman MS. Clinical Trial Protocol for VIOLET: A Single-Center, Phase I/II Trial Evaluation of Radioligand Treatment in Patients with Metastatic Castration-Resistant Prostate Cancer with [ 161Tb]Tb-PSMA-I&T. J Nucl Med 2024; 65:1231-1238. [PMID: 38991752 DOI: 10.2967/jnumed.124.267650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
[177Lu]Lu-PSMA is an effective class of therapy for patients with metastatic castration-resistant prostate cancer (mCRPC); however, progression is inevitable. The limited durability of response may be partially explained by the presence of micrometastatic deposits, which are energy-sheltered and receive low absorbed radiation with 177Lu due to the approximately 0.7-mm mean pathlength. 161Tb has abundant emission of Auger and conversion electrons that deposit a higher concentration of radiation over a shorter path, particularly to single tumor cells and micrometastases. 161Tb has shown in vitro and in vivo efficacy superior to that of 177Lu. We aim to demonstrate that [161Tb]Tb-PSMA-I&T will deliver effective radiation to sites of metastatic prostate cancer with an acceptable safety profile. Methods: This single-center, single-arm, phase I/II trial will recruit 30 patients with mCRPC. Key eligibility criteria include a diagnosis of mCRPC with progression after at least one line of taxane chemotherapy (unless medically unsuitable) and androgen receptor pathway inhibitor; prostate-specific membrane antigen-positive disease on [68Ga]Ga-PSMA-11 or [18F]DCFPyL PET/CT (SUVmax ≥ 20); no sites of discordance on [18F]FDG PET/CT; adequate bone marrow, hepatic, and renal function; an Eastern Cooperative Oncology Group performance status of no more than 2, and no prior treatment with another radioisotope. The dose escalation is a 3 + 3 design to establish the safety of 3 prespecified activities of [161Tb]Tb-PSMA-I&T (4.4, 5.5, and 7.4 GBq). The maximum tolerated dose will be defined as the highest activity level at which a dose-limiting toxicity occurs in fewer than 2 of 6 participants. The dose expansion will include 24 participants at the maximum tolerated dose. Up to 6 cycles of [161Tb]Tb-PSMA-I&T will be administered intravenously every 6 wk, with each subsequent activity reduced by 0.4 GBq. The coprimary objectives are to establish the maximum tolerated dose and safety profile (Common Terminology Criteria for Adverse Events version 5.0) of [161Tb]Tb-PSMA-I&T. Secondary objectives include measuring absorbed radiation dose (Gy), evaluating antitumor activity (prostate-specific antigen 50% response rate, radiographic and prostate-specific antigen progression-free survival, overall survival, objective response rate), and evaluating pain (Brief Pain Inventory-Short Form) and health-related quality of life (Functional Assessment of Cancer Therapy-Prostate and Functional Assessment of Cancer Therapy-Radionuclide Therapy). Conclusion: Enrollment was completed in February 2024. Patients are still receiving [161Tb]Tb-PSMA-I&T.
Collapse
Affiliation(s)
- James P Buteau
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise Kostos
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ramin Alipour
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Price Jackson
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lachlan McInstosh
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Brittany Emmerson
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mohammad B Haskali
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Radiopharmaceutical Production and Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jing Xie
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Elizabeth Medhurst
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rajeev Ravi
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Brian D Gonzalez
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, Florida
| | - Heidi Fettke
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
| | - Benjamin Blyth
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
| | - Luc Furic
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
| | - Katie Owen
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Arun A Azad
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Dalm S, Duan H, Iagaru A. Gastrin Releasing Peptide Receptors-targeted PET Diagnostics and Radionuclide Therapy for Prostate Cancer Management: Preclinical and Clinical Developments of the Past 5 Years. PET Clin 2024; 19:401-415. [PMID: 38644111 DOI: 10.1016/j.cpet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Each tumor has its own distinctive molecular identity. Treatment, therefore, should be tailored to this unique cancer phenotype. Theragnostics uses the same compound for targeted imaging and treatment, radiolabeled to an appropriate radionuclide, respectively. Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer, and radiolabeled GRPR antagonists have shown high diagnostic performance at staging and biochemical recurrence. Several GRPR-targeting theragnostic compounds have been developed preclinically. Their translation into clinics is underway with 4 clinical trials recruiting participants with GRPR-expressing tumors.
Collapse
Affiliation(s)
- Simone Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Heying Duan
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Konuparamban A, Nautiyal A, Jha AK, Mithun S, Srichandan T, Puranik A, Rangarajan V. Optimization of the number of post-therapeutic planar imaging time points for the most reliable organ and tumour dosimetry in peptide receptor radionuclide therapy. HEALTH AND TECHNOLOGY 2024; 14:799-815. [DOI: 10.1007/s12553-024-00867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/09/2024] [Indexed: 01/06/2025]
|
4
|
Vallot D, Brillouet S, Pondard S, Vija L, Texier JS, Dierickx L, Courbon F. Impact of different models based on blood samples and images for bone marrow dosimetry after 177Lu-labeled somatostatin-receptor therapy. EJNMMI Phys 2024; 11:32. [PMID: 38564043 PMCID: PMC10987460 DOI: 10.1186/s40658-024-00615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/15/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Peptide receptor radionuclide therapy with 177Lu-DOTATATE is a recognized option for treating neuroendocrine tumors and has few toxicities, except for the kidneys and bone marrow. The bone marrow dose is generally derived from a SPECT/CT image-based method with four timepoints or from a blood-based method with up to 9 timepoints, but there is still no reference method. This retrospective single-center study on the same cohort of patients compared the calculated bone marrow dose administered with both methods using mono, bi- or tri-exponential models. For the image-based method, the dose was estimated using Planetdose© software. Pearson correlation coefficients were calculated. We also studied the impact of late timepoints for both methods. RESULTS The bone marrow dose was calculated for 131 treatments with the blood-based method and for 17 with the image-based method. In the former, the median absorbed dose was 15.3, 20.5 and 28.3 mGy/GBq with the mono-, bi- and tri-exponential model, respectively. With the image-based method, the median absorbed dose was 63.9, 41.9 and 60.8 with the mono-, bi- and tri-exponential model, respectively. Blood samples after 24h post-injection did not evidence any change in the absorbed bone marrow dose with the bi-exponential model. On the contrary, the 6-day post-injection timepoint was more informative with the image-based model. CONCLUSION This study confirms that the estimated bone marrow dose is significantly lower with the blood-based method than with the image-based method. The blood-based method with a bi-exponential model proved particularly useful, without the need for blood samples after 24h post-injection. Nevertheless, this blood-based method is based on an assumption that needs to be more validated. The important difference between the two methods does not allow to determine the optimal one to estimate the true absorbed dose and further studies are necessary to compare with biological effects.
Collapse
|
5
|
Strosberg J, Hofman MS, Al-Toubah T, Hope TA. Rethinking Dosimetry: The Perils of Extrapolated External-Beam Radiotherapy Constraints to Radionuclide Therapy. J Nucl Med 2024; 65:362-364. [PMID: 38212065 DOI: 10.2967/jnumed.123.267167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Affiliation(s)
- Jonathan Strosberg
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida;
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; and
| | - Taymeyah Al-Toubah
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
6
|
Eapen RS, Buteau JP, Jackson P, Mitchell C, Oon SF, Alghazo O, McIntosh L, Dhiantravan N, Scalzo MJ, O'Brien J, Sandhu S, Azad AA, Williams SG, Sharma G, Haskali MB, Bressel M, Chen K, Jenjitranant P, McVey A, Moon D, Lawrentschuk N, Neeson PJ, Murphy DG, Hofman MS. Administering [ 177Lu]Lu-PSMA-617 Prior to Radical Prostatectomy in Men with High-risk Localised Prostate Cancer (LuTectomy): A Single-centre, Single-arm, Phase 1/2 Study. Eur Urol 2024; 85:217-226. [PMID: 37891072 DOI: 10.1016/j.eururo.2023.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND High-risk localised prostate cancer (HRCaP) has high rates of biochemical recurrence; [177Lu]Lu-PSMA-617 is effective in men with advanced prostate cancer. OBJECTIVE To investigate the dosimetry, safety, and efficacy of upfront [177Lu]Lu-PSMA-617 in men with HRCaP prior to robotic radical prostatectomy (RP). DESIGN, SETTING, AND PARTICIPANTS In this single-arm, phase I/II trial, we recruited men with HRCaP (any of prostate-specific antigen [PSA] >20 ng/ml, International Society of Urological Pathology (ISUP) grade group [GG] 3-5, and ≥cT2c), with high tumour uptake on [68Ga]Ga-PSMA-11 positron emission tomography/computed tomography (PSMA PET/CT), and scheduled for RP. INTERVENTION Cohort A (n = 10) received one cycle and cohort B (n = 10) received two cycles of [177Lu]Lu-PSMA-617 (5 GBq) followed by surgery 6 weeks later. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was tumour radiation absorbed dose. Adverse events (AEs; Common Terminology Criteria for Adverse Events (CTCAE) version 5.0), surgical safety (Clavien-Dindo), imaging, and biochemical responses were evaluated (ClinicalTrials.gov: NCT04430192). RESULTS AND LIMITATIONS Between May 29, 2020 and April 28, 2022, 20 patients were enrolled. The median PSA was 18 ng/ml (interquartile range [IQR] 11-35), Eighteen (90%) had GG ≥3, and six (30%) had N1 disease. The median (IQR) highest tumour radiation absorbed dose after cycle 1 for all lesions was 35.5 Gy (19.5-50.1), with 19.6 Gy (11.3-48.4) delivered to the prostate. Five patients received radiation to lymph nodes. Nine (45%) patients achieved >50% PSA decline. The most common AEs related to [177Lu]Lu-PSMA-617 were grade 1 fatigue in eight (40%), nausea in seven (35%), dry mouth in six (30%), and thrombocytopenia in four (20%) patients. No grade 3/4 toxicities or Clavien 3-5 complications occurred. Limitations include small a sample size. CONCLUSIONS In men with HRCaP and high prostate-specific membrane antigen (PSMA) expression, [177Lu]Lu-PSMA-617 delivered high levels of targeted radiation doses with few toxicities and without compromising surgical safety. Further studies of [177Lu]Lu-PSMA-617 in this population are worthwhile to determine whether meaningful long-term oncological benefits can be demonstrated. PATIENT SUMMARY In this study, we demonstrate that up to two cycles of [177Lu]Lu-PSMA-617 given prior to radical prostatectomy in patients with high-risk localised prostate cancer are safe and deliver targeted doses of radiation to tumour-affected tissues. It is tolerated well with minimal treatment-related adverse events, and surgery is safe with a low rate of complications. Activity measured through PSA reduction, repeat PSMA PET/CT, and histological response is promising.
Collapse
Affiliation(s)
- Renu S Eapen
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia; Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| | - James P Buteau
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Price Jackson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Catherine Mitchell
- Department of Anatomical Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sheng F Oon
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Omar Alghazo
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lachlan McIntosh
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Nattakorn Dhiantravan
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mark J Scalzo
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jonathan O'Brien
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Arun A Azad
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Scott G Williams
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Gaurav Sharma
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mohammad B Haskali
- Radiopharmaceutical Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mathias Bressel
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kenneth Chen
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Aoife McVey
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia; Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Daniel Moon
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Nathan Lawrentschuk
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia; Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
7
|
McIntosh L, Jackson P, Emmerson B, Buteau JP, Alipour R, Kong G, Hofman MS. Quantitative calibration of Tb-161 SPECT/CT in view of personalised dosimetry assessment studies. EJNMMI Phys 2024; 11:18. [PMID: 38372952 PMCID: PMC10876500 DOI: 10.1186/s40658-024-00611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Terbium-161 (161Tb)-based radionuclide therapy poses an alternative to current Lutetium-177 (177Lu) approaches with the additional benefit of secondary Auger and conversion electron emissions capable of delivering high doses of localised damage to micro-metastases including single cells. Quantitative single-photon emission computed tomography, paired with computed tomography (SPECT/CT), enables quantitative measurement from post-therapy imaging. In view of dosimetry extrapolations, a Tb-161 sensitivity SPECT/CT camera calibration was performed using a method previously validated for 177Lu. METHODS Serial imaging of a NEMA/IEC body phantom with Tb-161 was performed on SPECT/CT with low-energy high-resolution collimators employing a photopeak of 75 keV with a 20% width. Quantitative stability and recovery coefficients were investigated over a sequence of 19 scans with buffered 161Tb solution at total phantom activity ranging from 70 to 4990 MBq. RESULTS Sphere recovery coefficients were 0.60 ± 0.05, 0.52 ± 0.07, 0.45 ± 0.07, 0.39 ± 0.07, 0.28 ± 0.08, and 0.20 ± 0.08 for spheres 37, 28, 22, 17, 13, and 10mm, respectively, when considered across all activity and scan durations with dual-energy window scatter correction. Whole-field reconstructed sensitivity was calculated as 1.42E-5 counts per decay. Qualitatively, images exhibited no visual artefacts and were comparable to 177Lu SPECT/CT. CONCLUSIONS Quantitative SPECT/CT of 161Tb is feasible over a range of activities enabling dosimetry analogous to 177Lu whilst also producing suitable imaging for clinical review. This has been incorporated into a prospective trial of 161Tb-PSMA for men with metastatic prostate cancer.
Collapse
Affiliation(s)
- Lachlan McIntosh
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre, Melbourne, Australia.
- School of Science, RMIT University, Melbourne, Australia.
| | - Price Jackson
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Brittany Emmerson
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre, Melbourne, Australia
| | - James P Buteau
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Ramin Alipour
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Grace Kong
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Alipour R, Jackson P, Bressel M, Hogg A, Callahan J, Hicks RJ, Kong G. The relationship between tumour dosimetry, response, and overall survival in patients with unresectable Neuroendocrine Neoplasms (NEN) treated with 177Lu DOTATATE (LuTate). Eur J Nucl Med Mol Imaging 2023; 50:2997-3010. [PMID: 37184682 PMCID: PMC10382388 DOI: 10.1007/s00259-023-06257-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Peptide Receptor Radionuclide Therapy (PRRT) delivers targeted radiation to Somatostatin Receptor (SSR) expressing Neuroendocrine Neoplasms (NEN). We sought to assess the predictive and prognostic implications of tumour dosimetry with respect to response by 68 Ga DOTATATE (GaTate) PET/CT molecular imaging tumour volume of SSR (MITVSSR) change and RECIST 1.1, and overall survival (OS). METHODS Patients with gastro-entero-pancreatic (GEP) NEN who received LuTate followed by quantitative SPECT/CT (Q-SPECT/CT) the next day (Jul 2010 to Jan 2019) were retrospectively reviewed. Single time-point (STP) lesional dosimetry was performed for each cycle using population-based pharmacokinetic modelling. MITVSSR and RECIST 1.1 were measured at 3-months post PRRT. RESULTS Median of 4 PRRT cycles were administered to 90 patients (range 2-5 cycles; mean 27.4 GBq cumulative activity; mean 7.6 GBq per cycle). 68% received at least one cycle with radiosensitising chemotherapy (RSC). RECIST 1.1 partial response was 24%, with 70% stable and 7% progressive disease. Cycle 1 radiation dose in measurable lesions was associated with local response (odds ratio 1.5 per 50 Gy [95% CI: 1.1-2.0], p = 0.002) when adjusted by tumour grade and RSC. Median change in MITVSSR was -63% (interquartile range -84 to -29), with no correlation with radiation dose to the most avid lesion on univariable or multivariant analyses (5.6 per 10 Gy [95% CI: -1.6, 12.8], p = 0.133). OS at 5-years was 68% (95% CI: 56-78%). Neither baseline MITVSSR (hazard ratio 1.1 [95% CI: 1.0, 1.2], p = 0.128) nor change in baseline MITVSSR (hazard ratio 1.0 [95% CI: 1.0, 1.1], p = 0.223) were associated with OS when adjusted by tumour grade and RSC but RSC was (95% CI: 0.2, 0.8, p = 0.012). CONCLUSION Radiation dose to tumour during PRRT was predictive of radiologic response but not survival. Survival outcomes may relate to other biological factors. There was no evidence that MITVSSR change was associated with OS, but a larger study is needed.
Collapse
Affiliation(s)
- R Alipour
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
| | - P Jackson
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - M Bressel
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - A Hogg
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - J Callahan
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - R J Hicks
- Department of Medicine, St Vincent's Medical School, The University of Melbourne, Melbourne, Australia
| | - G Kong
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Sutherland DEK, Kashyap R, Jackson P, Buteau JP, Murphy DG, Kelly B, Spain L, Sandhu S, Azad AA, Medhurst E, Kong G, Hofman MS. Safety of Lutetium-177 prostate-specific membrane antigen-617 (PSMA-617) radioligand therapy in the setting of severe renal impairment: a case report and literature review. Ther Adv Med Oncol 2023; 15:17588359231177018. [PMID: 37323189 PMCID: PMC10262655 DOI: 10.1177/17588359231177018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Reported here is a case of rapidly progressive metastatic castration-resistant prostate cancer treated with [177Lu]Lu-PSMA-617 in the setting of severe renal impairment and impending ureteric obstruction. PSMA is expressed on renal tubular cells, raising the possibility of radiation-induced nephrotoxicity, and this level of renal impairment would typically exclude the patient from [177Lu]Lu-PSMA-617 therapy. Multidisciplinary input, individualized dosimetry, and patient-specific dose reduction were used to ensure the cumulative dose to the kidneys remained within acceptable limits. He was initially planned for treatment with six cycles of [177Lu]Lu-PSMA-617. However, he had an excellent response to therapy following four cycles of treatment and the last two cycles were omitted. He has been followed for 1-year posttherapy without evidence of disease recurrence. No acute or chronic nephrotoxicity was observed. This case report highlights the utility of [177Lu]Lu-PSMA-617 therapy in severe renal impairment and provides evidence of relative safety in patients who would otherwise not be considered candidates for therapy.
Collapse
Affiliation(s)
- Duncan E. K. Sutherland
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Raghava Kashyap
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Price Jackson
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - James P. Buteau
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Declan G. Murphy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Brian Kelly
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lavinia Spain
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Arun A. Azad
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Elizabeth Medhurst
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Grace Kong
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael S. Hofman
- Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, 300 Grattan Street, Melbourne, VIC 3185, Australia
| |
Collapse
|
10
|
Ladrière T, Faudemer J, Levigoureux E, Peyronnet D, Desmonts C, Vigne J. Safety and Therapeutic Optimization of Lutetium-177 Based Radiopharmaceuticals. Pharmaceutics 2023; 15:pharmaceutics15041240. [PMID: 37111725 PMCID: PMC10145759 DOI: 10.3390/pharmaceutics15041240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using Lutetium-177 (177Lu) based radiopharmaceuticals has emerged as a therapeutic area in the field of nuclear medicine and oncology, allowing for personalized medicine. Since the first market authorization in 2018 of [¹⁷⁷Lu]Lu-DOTATATE (Lutathera®) targeting somatostatin receptor type 2 in the treatment of gastroenteropancreatic neuroendocrine tumors, intensive research has led to transfer innovative 177Lu containing pharmaceuticals to the clinic. Recently, a second market authorization in the field was obtained for [¹⁷⁷Lu]Lu-PSMA-617 (Pluvicto®) in the treatment of prostate cancer. The efficacy of 177Lu radiopharmaceuticals are now quite well-reported and data on the safety and management of patients are needed. This review will focus on several clinically tested and reported tailored approaches to enhance the risk-benefit trade-off of radioligand therapy. The aim is to help clinicians and nuclear medicine staff set up safe and optimized procedures using the approved 177Lu based radiopharmaceuticals.
Collapse
Affiliation(s)
- Typhanie Ladrière
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Julie Faudemer
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Elise Levigoureux
- Hospices Civils de Lyon, Groupement Hospitalier Est, 69677 Bron, France
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69677 Bron, France
| | - Damien Peyronnet
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Cédric Desmonts
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- INSERM U1086, ANTICIPE, Normandy University, UNICAEN, 14000 Caen, France
| | - Jonathan Vigne
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- PhIND, Centre Cyceron, Institut Blood and Brain @ Caen-Normandie, INSERM U1237, Normandie Université, UNICAEN, 14000 Caen, France
| |
Collapse
|
11
|
Vergnaud L, Giraudet AL, Moreau A, Salvadori J, Imperiale A, Baudier T, Badel JN, Sarrut D. Patient-specific dosimetry adapted to variable number of SPECT/CT time-points per cycle for [Formula: see text]Lu-DOTATATE therapy. EJNMMI Phys 2022; 9:37. [PMID: 35575946 PMCID: PMC9110613 DOI: 10.1186/s40658-022-00462-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The number of SPECT/CT time-points is important for accurate patient dose estimation in peptide receptor radionuclide therapy. However, it may be limited by the patient's health and logistical reasons. Here, an image-based dosimetric workflow adapted to the number of SPECT/CT acquisitions available throughout the treatment cycles was proposed, taking into account patient-specific pharmacokinetics and usable in clinic for all organs at risk. METHODS Thirteen patients with neuroendocrine tumors were treated with four injections of 7.4 GBq of [Formula: see text]Lu-DOTATATE. Three SPECT/CT images were acquired during the first cycle (1H, 24H and 96H or 144H post-injection) and a single acquisition (24H) for following cycles. Absorbed doses were estimated for kidneys (LK and RK), liver (L), spleen (S), and three surrogates of bone marrow (L2 to L4, L1 to L5 and T9 to L5) that were compared. 3D dose rate distributions were computed with Monte Carlo simulations. Voxel dose rates were averaged at the organ level. The obtained Time Dose-Rate Curves (TDRC) were fitted with a tri-exponential model and time-integrated. This method modeled patient-specific uptake and clearance phases observed at cycle 1. Obtained fitting parameters were reused for the following cycles, scaled to the measure organ dose rate at 24H. An alternative methodology was proposed when some acquisitions were missing based on population average TDRC (named STP-Inter). Seven other patients with three SPECT/CT acquisitions at cycles 1 and 4 were included to estimate the uncertainty of the proposed methods. RESULTS Absorbed doses (in Gy) per cycle available were: 3.1 ± 1.1 (LK), 3.4 ± 1.5 (RK), 4.5 ± 2.8 (L), 4.6 ± 1.8 (S), 0.3 ± 0.2 (bone marrow). There was a significant difference between bone marrow surrogates (L2 to L4 and L1 to L5, Wilcoxon's test: p value < 0.05), and while depicting very doses, all three surrogates were significantly different than dose in background (p value < 0.01). At cycle 1, if the acquisition at 24H is missing and approximated, medians of percentages of dose difference (PDD) compared to the initial tri-exponential function were inferior to 3.3% for all organs. For cycles with one acquisition, the median errors were smaller with a late time-point. For STP-Inter, medians of PDD were inferior to 7.7% for all volumes, but it was shown to depend on the homogeneity of TDRC. CONCLUSION The proposed workflow allows the estimation of organ doses, including bone marrow, from a variable number of time-points acquisitions for patients treated with [Formula: see text]Lu-DOTATATE.
Collapse
Affiliation(s)
- Laure Vergnaud
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | | | - Aurélie Moreau
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - Julien Salvadori
- ICANS - Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Alessio Imperiale
- ICANS - Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Thomas Baudier
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | | | - David Sarrut
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| |
Collapse
|
12
|
EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptor- and PSMA-targeting ligands. Eur J Nucl Med Mol Imaging 2022; 49:1778-1809. [PMID: 35284969 PMCID: PMC9015994 DOI: 10.1007/s00259-022-05727-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.
Collapse
|
13
|
Kennedy J, Chicheportiche A, Keidar Z. Quantitative SPECT/CT for dosimetry of peptide receptor radionuclide therapy. Semin Nucl Med 2021; 52:229-242. [PMID: 34911637 DOI: 10.1053/j.semnuclmed.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroendocrine tumors (NETs) are uncommon malignancies of increasing incidence and prevalence. As these slow growing tumors usually overexpress somatostatin receptors (SSTRs), the use of 68Ga-DOTA-peptides (gallium-68 chelated with dodecane tetra-acetic acid to somatostatin), which bind to the SSTRs, allows for PET based imaging and selection of patients for peptide receptor radionuclide therapy (PRRT). PRRT with radiolabeled somatostatin analogues such as 177Lu-DOTATATE (lutetium-177-[DOTA,Tyr3]-octreotate), is mainly used for the treatment of metastatic or inoperable NETs. However, PRRT is generally administered at a fixed injected activity in order not to exceed dose limits in critical organs, which is suboptimal given the variability in radiopharmaceutical uptake among patients. Advances in SPECT (single photon emission computed tomography) imaging enable the absolute quantitative measure of the true radiopharmaceutical distribution providing for PRRT dosimetry in each patient. Personalized PRRT based on patient-specific dosimetry could improve therapeutic efficacy by optimizing effective tumor absorbed dose while limiting treatment related radiotoxicity.
Collapse
Affiliation(s)
- John Kennedy
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Alexandre Chicheportiche
- Department of Nuclear Medicine and Biophysics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Zohar Keidar
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Li Z, Fessler JA, Mikell JK, Wilderman SJ, Dewaraja YK. DblurDoseNet: A deep residual learning network for voxel radionuclide dosimetry compensating for single-photon emission computerized tomography imaging resolution. Med Phys 2021; 49:1216-1230. [PMID: 34882821 PMCID: PMC10041998 DOI: 10.1002/mp.15397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Current methods for patient-specific voxel-level dosimetry in radionuclide therapy suffer from a trade-off between accuracy and computational efficiency. Monte Carlo (MC) radiation transport algorithms are considered the gold standard for voxel-level dosimetry but can be computationally expensive, whereas faster dose voxel kernel (DVK) convolution can be suboptimal in the presence of tissue heterogeneities. Furthermore, the accuracies of both these methods are limited by the spatial resolution of the reconstructed emission image. To overcome these limitations, this paper considers a single deep convolutional neural network (CNN) with residual learning (named DblurDoseNet) that learns to produce dose-rate maps while compensating for the limited resolution of SPECT images. METHODS We trained our CNN using MC-generated dose-rate maps that directly corresponded to the true activity maps in virtual patient phantoms. Residual learning was applied such that our CNN learned only the difference between the true dose-rate map and DVK dose-rate map with density scaling. Our CNN consists of a 3D depth feature extractor followed by a 2D U-Net, where the input was 11 slices (3.3 cm) of a given Lu-177 SPECT/CT image and density map, and the output was the dose-rate map corresponding to the center slice. The CNN was trained with nine virtual patient phantoms and tested on five different phantoms plus 42 SPECT/CT scans of patients who underwent Lu-177 DOTATATE therapy. RESULTS When testing on virtual patient phantoms, the lesion/organ mean dose-rate error and the normalized root mean square error (NRMSE) relative to the ground truth of the CNN method was consistently lower than DVK and MC, when applied to SPECT images. Compared to DVK/MC, the average improvement for the CNN in mean dose-rate error was 55%/53% and 66%/56%; and in NRMSE was 18%/17% and 10%/11% for lesion and kidney regions, respectively. Line profiles and dose-volume histograms demonstrated compensation for SPECT resolution effects in the CNN-generated dose-rate maps. The ensemble noise standard deviation, determined from multiple Poisson realizations, was improved by 21%/27% compared to DVK/MC. In patients, potential improvements from CNN dose-rate maps compared to DVK/MC were illustrated qualitatively, due to the absence of ground truth. The trained residual CNN took about 30 s on a single GPU (Tesla V100) to generate a 512 × 512 × 130 dose-rate map for a patient. CONCLUSION The proposed residual CNN, trained using phantoms generated from patient images, has potential for real-time patient-specific dosimetry in clinical treatment planning due to its demonstrated improvement in accuracy, resolution, noise, and speed over the DVK/MC approaches.
Collapse
Affiliation(s)
- Zongyu Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey A Fessler
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin K Mikell
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott J Wilderman
- Department of Nuclear Engineering and Radiologic Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Jackson P, Hofman M, McIntosh L, Buteau JP, Ravi Kumar A. Radiation Dosimetry in 177Lu-PSMA-617 Therapy. Semin Nucl Med 2021; 52:243-254. [PMID: 34893320 DOI: 10.1053/j.semnuclmed.2021.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radionuclide therapy using the small molecule PSMA bound to the beta-emitting radionuclide, Lutetium-177 (177Lu-PSMA) has demonstrated efficacy and survival benefit castrate resistant metastatic disease and represents a novel new line of therapy. Whilst dosimetry was critical for early development, it was not incorporated into either the TheraP or VISION randomized studies, highlighting the difficulty of adopting dosimetry in routine clinical practice. Accumulated clinical experience has also shown that the common (and generally low grade) toxicities such as nausea, xerostomia, and cytopenias are not readily predicted on the basis of dosimetry estimates. The majority of dosimetry and clinical literature deals with the radiopharmaceutical 177Lu-PSMA-617 which displays relatively consistent patterns of retention among normal tissues and high specificity for metastatic prostate cancer phenotypes. Population dosimetry incorporating estimates to the kidneys, salivary glands, and bone marrow have been widely reported the typical range of doses is becoming well established. There is growing interest on tumor dosimetry in 177Lu-PSMA-617 therapy as an overall modest side-effect profile from primary organ retention has been observed. A focus away from normal organ dosimetry to whole body tumor dosimetry may enable early prediction of treatment failure. Given the safety of 177Lu-PSMA there is also potential to escalate administered radioactivity to further improve outcomes. Importantly, the variability of uptake between individuals, both to tumor and normal organs, has also been highlighted which provides some rationale for the utility of personalized radiation analysis to optimize treatment based on potential toxicity thresholds or tumor control. Methods to perform dosimetry using serial post treatment imaging may incorporate planar, 3D SPECT, or hybrid datasets. Reliable measurements may be obtained through either method, however, continued developments in computational analysis are better suited to fully 3D imaging; particularly in conjunction with volumetric CT to assist with alignment and contouring. Dose analysis over sequential treatment cycles is vital to understand the radiobiology of these treatments which is unique compared to external beam therapy due to dose rate, fractionation scheme, and potential for intratumoral nonuniformity.
Collapse
Affiliation(s)
- Price Jackson
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Australia.
| | - Michael Hofman
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Australia
| | - Lachlan McIntosh
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia
| | - James Patrick Buteau
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Aravind Ravi Kumar
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Pandit-Taskar N, Iravani A, Lee D, Jacene H, Pryma D, Hope T, Saboury B, Capala J, Wahl RL. Dosimetry in Clinical Radiopharmaceutical Therapy of Cancer: Practicality Versus Perfection in Current Practice. J Nucl Med 2021; 62:60S-72S. [PMID: 34857623 DOI: 10.2967/jnumed.121.262977] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
The use of radiopharmaceutical therapies (RPTs) in the treatment of cancers is growing rapidly, with more agents becoming available for clinical use in last few years and many new RPTs being in development. Dosimetry assessment is critical for personalized RPT, insofar as administered activity should be assessed and optimized in order to maximize tumor-absorbed dose while keeping normal organs within defined safe dosages. However, many current clinical RPTs do not require patient-specific dosimetry based on current Food and Drug Administration-labeled approvals, and overall, dosimetry for RPT in clinical practice and trials is highly varied and underutilized. Several factors impede rigorous use of dosimetry, as compared with the more convenient and less resource-intensive practice of empiric dosing. We review various approaches to applying dosimetry for the assessment of activity in RPT and key clinical trials, the extent of dosimetry use, the relative pros and cons of dosimetry-based versus fixed activity, and practical limiting factors pertaining to current clinical practice.
Collapse
Affiliation(s)
| | - Amir Iravani
- Washington University School of Medicine, St. Louis, Missouri
| | - Dan Lee
- Ochsner Medical Center, New Orleans, Louisiana
| | | | - Dan Pryma
- Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas Hope
- University of San Francisco, San Francisco, California; and
| | | | - Jacek Capala
- National Institutes of Health, Bethesda, Maryland
| | - Richard L Wahl
- Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Brosch-Lenz J, Yousefirizi F, Zukotynski K, Beauregard JM, Gaudet V, Saboury B, Rahmim A, Uribe C. Role of Artificial Intelligence in Theranostics:: Toward Routine Personalized Radiopharmaceutical Therapies. PET Clin 2021; 16:627-641. [PMID: 34537133 DOI: 10.1016/j.cpet.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We highlight emerging uses of artificial intelligence (AI) in the field of theranostics, focusing on its significant potential to enable routine and reliable personalization of radiopharmaceutical therapies (RPTs). Personalized RPTs require patient-specific dosimetry calculations accompanying therapy. Additionally we discuss the potential to exploit biological information from diagnostic and therapeutic molecular images to derive biomarkers for absorbed dose and outcome prediction; toward personalization of therapies. We try to motivate the nuclear medicine community to expand and align efforts into making routine and reliable personalization of RPTs a reality.
Collapse
Affiliation(s)
- Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Katherine Zukotynski
- Department of Medicine and Radiology, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada
| | - Jean-Mathieu Beauregard
- Department of Radiology and Nuclear Medicine, Cancer Research Centre, Université Laval, 2325 Rue de l'Université, Québec City, Quebec G1V 0A6, Canada; Department of Medical Imaging, Research Center (Oncology Axis), CHU de Québec - Université Laval, 2325 Rue de l'Université, Québec City, Quebec G1V 0A6, Canada
| | - Vincent Gaudet
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 11th Floor, 2775 Laurel St, Vancouver, British Columbia V5Z 1M9, Canada; Department of Physics, University of British Columbia, 325 - 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, 11th Floor, 2775 Laurel St, Vancouver, British Columbia V5Z 1M9, Canada; Department of Functional Imaging, BC Cancer, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| |
Collapse
|
18
|
Dotinga M, Vriens D, van Velden F, Heijmen L, Nagarajah J, Hicks R, Kapiteijn E, de Geus-Oei LF. Managing radioiodine refractory thyroid cancer: the role of dosimetry and redifferentiation on subsequent I-131 therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2021; 64:250-264. [PMID: 32744039 DOI: 10.23736/s1824-4785.20.03264-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poor responses to iodine-131 (I-131) therapy can relate to either low iodine uptake and retention in thyroid cancer cells or to increased radioresistance. Both mechanisms are currently termed radioactive iodine (RAI)-refractory (RAI-R) thyroid cancer but the first reflects unsuitability for I-131 therapy that can be evaluated in advance of treatment, whereas the other can only be identified post hoc. Management of both represents a considerable challenge in clinical practice as failure of I-131 therapy, the most effective treatment of metastatic thyroid cancer, is associated with a poor overall prognosis. The development of targeted therapies has shown substantial promise in the treatment of RAI-R thyroid cancer in progressive patients. Recent studies show that selective tyrosine kinase inhibitors (TKIs) targeting B-type rapidly accelerated fibrosarcoma kinase (BRAF) and mitogen-activated protein kinase (MEK) can be used as redifferentiation agents to re-induce RAI uptake, thereby (re)enabling I-131 therapy. The use of dosimetry prior- and post-TKI treatment can assist in quantifying RAI uptake and improve identification of patients that will benefit from I-131 therapy. It also potentially offers the prospect of calculating individualized therapeutic administered activities to enhance efficacy and limit toxicity. In this review, we present an overview of the regulation of RAI uptake and clinically investigated redifferentiation agents, both reimbursed and in experimental setting, that induce renewed RAI uptake. We describe the role of dosimetry in redifferentiation and subsequent I-131 therapy in RAI-R thyroid cancer, explain different dosimetry approaches and discuss limitations and considerations in the field.
Collapse
Affiliation(s)
- Maaike Dotinga
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands -
| | - Dennis Vriens
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Floris van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda Heijmen
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - James Nagarajah
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Nuclear Medicine, Technical University Munich, Munich, Germany
| | - Rodney Hicks
- Department of Molecular Imaging, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands
| |
Collapse
|
19
|
McInnes LE, Cullinane C, Roselt PD, Jackson S, Blyth BJ, van Dam EM, Zia NA, Harris MJ, Hicks RJ, Donnelly PS. Therapeutic Efficacy of a Bivalent Inhibitor of Prostate-Specific Membrane Antigen Labeled with 67Cu. J Nucl Med 2021; 62:829-832. [PMID: 33067341 DOI: 10.2967/jnumed.120.251579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Radionuclide therapy targeting prostate-specific membrane antigen (PSMA) is promising for prostate cancer. We previously reported a ligand, 64Cu-CuSarbisPSMA, featuring 2 lysine-ureido-glutamate groups. Here, we report the therapeutic potential of 67Cu-CuSarbisPSMA. Methods: Growth of PSMA-positive xenografts was evaluated after treatment with 67Cu-CuSarbisPSMA or 177Lu-LuPSMA imaging and therapy (I&T). Results: At 13 d after injection, tumor growth was similarly inhibited by the 2 tracers in a dose-dependent manner. Survival was comparable after single (30 MBq) or fractionated (2 × 15 MBq, 2 wk apart) administrations. Conclusion: 67Cu-CuSarbisPSMA is efficacious in a PSMA-expressing model of prostate cancer.
Collapse
Affiliation(s)
- Lachlan E McInnes
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Carleen Cullinane
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter D Roselt
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
| | - Susan Jackson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin J Blyth
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ellen M van Dam
- Clarity Pharmaceuticals Ltd., Eveleigh, New South Wales, Australia
| | - Nicholas A Zia
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew J Harris
- Clarity Pharmaceuticals Ltd., Eveleigh, New South Wales, Australia
| | - Rodney J Hicks
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
| | - Paul S Donnelly
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Rosar F, Schön N, Bohnenberger H, Bartholomä M, Stemler T, Maus S, Khreish F, Ezziddin S, Schaefer-Schuler A. Comparison of different methods for post-therapeutic dosimetry in [ 177Lu]Lu-PSMA-617 radioligand therapy. EJNMMI Phys 2021; 8:40. [PMID: 33950333 PMCID: PMC8099965 DOI: 10.1186/s40658-021-00385-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Dosimetry is of high importance for optimization of patient-individual PSMA-targeted radioligand therapy (PSMA-RLT). The aim of our study was to evaluate and compare the feasibility of different approaches of image-based absorbed dose estimation in terms of accuracy and effort in clinical routine. Methods Whole-body planar images and SPECT/CT images were acquired from 24 patients and 65 cycles at 24h, 48h, and ≥96h after administration of a mean activity of 6.4 GBq [177Lu]Lu-PSMA-617 (range 3–10.9 GBq). Dosimetry was performed by use of the following approaches: 2D planar-based dosimetry, 3D SPECT/CT-based dosimetry, and hybrid dosimetry combining 2D and 3D data. Absorbed doses were calculated according to IDAC 2.1 for the kidneys, the liver, the salivary glands, and bone metastases. Results Mean absorbed doses estimated by 3D dosimetry (the reference method) were 0.54 ± 0.28 Gy/GBq for the kidneys, 0.10 ± 0.05 Gy/GBq for the liver, 0.81 ± 0.34 Gy/GBq for the parotid gland, 0.72 ± 0.39 Gy/GBq for the submandibular gland, and 1.68 ± 1.32 Gy/GBq for bone metastases. Absorbed doses of normal organs estimated by hybrid dosimetry showed small, non-significant differences (median up to 4.0%) to the results of 3D dosimetry. Using 2D dosimetry, in contrast, significant differences (median up to 10.9%) were observed. Regarding bone metastases, small, but significant differences (median up to 7.0%) of absorbed dose were found for both, 2D dosimetry and hybrid dosimetry. Bland-Altman analysis revealed high agreement between hybrid dosimetry and 3D dosimetry for normal organs and bone metastases, but substantial differences between 2D dosimetry and 3D dosimetry. Conclusion Hybrid dosimetry provides high accuracy in estimation of absorbed dose in comparison to 3D dosimetry for all important organs and is therefore feasible for use in individualized PSMA-RLT.
Collapse
Affiliation(s)
- Florian Rosar
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Niklas Schön
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Hendrik Bohnenberger
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Mark Bartholomä
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Tobias Stemler
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Fadi Khreish
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Andrea Schaefer-Schuler
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany.
| |
Collapse
|
21
|
Monserrat Fuertes T, González García F, Peinado Montes M, Domínguez Grande M, Martín Fernández N, Gómez de Iturriaga Piña A, Mínguez Gabiña P. Description of the methodology for dosimetric quantification in treatments with 177Lu-DOTATATE. Rev Esp Med Nucl Imagen Mol 2021. [DOI: 10.1016/j.remnie.2021.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Monserrat Fuertes T, González García FM, Peinado Montes MÁ, Domínguez Grande ML, Martín Fernández N, Gómez de Iturriaga Piña A, Mínguez Gabiña P. Description of the methodology for dosimetric quantification in treatments with 177Lu-DOTATATE. Rev Esp Med Nucl Imagen Mol 2021; 40:167-178. [PMID: 33811003 DOI: 10.1016/j.remn.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
Implementation of dosimetry calculations in the daily practice of Nuclear Medicine Departments is, at this time, a controversial issue, partly due to the lack of a standardized methodology that is accepted by all interested parties (patients, nuclear medicine physicians and medical physicists). However, since the publication of RD 601/2019 there is a legal obligation to implement it, despite the fact that it is a complex and high resource consumption procedure. The aim of this article is to review the theoretical bases of in vivo dosimetry in treatments with 177Lu-DOTATATE. The exposed methodology is the one proposed by the MIRD Committee (Medical Internal Radiation Dose) of the SNMMI (Society of Nuclear Medicine & Molecular Imaging). According to this method, the absorbed dose is obtained as the product of 2factors: the time-integrated activity of the radiopharmaceutical present in a source region and a geometrical factor S. This approach, which a priori seems simple, in practice requires several SPECT/CT acquisitions, several measurements of the whole body activity and taking several blood samples, as well as hours of image processing and computation. The systematic implementation of these calculations, in all the patients we treat, will allow us to obtain homogeneous data to correlate the absorbed doses in the lesions with the biological effect of the treatment. The final purpose of the dosimetry calculations is to be able to maximize the therapeutic effect in the lesions, controlling the radiotoxicity in the organs at risk.
Collapse
Affiliation(s)
- T Monserrat Fuertes
- Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Central de Asturias, Oviedo, Asturias, España; Departamento de Cirugía, Radiología y Medicina Física, UPV/EHU, Leioa, Bizkaia, España.
| | - F M González García
- Servicio de Medicina Nuclear, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - M Á Peinado Montes
- Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - M L Domínguez Grande
- Servicio de Medicina Nuclear, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - N Martín Fernández
- Servicio de Medicina Nuclear, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - A Gómez de Iturriaga Piña
- Departamento de Cirugía, Radiología y Medicina Física, UPV/EHU, Leioa, Bizkaia, España; Servicio de Oncología Radioterápica, Hospital Universitario Gurutzeta-Cruces/Instituto de Investigación Sanitaria BioCruces, Barakaldo, Bizkaia, España
| | - P Mínguez Gabiña
- Unidad de Protección Radiológica y Radiofísica, Hospital Universitario Gurutzeta-Cruces/Instituto de Investigación Sanitaria BioCruces, Barakaldo, Bizkaia, España
| |
Collapse
|
23
|
Mok GSP, Dewaraja YK. Recent advances in voxel-based targeted radionuclide therapy dosimetry. Quant Imaging Med Surg 2021; 11:483-489. [PMID: 33532249 PMCID: PMC7779928 DOI: 10.21037/qims-20-1006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/27/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Greta S. P. Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| | - Yuni K. Dewaraja
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Götz TI, Lang EW, Schmidkonz C, Kuwert T, Ludwig B. Dose voxel kernel prediction with neural networks for radiation dose estimation. Z Med Phys 2021; 31:23-36. [PMID: 33092940 DOI: 10.1016/j.zemedi.2020.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Currently there is an ever increasing interest in Lu-177 targeted radionuclide therapies, which target neuro-endocrine and prostate tumours. For a patient-specific treatment, an individual dosimetry based on SPECT/CT imaging is necessary. The aim of this study is to introduce a dosimetry method, where dose voxel kernels (DVK) are predicted by a neural network. METHODS Kidneys are considered one of the most critical organs in any radionuclide therapy. Hence we chose kidneys of 26 patients, who underwent Lu-177-DOTATOC or PSMA therapy, as target organs for our dosimetric method. First of all, density kernels with a size of 9×9×9 voxels were considered, and the corresponding DVKs were calculated by Monte Carlo simulations. These kernels were used to train a neural network (NN), which received a density kernel as input and predicted a DVK at the output. To predict the dose distribution of an entire kidney, the organ had to be partitioned into a large number of density kernels. Afterwards the DVKs were predicted by a trained NN, and employed to reconstruct the whole-organ dose distribution by convolution with the activity distribution. This method was compared to the standard method where the activity distribution is convolved with a DVK based on a homogeneous soft tissue kernel. RESULTS The number of training kernels amounted to 52,274 density kernels with corresponding MC-derived DVKs. The results serve as proof of principle of the newly proposed method and showed that the NN approach yielded superior results compared to the standard method with no additional computational effort. CONCLUSION The NN approach is an accurate and highly competitive dosimetric method to precisely estimate absorbed radiation dose in critical organs like kidneys in clinical routine. To further improve the results, a larger number of DVKs needs to be computed by Monte Carlo simulations. An extension of the method to other organs is easily conceivable.
Collapse
Affiliation(s)
- Theresa I Götz
- Clinic of Nuclear Medicine, University Hospital Erlangen, 91054 Erlangen, Germany; CIML Group, Biophysics, University of Regensburg, 93040 Regensburg, Germany; Information Sciences, University of Regensburg, 93053 Regensburg, Germany.
| | - Elmar W Lang
- CIML Group, Biophysics, University of Regensburg, 93040 Regensburg, Germany
| | - Christian Schmidkonz
- Clinic of Nuclear Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Torsten Kuwert
- Clinic of Nuclear Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Bernd Ludwig
- Information Sciences, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Abstract
Radiopharmaceutical therapy (RPT) has grown rapidly over the last decade for treatment of numerous cancer types. Dosimetric guidance, as with other radiotherapy modalities, has benefitted patients by reducing the incidence of side effects and improving overall survival in populations treated under this paradigm. Development of tools and techniques for dosimetry-guided therapy is ongoing, with numerous the Food and Drug Administration-cleared products reaching the U.S. market in 2019. Safe use of commercial dosimetry platforms requires a deep understanding of the underlying physical principles and thoroughly vetted input data. Likewise, interpretation of dosimetry results relies on an understanding of radiobiological principles, and the principles of uncertainty propagation. In this article, we review strategies commonly employed for dosimetry-guided RPT - including quantitative imaging, dose calculation methods, and modeling of dose across time-points. Additionally, we review recent literature evidence (2013-2020) demonstrating the efficacy of personalized RPT.
Collapse
Affiliation(s)
| | - Robert F Hobbs
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
26
|
Miyahira AK, Pienta KJ, Babich JW, Bander NH, Calais J, Choyke P, Hofman MS, Larson SM, Lin FI, Morris MJ, Pomper MG, Sandhu S, Scher HI, Tagawa ST, Williams S, Soule HR. Meeting report from the Prostate Cancer Foundation PSMA theranostics state of the science meeting. Prostate 2020; 80:1273-1296. [PMID: 32865839 PMCID: PMC8442561 DOI: 10.1002/pros.24056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The Prostate Cancer Foundation (PCF) convened a PCF prostate-specific membrane antigen (PSMA) Theranostics State of the Science Meeting on 18 November 2019, at Weill Cornell Medicine, New York, NY. METHODS The meeting was attended by 22 basic, translational, and clinical researchers from around the globe, with expertise in PSMA biology, development and use of PSMA theranostics agents, and clinical trials. The goal of this meeting was to discuss the current state of knowledge, the most important biological and clinical questions, and critical next steps for the clinical development of PSMA positron emission tomography (PET) imaging agents and PSMA-targeted radionuclide agents for patients with prostate cancer. RESULTS Several major topic areas were discussed including the biology of PSMA, the role of PSMA-targeted PET imaging in prostate cancer, the physics and performance of different PSMA-targeted PET imaging agents, the current state of clinical development of PSMA-targeted radionuclide therapy (RNT) agents, the role of dosimetry in PSMA RNT treatment planning, barriers and challenges in PSMA RNT clinical development, optimization of patient selection for PSMA RNT trials, and promising combination treatment approaches with PSMA RNT. DISCUSSION This article summarizes the presentations from the meeting for the purpose of globally disseminating this knowledge to advance the use of PSMA-targeted theranostic agents for imaging and treatment of patients with prostate cancer.
Collapse
Affiliation(s)
- Andrea K. Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| | - Kenneth J. Pienta
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W. Babich
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Neil H. Bander
- Laboratory of Urologic Oncology, Department of Urology and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Peter Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Steven M. Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank I. Lin
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin G. Pomper
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shahneen Sandhu
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Howard I. Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Scott T. Tagawa
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Scott Williams
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Howard R. Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| |
Collapse
|
27
|
Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy. PLoS One 2020; 15:e0236466. [PMID: 32764764 PMCID: PMC7413508 DOI: 10.1371/journal.pone.0236466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/06/2020] [Indexed: 11/19/2022] Open
Abstract
Aim The present work concerns the comparison of the performances of three systems for dosimetry in RPT that use different techniques for absorbed dose calculation (organ-level dosimetry, voxel-level dose kernel convolution and Monte Carlo simulations). The aim was to assess the importance of the choice of the most adequate calculation modality, providing recommendations about the choice of the computation tool. Methods The performances were evaluated both on phantoms and patients in a multi-level approach. Different phantoms filled with a 177Lu-radioactive solution were used: a homogeneous cylindrical phantom, a phantom with organ-shaped inserts and two cylindrical phantoms with inserts different for shape and volume. A total of 70 patients with NETs treated by PRRT with 177Lu-DOTATOC were retrospectively analysed. Results The comparisons were performed mainly between the mean values of the absorbed dose in the regions of interest. A general better agreement was obtained between Dose kernel convolution and Monte Carlo simulations results rather than between either of these two and organ-level dosimetry, both for phantoms and patients. Phantoms measurements also showed the discrepancies mainly depend on the geometry of the inserts (e.g. shape and volume). For patients, differences were more pronounced than phantoms and higher inter/intra patient variability was observed. Conclusion This study suggests that voxel-level techniques for dosimetry calculation are potentially more accurate and personalized than organ-level methods. In particular, a voxel-convolution method provides good results in a short time of calculation, while Monte Carlo based computation should be conducted with very fast calculation systems for a possible use in clinics, despite its intrinsic higher accuracy. Attention to the calculation modality is recommended in case of clinical regions of interest with irregular shape and far from spherical geometry, in which Monte Carlo seems to be more accurate than voxel-convolution methods.
Collapse
|
28
|
Jackson P, McIntosh L, Hofman MS, Kong G, Hicks RJ. Technical Note: Rapid multiexponential curve fitting algorithm for voxel-based targeted radionuclide dosimetry. Med Phys 2020; 47:4332-4339. [PMID: 32426853 DOI: 10.1002/mp.14243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Dosimetry in nuclear medicine often relies on estimating pharmacokinetics based on sparse temporal data. As analysis methods move toward image-based three-dimensional computation, it becomes important to interpolate and extrapolate these data without requiring manual intervention; that is, in a manner that is highly efficient and reproducible. Iterative least-squares solvers are poorly suited to this task because of the computational overhead and potential to optimize to local minima without applying tight constraints at the outset. METHODOLOGY This work describes a fully analytical method for solving three-phase exponential time-activity curves based on three measured time points in a manner that may be readily employed by image-based dosimetry tools. The methodology uses a series of conditional statements and a piecewise approach for solving exponential slope directly through measured values in most instances. The proposed algorithm is tested against a purpose-designed iterative fitting technique and linear piecewise method followed by single exponential in a cohort of ten patients receiving 177 Lu-DOTA-Octreotate therapy. RESULTS Tri-exponential time-integrated values are shown to be comparable to previously published methods with an average difference between organs when computed at the voxel level of 9.8 ± 14.2% and -3.6 ± 10.4% compared to iterative and interpolated methods, respectively. Of the three methods, the proposed tri-exponential algorithm was most consistent when regional time-integrated activity was evaluated at both voxel- and whole-organ levels. For whole-body SPECT imaging, it is possible to compute 3D time-integrated activity maps in <5 min processing time. Furthermore, the technique is able to predictably and reproducibly handle artefactual measurements due to noise or spatial misalignment over multiple image times. CONCLUSIONS An efficient, analytical algorithm for solving multiphase exponential pharmacokinetics is reported. The method may be readily incorporated into voxel-dose routines by combining with widely available image registration and radiation transport tools.
Collapse
Affiliation(s)
- Price Jackson
- Department of Molecular Imaging & Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Australia
| | - Lachlan McIntosh
- Department of Molecular Imaging & Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Michael S Hofman
- Department of Molecular Imaging & Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Australia
| | - Grace Kong
- Department of Molecular Imaging & Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Australia
| | - Rodney J Hicks
- Department of Molecular Imaging & Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Australia
| |
Collapse
|
29
|
Cullinane C, Jeffery CM, Roselt PD, van Dam EM, Jackson S, Kuan K, Jackson P, Binns D, van Zuylekom J, Harris MJ, Hicks RJ, Donnelly PS. Peptide Receptor Radionuclide Therapy with 67Cu-CuSarTATE Is Highly Efficacious Against a Somatostatin-Positive Neuroendocrine Tumor Model. J Nucl Med 2020; 61:1800-1805. [PMID: 32414949 DOI: 10.2967/jnumed.120.243543] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using radiolabeled octreotate is an effective treatment for somatostatin receptor 2-expressing neuroendocrine tumors. The diagnostic and therapeutic potential of 64Cu and 67Cu, respectively, offers the possibility of using a single somatostatin receptor-targeted peptide conjugate as a theranostic agent. A sarcophagine cage amine ligand, MeCOSar (5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid), conjugated to (Tyr3)-octreotate, called 64Cu-CuSarTATE, was demonstrated to be an imaging agent and potential prospective dosimetry tool in 10 patients with neuroendocrine tumors. This study aimed to explore the antitumor efficacy of 67Cu-CuSarTATE in a preclinical model of neuroendocrine tumors and compare it with the standard PRRT agent, 177Lu-LuDOTA-Tyr3-octreotate (177Lu-LuTATE). Methods: The antitumor efficacy of various doses of 67Cu-CuSarTATE in AR42J (rat pancreatic exocrine) tumor-bearing mice was compared with 177Lu-LuTATE. Results: Seven days after a single administration of 67Cu-CuSarTATE (5 MBq), tumor growth was inhibited by 75% compared with vehicle control. Administration of 177Lu-LuTATE (5 MBq) inhibited tumor growth by 89%. Survival was extended from 12 d in the control group to 21 d after treatment with both 67Cu-CuSarTATE and 177Lu-LuTATE. In a second study, the efficacy of fractionated delivery of PRRT was assessed, comparing the efficacy of 30 MBq of 67Cu-CuSarTATE or 177Lu-LuTATE, either as a single intravenous injection or as two 15-MBq fractions 2 wk apart. Treatment of tumors with 2 fractions significantly improved survival over delivery as a single fraction (67Cu-CuSarTATE: 47 vs. 36 d [P = 0.036]; 177Lu-LuTATE: 46 vs. 29 d [P = 0.040]). Conclusion: This study demonstrates that 67Cu-CuSarTATE is well tolerated in BALB/c nude mice and highly efficacious against AR42J tumors in vivo. Administration of 67Cu-CuSarTATE and 177Lu-LuTATE divided into 2 fractions over 2 wk was more efficacious than administration of a single fraction. The antitumor activity of 67Cu-CuSarTATE in the AR42J tumor model demonstrated the suitability of this novel agent for clinical assessment in the treatment of somatostatin receptor 2-expressing neuroendocrine tumors.
Collapse
Affiliation(s)
- Carleen Cullinane
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Peter D Roselt
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ellen M van Dam
- Clarity Pharmaceuticals Ltd., Eveleigh, New South Wales, Australia
| | - Susan Jackson
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kevin Kuan
- Molecular Imaging and Therapy Research Unit, SAHMRI, Adelaide, South Australia, Australia; and
| | - Price Jackson
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Binns
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jessica van Zuylekom
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Matthew J Harris
- Clarity Pharmaceuticals Ltd., Eveleigh, New South Wales, Australia
| | - Rodney J Hicks
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
SCreg: a registration-based platform to compare unicondylar knee arthroplasty SPECT/CT scans. BMC Musculoskelet Disord 2020; 21:162. [PMID: 32164663 PMCID: PMC7066757 DOI: 10.1186/s12891-020-3185-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/03/2020] [Indexed: 11/11/2022] Open
Abstract
Background A combination of conventional computed tomography and single photon emitted computed tomography (SPECT/CT) provides simultaneous data on the intensity and location of osteoblastic activity. Currently, since SPECT/CT scans are not spatially aligned, scans following knee arthroplasty are compared by extracting average and maximal values of osteoblastic activity intensity from large subregions of the structure of interest, which leads to a loss of resolution, and hence, information. Therefore, this paper describes the SPECT/CT registration platform (SCreg) based on the principle of image registration to spatially align SPECT/CT scans following unicondylar knee arthroplasty (UKA) and allow full resolution intra-subject and inter-subject comparisons. Methods SPECT-CT scans of 20 patients were acquired before and 1 year after UKA. Firstly, scans were pre-processed to account for differences in voxel sizes and divided in volumes of interest. This was followed by optimization of registration parameters according to their volumetric agreement, and alignment using a combination of rigid, affine and non-rigid registration. Finally, radiotracer uptakes were normalized, and differences between pre-operative and post-operative activity were computed for each voxel. Wilcoxon signed rank sum test was performed to compare Dice similarity coefficients pre- and post-registration. Results Qualitative and quantitative validation of the platform assessing the correct alignment of SPECT/CT scans resulted in Dice similarity coefficient values over 80% and distances between predefined anatomical landmarks below the fixed threshold of (2;2;0) voxels. Locations of increased and decreased osteoblastic activity obtained during comparisons of osteoblastic activity before and after UKA were mainly consistent with literature. Conclusions Thus, a full resolution comparison performed on the platform could assist surgeons and engineers in optimizing surgical parameters in view of bone remodeling, thereby improving UKA survivorship.
Collapse
|
31
|
Li T, Zhu L, Lu Z, Song N, Lin KH, Mok GSP. BIGDOSE: software for 3D personalized targeted radionuclide therapy dosimetry. Quant Imaging Med Surg 2020; 10:160-170. [PMID: 31956539 DOI: 10.21037/qims.2019.10.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Advance 3D quantitative radionuclide imaging techniques boost the accuracy of targeted radionuclide therapy (TRT) dosimetry to voxel level. The goal of this work is to develop a comprehensive 3D dosimetric software, BIGDOSE, with new features of image registration and virtual CT for patient-specific dosimetry. Methods BIGDOSE includes a portable graphical user interface written in Python, integrating (I) input of sequential ECT/CT images; (II) segmentation; (III) non-rigid image registration; (IV) curve fitting and voxel-based integration; (V) dose conversion and (VI) 3D dose analysis. The accuracy of the software was evaluated using a simulation study with 9 XCAT phantoms. We simulated SPECT/CT acquisitions at 1, 12, 24, 72 and 144-hrs post In-111 Zevalin injection with inter-scans misalignments using an analytical projector for medium energy general purpose (MEGP) collimator, modeling attenuation, scatter and collimator-detector response. The SPECT data were reconstructed using quantitative OS-EM method. A CT organ-based registration was performed before the dose calculation. Organ absorbed doses for the corresponding Y-90 therapeutic agent were calculated on target organs and compared with those obtained from OLINDA/EXM, using dose measured from GATE as the gold standard. One patient with In-111 DTPAOC injection as well as two patients with Y-90 microsphere embolization were used to demonstrate the clinical effectiveness of our software. Results In the simulation, the organ dose errors of BIGDOSE were -9.59%±9.06%, -8.36±5.82%, -23.41%±6.67%, -6.05%±2.06% for liver, spleen, kidneys and lungs, while they were -25.72%±12.52%, -14.93%±10.91%, -28.63%±12.97% and -45.30%±5.84% for OLINDA/EXM. Cumulative dose volume histograms, dose maps and iso-dose contours provided 3D dose distribution information on the simulated and patient data. Conclusions BIGDOSE provides a one-stop platform for voxel-based dose estimation with enhanced functions. It is a promising tool to streamline the current clinical TRT dosimetric practice with high accuracy, incorporating 3D personalized imaging information for improved treatment outcome.
Collapse
Affiliation(s)
- Tiantian Li
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Macau SAR, China
| | - Licheng Zhu
- Department of Computer Science, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Macau SAR, China
| | - Na Song
- Department of Nuclear Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| | - Ko-Han Lin
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Macau SAR, China.,Faculty of Health Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR, China
| |
Collapse
|
32
|
Scarinci I, Valente M, Pérez P. SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Götz TI, Lang EW, Schmidkonz C, Maier A, Kuwert T, Ritt P. Particle filter de-noising of voxel-specific time-activity-curves in personalized 177Lu therapy. Z Med Phys 2019; 30:116-134. [PMID: 31859029 DOI: 10.1016/j.zemedi.2019.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Currently, there is a high interest in 177Lu targeted radionuclide therapies, which could be attributed to favorable results obtained from 177Lu compounds targeting neuro-endocrine and prostate tumors. SPECT based dosimetry could be used for deriving dose values for individual voxels, as is the standard in external-beam radiation-therapy (EBRT). For this a time-activity-curve (TAC) at voxel resolution and also a voxel-wise modeling of radiation energy deposition are necessary. But a voxel-wise determination of TACs is problematic, since several confounding factors exist, such as e.g. poor count-statistics or registration inaccuracies, which add noise to the observed activity states. A particle filter (PF) is a class of methods which applies regularization based on a model of the temporal evolution of activity states. The aim of this study is to introduce the application of PFs for de-noising of per-voxel time-activity curves. METHODS We applied a PF for de-noising the TACs of 26 patients, who underwent 177Lu-DOTATOC or -PSMA therapy. The TACs were obtained from fully-quantitative, serial SPECT(/CT) data, acquired at 4h, 24h, 48h, 72h p.i. The model used in the PF was a mono-exponential decay and its free parameters were determined based on objective criteria. The time-integrated activities (TIA) resulting from the PF (PFF) were compared to the results of a mono-exponential fit (SF) of individual voxels in several volumes of interest (kidneys, spleen, tumors). Additionally, an organ-averaged TIA was derived from whole-organ VOIs and subsequent curve-fitting. This whole-organ TIA was also compared to the whole-organ TIAs obtained from summation of the voxel-wise TIAs from PFF and SF. RESULTS The number of particles was set to 1000. Optimal values for noise of observations and noise of the model were 0.25 and 0.5, respectively. The deviation of whole-organ TIAs from conventional organ-based dosimetry and the summation of the voxel-wise TIAs was substantial for SF (kidneys -22.3%, spleen -49.6%, tumor -60.0%), as well as for PFF (kidneys -37.1%, spleen -57.9%, tumor -70.9%). The distribution of voxel-wise half-lives resulting from the PFF method was considerably closer to the organ-averaged value, and the number of implausibly long half-lives (>physical HL) was reduced. CONCLUSION The PFF leads to voxel-wise half-lives, which are more plausible than those resulting from SF. However, one has to admit that voxel-wise fitting generally leads to considerable deviations from the organ-averaged TIA as obtained by conventional whole-organ evaluation. Unfortunately, we did not have ground-truth TIA of our patient data and proper ground-truth could even be impossible to obtain. Nevertheless, there are strong indicators that particle filtering can be used for reducing voxel-wise TAC noise.
Collapse
Affiliation(s)
- Theresia I Götz
- Clinic of Nuclear Medicine, University Hospital Erlangen, 91054 Erlangen, Germany; CIML Group, Biophysics, University of Regensburg, 93040 Regensburg, Germany; Pattern Recognition Lab, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Elmar W Lang
- CIML Group, Biophysics, University of Regensburg, 93040 Regensburg, Germany
| | - Christian Schmidkonz
- Clinic of Nuclear Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Torsten Kuwert
- Clinic of Nuclear Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Philipp Ritt
- Clinic of Nuclear Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
34
|
Tran-Gia J, Salas-Ramirez M, Lassmann M. What You See Is Not What You Get: On the Accuracy of Voxel-Based Dosimetry in Molecular Radiotherapy. J Nucl Med 2019; 61:1178-1186. [PMID: 31862802 DOI: 10.2967/jnumed.119.231480] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022] Open
Abstract
Improvements in quantitative SPECT/CT have aroused growing interest in voxel-based dosimetry for radionuclide therapies, because it promises visualization of absorbed doses at a voxel level. In this work, SPECT/CT-based voxel-level dosimetry of a 3-dimensional (3D) printed 2-compartment kidney phantom was performed, and the resulting absorbed dose distributions were examined. Additionally, the potential of the PETPVC partial-volume correction tool was investigated. Methods: Both kidney compartments (70% cortex, 30% medulla) were filled with different activity concentrations, and SPECT/CT imaging was performed. The images were reconstructed using varying settings (iterations, subsets, and postfiltering). On the basis of these activity concentration maps, absorbed dose distributions were calculated with precalculated 177Lu voxel S values and an empiric kidney half-life. An additional set of absorbed doses was calculated after applying PETPVC for partial-volume correction of the SPECT reconstructions. Results: SPECT/CT imaging blurs the 2 discrete suborgan absorbed dose values into a continuous distribution. Although this effect is slightly improved by applying more iterations, it is enhanced by additional postfiltering. By applying PETPVC, the absorbed dose values are separated into 2 peaks. Although this leads to a better agreement between SPECT/CT-based and nominal values, considerable discrepancies remain. In contrast to the calculated nominal absorbed doses of 7.8 and 1.6 Gy (in the cortex and medulla, respectively), SPECT/CT-based voxel-level dosimetry resulted in mean absorbed doses of 3.0-6.6 Gy (cortex) and 2.7-5.1 Gy (medulla). PETPVC led to improved ranges of 6.1-8.9 Gy (cortex) and 2.1-5.4 Gy (medulla). Conclusion: Our study showed that 177Lu quantitative SPECT/CT imaging leads to voxel-based dose distributions largely differing from the real organ distribution. SPECT/CT imaging and reconstruction deficiencies might directly translate into unrealistic absorbed dose distributions, thus questioning the reliability of SPECT-based voxel-level dosimetry. Therefore, SPECT/CT reconstructions should be adapted to ensure an accurate quantification of the underlying activity and, therefore, absorbed dose in a volume of interest of the expected object size (e.g., organs, organ substructures, lesions, or voxels). As an example, PETPVC largely improves the match between SPECT/CT-based and nominal dose distributions. In conclusion, the concept of voxel-based dosimetry should be treated with caution. Specifically, one should remember that the absorbed dose distribution is mainly a convolved version of the underlying SPECT reconstruction.
Collapse
Affiliation(s)
- Johannes Tran-Gia
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | | | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
Götz T, Schmidkonz C, Lang EW, Maier A, Kuwert T, Ritt P. A comparison of methods for adapting $^{177}{\rm Lu}$ dose-voxel-kernels to tissue inhomogeneities. ACTA ACUST UNITED AC 2019; 64:245011. [DOI: 10.1088/1361-6560/ab5b81] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Jackson PA, Hofman MS, Hicks RJ, Scalzo M, Violet J. Radiation Dosimetry in 177Lu-PSMA-617 Therapy Using a Single Posttreatment SPECT/CT Scan: A Novel Methodology to Generate Time- and Tissue-Specific Dose Factors. J Nucl Med 2019; 61:1030-1036. [PMID: 31806772 DOI: 10.2967/jnumed.119.233411] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022] Open
Abstract
Calculation of radiation dosimetry in targeted nuclear medicine therapies is traditionally resource-intensive, requiring multiple posttherapy SPECT acquisitions. An alternative approach is to take advantage of existing pharmacokinetic data from these smaller cohorts to enable dose computation from a single posttreatment scan in a manner that may be applied to a much broader patient population. Methods: In this work, a technical description of simplified dose estimation is presented and applied to the assessment of 177Lu-prostate-specific membrane antigen (PSMA)-617 therapy for metastatic prostate cancer. By normalizing existing time-activity curves to a single measurement time, it is possible to calculate a mean and range of time-integrated activity values that relate to absorbed radiation dose. To assist with accurate pharmacokinetic modeling of the training cohort, a method for contour-guided image registration was developed. Results: Tissue-specific dose conversion factors for common posttreatment imaging times are reported along with a characterization of added uncertainty in comparison to a traditional serial imaging protocol. Single-time-point dose factors for tumor were determined to be 11.0, 12.1, 13.6, and 15.2 Gy per MBq/mL at image times of 24, 48, 72, and 96 h, respectively. For normal tissues, parotid gland factors were 6.7, 9.4, 13.3, and 19.3 Gy per MBq/mL at those times, and kidneys were 7.1, 10.3, 15.0, and 22.0 Gy per MBq/mL. Tumor dose estimates were most accurate using delayed scanning at times beyond 72 h. Dose to healthy tissues is best characterized by scanning patients in the first 2 d of treatment because of the larger degree of tracer clearance in this early phase. Conclusion: This work demonstrates a means for efficient dose estimation in 177Lu-PSMA-617 therapy. By providing methods to simplify and potentially automate radiation dosimetry, we hope to accelerate the understanding of radiobiology and development of dose-response models in this unique therapeutic context.
Collapse
Affiliation(s)
- Price A Jackson
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; and
| | - Michael S Hofman
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; and
| | - Rodney J Hicks
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; and
| | - Mark Scalzo
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - John Violet
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
37
|
Factors affecting accuracy of S values and determination of time-integrated activity in clinical Lu-177 dosimetry. Ann Nucl Med 2019; 33:521-531. [DOI: 10.1007/s12149-019-01365-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022]
|
38
|
Hagmarker L, Svensson J, Rydén T, van Essen M, Sundlöv A, Gleisner KS, Gjertsson P, Bernhardt P. Bone Marrow Absorbed Doses and Correlations with Hematologic Response During 177Lu-DOTATATE Treatments Are Influenced by Image-Based Dosimetry Method and Presence of Skeletal Metastases. J Nucl Med 2019; 60:1406-1413. [PMID: 30902877 PMCID: PMC6785794 DOI: 10.2967/jnumed.118.225235] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
This study aimed to compare different image-based methods for bone marrow dosimetry and study the dose–response relationship during treatment with 177Lu-DOTATATE in patients with and without skeletal metastases. Methods: This study included 46 patients with advanced neuroendocrine tumors treated with at least 2 fractions of 177Lu-DOTATATE at Sahlgrenska University Hospital. High- and low-uptake compartments were automatically outlined in planar images collected at 2, 24, 48, and 168 h after injection. The bone marrow absorbed doses were calculated from the cross doses of the high- and low-uptake compartments and the self-dose, using the time–activity concentration curve for the low-uptake compartment. This time–activity concentration curve was adjusted using a fixed constant of 1.8 for the planar dosimetry method and using the activity concentrations in vertebral bodies in SPECT images at 24 h after injection of 177Lu-DOTATATE in 4 hybrid methods: L4-SPECT used the activity concentration in the L4 vertebra, whereas V-SPECT, L-SPECT, and T-SPECT used the median activity concentration in all visible vertebrae, lumbar vertebrae, and thoracic vertebrae, respectively. Results: Using the planar method, L4-SPECT, V-SPECT, L-SPECT, and T-SPECT, the estimated median bone marrow absorbed doses were 0.19, 0.36, 0.40, 0.39, and 0.46 Gy/7.4 GBq, respectively, with respective ranges of 0.12–0.33, 0.15–1.44, 0.19–1.71, 0.21–1.60, and 0.18–2.12 Gy/7.4 GBq. For all methods, the bone marrow absorbed dose significantly correlated with decreased platelet counts. This correlation increased after treatment fraction 2: the Spearman correlation (rs) were −0.49 for the planar method, −0.61 for L4-SPECT, −0.63 for V-SPECT, −0.63 for L-SPECT, and −0.57 for T-SPECT. A separate analysis revealed an increased correlation for patients without skeletal metastases using the planar method (rs = −0.67). In contrast, hybrid methods had poor correlations for patients without metastases and stronger correlations for patients with skeletal metastases (rs = −0.61 to −0.74). The mean bone marrow absorbed doses were 3%–69% higher for patients with skeletal metastases than for patients without. Conclusion: The estimated bone marrow absorbed doses by image-based techniques and the correlation with platelets are influenced by the choice of measured vertebrae and the presence of skeletal metastases.
Collapse
Affiliation(s)
- Linn Hagmarker
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Svensson
- Department of Oncology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Rydén
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martijn van Essen
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Sundlöv
- Department of Oncology, Skåne University Hospital, Lund, Sweden.,Lund University, Division of Oncology and Pathology, Department of Clinical Sciences, Lund, Sweden; and
| | | | - Peter Gjertsson
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Bernhardt
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Marin G, Vanderlinden B, Karfis I, Guiot T, Wimana Z, Reynaert N, Vandenberghe S, Flamen P. A dosimetry procedure for organs-at-risk in 177Lu peptide receptor radionuclide therapy of patients with neuroendocrine tumours. Phys Med 2018; 56:41-49. [PMID: 30527088 DOI: 10.1016/j.ejmp.2018.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Peptide receptor radionuclide therapy with 177Lu-DOTATATE has become a standard treatment modality in neuroendocrine tumours (NETs). No consensus has yet been reached however regarding the absorbed dose threshold for lesion response, the absorbed dose limit to organs-at-risk, and the optimal fractionation and activity to be administered. This is partly due to a lack of uniform and comparable dosimetry protocols. The present article details the development of an organ-at-risk dosimetry procedure, which could be implemented and used routinely in a clinical context. METHODS Forty-seven patients with NETs underwent 177Lu-DOTATATE therapy. Three SPECT/CT images were acquired at 4, 24 and 144-192 h post-injection. Three blood samples were obtained together with the SPECT/CT acquisitions and 2 additional samples were obtained around 30 min and 1 h post-injection. A bi-exponential fit was used to compute the source organ time-integrated activity coefficients. Coefficients were introduced into OLINDA/EXM software to compute organ-at-risk absorbed doses. Median values for all patients were computed for absorbed dose coefficient D/A0 and for late effective half-life T1/2eff for kidneys, spleen and red marrow. RESULTS Dosimetry resulted in a median[interquartile range] of 0.78[0.35], 1.07[0.58] and 0.028[0.010] Gy/GBq for D/A0 and of 55[9], 71[9] and 52[18] h for T1/2eff for kidneys, spleen and red marrow respectively. CONCLUSIONS A dosimetry procedure for organs-at-risk in 177Lu-DOTATATE therapy based on serial SPECT/CT images and blood samples can be implemented routinely in a clinical context with limited patient burden. The results obtained were in accordance with those of other centres.
Collapse
Affiliation(s)
- Gwennaëlle Marin
- Department of Medical Physics, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 boulevard de Waterloo, 1000 Brussels, Belgium; Medical Imaging and Signal Processing (MEDISIP), Department of Electronics and Information Systems (ELIS), Faculty of Engineering and Architecture (FEA), Ghent University (UGent), 185 De Pintelaan, 9000 Gent, Belgium.
| | - Bruno Vanderlinden
- Department of Medical Physics, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 boulevard de Waterloo, 1000 Brussels, Belgium.
| | - Ioannis Karfis
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 boulevard de Waterloo, 1000 Brussels, Belgium.
| | - Thomas Guiot
- Department of Medical Physics, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 boulevard de Waterloo, 1000 Brussels, Belgium.
| | - Zena Wimana
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 boulevard de Waterloo, 1000 Brussels, Belgium.
| | - Nick Reynaert
- Department of Medical Physics, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 boulevard de Waterloo, 1000 Brussels, Belgium.
| | - Stefaan Vandenberghe
- Medical Imaging and Signal Processing (MEDISIP), Department of Electronics and Information Systems (ELIS), Faculty of Engineering and Architecture (FEA), Ghent University (UGent), 185 De Pintelaan, 9000 Gent, Belgium.
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 121 boulevard de Waterloo, 1000 Brussels, Belgium.
| |
Collapse
|
40
|
Hicks RJ, Jackson P, Kong G, Ware RE, Hofman MS, Pattison DA, Akhurst TA, Drummond E, Roselt P, Callahan J, Price R, Jeffery CM, Hong E, Noonan W, Herschtal A, Hicks LJ, Hedt A, Harris M, Paterson BM, Donnelly PS. 64Cu-SARTATE PET Imaging of Patients with Neuroendocrine Tumors Demonstrates High Tumor Uptake and Retention, Potentially Allowing Prospective Dosimetry for Peptide Receptor Radionuclide Therapy. J Nucl Med 2018; 60:777-785. [PMID: 30442752 DOI: 10.2967/jnumed.118.217745] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023] Open
Abstract
Imaging of somatostatin receptor expression is an established technique for staging of neuroendocrine neoplasia and determining the suitability of patients for peptide receptor radionuclide therapy. PET/CT using 68Ga-labeled somatostatin analogs is superior to earlier agents, but the rapid physical decay of the radionuclide poses logistic and regulatory challenges. 64Cu has attractive physical characteristics for imaging and provides a diagnostic partner for the therapeutic radionuclide 67Cu. Based on promising preclinical studies, we have performed a first-time-in-humans trial of 64Cu-MeCOSar-Tyr3-octreotate (64Cu-SARTATE) to assess its safety and ability to localize disease at early and late imaging time-points. Methods: In a prospective trial, 10 patients with known neuroendocrine neoplasia and positive for uptake on 68Ga-DOTA-octreotate (68Ga-DOTATATE) PET/CT underwent serial PET/CT imaging at 30 min, 1 h, 4 h, and 24 h after injection of 64Cu-SARTATE. Adverse reactions were recorded, and laboratory testing was performed during infusion and at 1 and 7 d after imaging. Images were analyzed for lesion and normal-organ uptake and clearance to assess lesion contrast and perform dosimetry estimates. Results: 64Cu-SARTATE was well tolerated during infusion and throughout the study, with 3 patients experiencing mild infusion-related events. High lesion uptake and retention were observed at all imaging time-points. There was progressive hepatic clearance over time, providing the highest lesion-to-liver contrast at 24 h. Image quality remained high at this time. Comparison of 64Cu-SARTATE PET/CT obtained at 4 h to 68Ga-DOTATATE PET/CT obtained at 1 h indicated comparable or superior lesion detection in all patients, especially in the liver. As expected, the highest early physiologic organ uptake was in the kidneys, liver, and spleen. Conclusion: 64Cu-SARTATE is safe and has excellent imaging characteristics. High late-retention in tumor and clearance from the liver suggest suitability for diagnostic studies and for prospective dosimetry for 67Cu-SARTATE peptide receptor radionuclide therapy, and the half-life of 64Cu would also facilitate good-manufacturing-practice production and distribution to sites without access to 68Ga.
Collapse
Affiliation(s)
- Rodney J Hicks
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Price Jackson
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Grace Kong
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Robert E Ware
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael S Hofman
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - David A Pattison
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Timothy A Akhurst
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Elizabeth Drummond
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Roselt
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jason Callahan
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Roger Price
- Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Washington, Australia
| | - Charmaine M Jeffery
- Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Washington, Australia
| | - Emily Hong
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Wayne Noonan
- Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Alan Herschtal
- Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lauren J Hicks
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Amos Hedt
- Clarity Pharmaceuticals Ltd., Eveleigh, New South Wales, Australia
| | - Matthew Harris
- Clarity Pharmaceuticals Ltd., Eveleigh, New South Wales, Australia
| | - Brett M Paterson
- School of Chemistry, Monash University, Victoria, Australia; and
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Ljungberg M, Sjogreen Gleisner K. 3-D Image-Based Dosimetry in Radionuclide Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2860563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Violet J, Jackson P, Ferdinandus J, Sandhu S, Akhurst T, Iravani A, Kong G, Kumar AR, Thang SP, Eu P, Scalzo M, Murphy D, Williams S, Hicks RJ, Hofman MS. Dosimetry of 177Lu-PSMA-617 in Metastatic Castration-Resistant Prostate Cancer: Correlations Between Pretherapeutic Imaging and Whole-Body Tumor Dosimetry with Treatment Outcomes. J Nucl Med 2018; 60:517-523. [PMID: 30291192 DOI: 10.2967/jnumed.118.219352] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023] Open
Abstract
177Lu-prostate-specific membrane antigen (PSMA)-617 enables targeted delivery of β-particle radiation to prostate cancer. We determined its radiation dosimetry and relationships to pretherapeutic imaging and outcomes. Methods: Thirty patients with prostate cancer receiving 177Lu-PSMA-617 within a prospective clinical trial (ACTRN12615000912583) were studied. Screening 68Ga-PSMA-11 PET/CT demonstrated high PSMA expression in all patients. After therapy, patients underwent quantitative SPECT/CT at 4, 24, and 96 h. Pharmacokinetic uptake and clearance at a voxel level were calculated and translated into absorbed dose using voxel S values. Volumes of interest were drawn on normal tissues and tumor to assess radiation dose, and a whole-body tumor dose was defined. Correlations between PSMA PET/CT parameters, dosimetry, and biochemical and therapeutic response were analyzed to identify relationships between absorbed dose, tumor burden, and patient physiology. Results: Mean absorbed dose to kidneys, submandibular and parotid glands, liver, spleen, and bone marrow was 0.39, 0.44, 0.58, 0.1, 0.06, and 0.11 Gy/MBq, respectively. Median whole-body tumor-absorbed dose was 11.55 Gy and correlated with prostate-specific antigen (PSA) response at 12 wk. A median dose of 14.1 Gy was observed in patients achieving a PSA decline of at least 50%, versus 9.6 Gy for those achieving a PSA decline of less than 50% (P < 0.01). Of 11 patients receiving a tumor dose of less than 10 Gy, only one achieved a PSA response of at least 50%. On screening PSMA PET, whole-body tumor SUVmean correlated with mean absorbed dose (r = 0.62), and SUVmax of the parotids correlated with absorbed dose (r = 0.67). There was an inverse correlation between tumor volume and mean dose to the parotids (r = -0.41) and kidneys (r = -0.43). The mean parotid dose was also reduced with increasing body mass (r = -0.41) and body surface area (r = -0.37). Conclusion: 177Lu-PSMA-617 delivers high absorbed doses to tumor, with a significant correlation between whole-body tumor dose and PSA response. Patients receiving less than 10 Gy were unlikely to achieve a fall in PSA of at least 50%. Significant correlations between aspects of screening 68Ga-PET/CT and tumor and normal tissue dose were observed, providing a rationale for patient-specific dosing. Reduced salivary and kidney doses were observed in patients with a higher tumor burden. The parotid dose also reduced with increasing body mass and body surface area.
Collapse
Affiliation(s)
- John Violet
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Price Jackson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Justin Ferdinandus
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Tim Akhurst
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Amir Iravani
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Grace Kong
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Aravind Ravi Kumar
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sue Ping Thang
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Peter Eu
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mark Scalzo
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Declan Murphy
- Department of Uro-Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; and.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Scott Williams
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Rodney J Hicks
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael S Hofman
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
43
|
Roth D, Gustafsson J, Sundlöv A, Sjögreen Gleisner K. A method for tumor dosimetry based on hybrid planar-SPECT/CT images and semiautomatic segmentation. Med Phys 2018; 45:5004-5018. [PMID: 30199102 DOI: 10.1002/mp.13178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE A hybrid planar-SPECT/CT method for tumor dosimetry in 177 Lu-DOTATATE therapy, applicable to datasets consisting of multiple conjugate-view images and one SPECT/CT, is developed and evaluated. METHODS The imaging protocol includes conjugate-view imaging at 1, 24, 96, and 168 h post infusion (p.i.) and a SPECT/CT acquisition 24 h p.i. The dosimetry method uses the planar images to estimate the shape of the time-activity concentration curve, which is then rescaled to absolute units using the SPECT-derived activity concentration. The resulting time-integrated activity concentration coefficient (TIACC) is used to calculate the tumor-absorbed dose. Semiautomatic segmentation techniques are applied for tumor delineation in both planar and SPECT images, where the planar image segmentation is accomplished using an active-rays-based technique. The selection of tumors is done by visual inspection of planar and SPECT images and applying a set of criteria concerning the tumor visibility and possible interference from superimposed activity uptakes in the planar images. Five different strategies for determining values from planar regions of interest (ROIs), based on entire or partial ROIs, and with and without background correction, are evaluated. Evaluation is performed against a SPECT/CT-based method on data from six patients where sequential conjugate-view and SPECT/CT imaging have been performed in parallel and against ground truths in Monte Carlo simulated images. The patient data are also used to evaluate the interoperator variability and to assess the validity of the developed criteria for tumor selection. RESULTS For patient images, the hybrid method produces TIACCs that are on average 6% below those of the SPECT/CT only method, with standard deviations for the relative TIACC differences of 8%-11%. Simulations show that the hybrid and SPECT-based methods estimate the TIACCs to within approximately 10% for tumors larger than around 10 ml, while for smaller tumors, all methods underestimate the TIACCs due to underestimations of the activity concentrations in the SPECT images. The planar image segmentation has a low operator dependence, with a median Dice similarity coefficient of 0.97 between operators. The adopted criteria for tumor selection manage to discriminate the tumors for which the absorbed-dose deviations between the hybrid and SPECT methods are the highest. CONCLUSIONS The hybrid method is found suitable for studies of tumor-absorbed doses in radionuclide therapy, provided that selection criteria regarding the visibility and overlapping activities in the planar images are applied.
Collapse
Affiliation(s)
- Daniel Roth
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Gustafsson
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anna Sundlöv
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | |
Collapse
|
44
|
Huizing DMV, de Wit-van der Veen BJ, Verheij M, Stokkel MPM. Dosimetry methods and clinical applications in peptide receptor radionuclide therapy for neuroendocrine tumours: a literature review. EJNMMI Res 2018; 8:89. [PMID: 30159614 PMCID: PMC6115319 DOI: 10.1186/s13550-018-0443-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022] Open
Abstract
Background The main challenge for systemic radiation therapy using radiopharmaceuticals (SRT) is to optimise the dose delivered to the tumour, while minimising normal tissue irradiation. Dosimetry could help to increase therapy response and decrease toxicity after SRT by individual treatment planning. Peptide receptor radionuclide therapy (PRRT) is an accepted SRT treatment option for irresectable and metastatic neuroendocrine tumours (NET). However, dosimetry in PRRT is not routinely performed, mainly due to the lack of evidence in literature and clinical implementation difficulties. The goal of this review is to provide insight in dosimetry methods and requirements and to present an overview of clinical aspects of dosimetry in PRRT for NET. Methods A PubMed query including the search criteria dosimetry, radiation dose, peptide receptor radionuclide therapy, and radionuclide therapy was performed. Articles were selected based on title and abstract, and description of dosimetric approach. Results A total of 288 original articles were included. The most important dosimetry methods, their main advantages and limitations, and implications in the clinical setting are discussed. An overview of dosimetry in clinical studies regarding PRRT treatment for NET is provided. Conclusion Clinical dosimetry in PRRT is feasible and can result in improved treatment outcomes. Current clinical dosimetry studies focus on safety and apply non-voxel-based dosimetry methods. Personalised treatment using sophisticated dosimetry methods to assess tumour and normal tissue uptake in clinical trials is the next step towards routine dosimetry in PRRT for NET. Electronic supplementary material The online version of this article (10.1186/s13550-018-0443-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daphne Merel Valerie Huizing
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | - Marcel Verheij
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
45
|
Willowson KP, Ryu H, Jackson P, Singh A, Eslick E, Bailey DL. A Comparison of 2D and 3D Kidney Absorbed Dose Measures in Patients Receiving 177Lu-DOTATATE. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2018; 6:113-119. [PMID: 29998144 PMCID: PMC6038968 DOI: 10.22038/aojnmb.2018.26105.1182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective(s): To investigate and compare quantitative accuracy of kidney absorbed dose measures made from both 2D and 3D imaging in patients receiving 177Lu-DOTATATE (Lutate) for treatment of neuroendocrine tumours (NETs). Methods: Patients receiving Lutate therapy underwent both whole body planar imaging and SPECT/CT imaging over the kidneys at time points 0.5, 4, 24, and 96-120 hours after injection. Planar data were corrected for attenuation using transmission data, and were converted to units of absolute activity via two methods, using either a calibration standard in the field of view or relative to pre-voiding image total counts. Hand drawn regions of interest were used to generate time activity curves and kidney absorbed dose estimates in OLINDA-EXM. Fully quantitative SPECT data were generated using CT-derived corrections for both scatter and attenuation, before correction for dead time and application of a camera specific sensitivity factor to convert data to units of absolute activity. Volumes of interest were defined for kidney using the co-registered x-ray CT, before time activity curves and absorbed dose measures were generated in OLINDA-EXM, both with and without corrections made to the model for patient specific kidney volumes. Quantitative SPECT data were also used to derive dose maps through dose kernel convolution (DKC), which was treated as the gold standard. Results: A total of 50 studies were analysed, corresponding to various cycles of treatment from 21 patients. Planar absorbed dose estimates were consistently higher than SPECT derived estimates by, on average, a factor of 3. Conclusion: Quantitative SPECT is considered the gold standard approach for organ specific dosimetry however often relies on in house software. As such planar methods for estimating absorbed dose are much more widely available, and in particular, are often the only source of reference in previously published data. For the case of Lutate dosimetry, planar measures may lead to a three-fold increase in measures of kidney absorbed dose.
Collapse
Affiliation(s)
- Kathy P Willowson
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW Australia
| | - HyunJu Ryu
- Faculty of Health Sciences, University of Sydney, Cumberland, NSW Australia
| | - Price Jackson
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Anita Singh
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW Australia
| | - Enid Eslick
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW Australia
| | - Dale L Bailey
- Faculty of Health Sciences, University of Sydney, Cumberland, NSW Australia.,Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW Australia
| |
Collapse
|
46
|
Jackson P, Hardcastle N, Dawe N, Kron T, Hofman MS, Hicks RJ. Deep Learning Renal Segmentation for Fully Automated Radiation Dose Estimation in Unsealed Source Therapy. Front Oncol 2018; 8:215. [PMID: 29963496 PMCID: PMC6010550 DOI: 10.3389/fonc.2018.00215] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Convolutional neural networks (CNNs) have been shown to be powerful tools to assist with object detection and-like a human observer-may be trained based on a relatively small cohort of reference subjects. Rapid, accurate organ recognition in medical imaging permits a variety of new quantitative diagnostic techniques. In the case of therapy with targeted radionuclides, it may permit comprehensive radiation dose analysis in a manner that would often be prohibitively time-consuming using conventional methods. METHODS An automated image segmentation tool was developed based on three-dimensional CNNs to detect right and left kidney contours on non-contrast CT images. Model was trained based on 89 manually contoured cases and tested on a cohort of patients receiving therapy with 177Lu-prostate-specific membrane antigen-617 for metastatic prostate cancer. Automatically generated contours were compared with those drawn by an expert and assessed for similarity based on dice score, mean distance-to-agreement, and total segmented volume. Further, the contours were applied to voxel dose maps computed from post-treatment quantitative SPECT imaging to estimate renal radiation dose from therapy. RESULTS Neural network segmentation was able to identify right and left kidneys in all patients with a high degree of accuracy. The system was integrated into the hospital image database, returning contours for a selected study in approximately 90 s. Mean dice score was 0.91 and 0.86 for right and left kidneys, respectively. Poor performance was observed in three patients with cystic kidneys of which only few were included in the training data. No significant difference in mean radiation absorbed dose was observed between the manual and automated algorithms. CONCLUSION Automated contouring using CNNs shows promise in providing quantitative assessment of functional SPECT and possibly PET images; in this case demonstrating comparable accuracy for radiation dose interpretation in unsealed source therapy relative to a human observer.
Collapse
Affiliation(s)
- Price Jackson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Noel Dawe
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael S. Hofman
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rodney J. Hicks
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Besemer AE, Yang YM, Grudzinski JJ, Hall LT, Bednarz BP. Development and Validation of RAPID: A Patient-Specific Monte Carlo Three-Dimensional Internal Dosimetry Platform. Cancer Biother Radiopharm 2018; 33:155-165. [PMID: 29694246 DOI: 10.1089/cbr.2018.2451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This work describes the development and validation of a patient-specific Monte Carlo internal dosimetry platform called RAPID (Radiopharmaceutical Assessment Platform for Internal Dosimetry). RAPID utilizes serial PET/CT or SPECT/CT images to calculate voxelized three-dimensional (3D) internal dose distributions with the Monte Carlo code Geant4. RAPID's dosimetry calculations were benchmarked against previously published S-values and specific absorbed fractions (SAFs) calculated for monoenergetic photon and electron sources within the Zubal phantom and for S-values calculated for a variety of radionuclides within spherical tumor phantoms with sizes ranging from 1 to 1000 g. The majority of the S-values and SAFs calculated in the Zubal Phantom were within 5% of the previously published values with the exception of a few 10 keV photon SAFs that agreed within 10%, and one value within 16%. The S-values calculated in the spherical tumor phantoms agreed within 2% for 177Lu, 131I, 125I, 18F, and 64Cu, within 3.5% for 211At and 213Bi, within 6.5% for 153Sm, 111In, 89Zr, and 223Ra, and within 9% for 90Y, 68Ga, and 124I. In conclusion, RAPID is capable of calculating accurate internal dosimetry at the voxel-level for a wide variety of radionuclides and could be a useful tool for calculating patient-specific 3D dose distributions.
Collapse
Affiliation(s)
- Abigail E Besemer
- 1 Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin , Madison, Wisconsin.,2 Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin
| | - You Ming Yang
- 1 Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin , Madison, Wisconsin.,3 Department of Radiation Oncology, University of California - Los Angeles , Los Angeles, California
| | - Joseph J Grudzinski
- 1 Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin , Madison, Wisconsin
| | - Lance T Hall
- 4 Department of Radiology, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin.,5 Carbone Cancer Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Bryan P Bednarz
- 1 Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
48
|
Grassi E, Fioroni F, Berenato S, Patterson N, Ferri V, Braglia L, Filice A, Versari A, Iori M, Spezi E. Effect of image registration on 3D absorbed dose calculations in 177 Lu-DOTATOC peptide receptor radionuclide therapy. Phys Med 2018; 45:177-185. [DOI: 10.1016/j.ejmp.2017.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/18/2017] [Accepted: 11/26/2017] [Indexed: 11/29/2022] Open
|
49
|
Ljungberg M, Pretorius PH. SPECT/CT: an update on technological developments and clinical applications. Br J Radiol 2018; 91:20160402. [PMID: 27845567 PMCID: PMC5966195 DOI: 10.1259/bjr.20160402] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/28/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022] Open
Abstract
Functional nuclear medicine imaging with single-photon emission CT (SPECT) in combination with anatomical CT has been commercially available since the beginning of this century. The combination of the two modalities has improved both the sensitivity and specificity of many clinical applications and CT in conjunction with SPECT that allows for spatial overlay of the SPECT data on good anatomy images. Introduction of diagnostic CT units as part of the SPECT/CT system has also potentially allowed for a more cost-efficient use of the equipment. Most of the SPECT systems available are based on the well-known Anger camera principle with NaI(Tl) as a scintillation material, parallel-hole collimators and multiple photomultiplier tubes, which, from the centroid of the scintillation light, determine the position of an event. Recently, solid-state detectors using cadmium-zinc-telluride became available and clinical SPECT cameras employing multiple pinhole collimators have been developed and introduced in the market. However, even if new systems become available with better hardware, the SPECT reconstruction will still be affected by photon attenuation and scatter and collimator response. Compensation for these effects is needed even for qualitative studies to avoid artefacts leading to false positives. This review highlights the recent progress for both new SPECT cameras systems as well as for various data-processing and compensation methods.
Collapse
Affiliation(s)
- Michael Ljungberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - P Hendrik Pretorius
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
50
|
Li T, Wu NY, Song N, Mok GSP. Evaluation of sequential SPECT and CT for targeted radionuclide therapy dosimetry. Ann Nucl Med 2017; 32:34-43. [PMID: 29143283 DOI: 10.1007/s12149-017-1218-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE In targeted radionuclide therapy (TRT), a prior knowledge of the absorbed dose biodistribution is essential for pre-therapy treatment planning. Previously, we showed that non-rigid organ-by-organ registration in sequential quantitative SPECT images improved dose estimation. This study aims to investigate if sequential CT can further improve TRT dosimetric accuracy. METHODS We simulated SPECT/CT acquisitions at 1, 12, 24, 72 and 144 h In-111 Zevalin post-injection using an analytical MEGP projector, modeling attenuation, scatter and collimator-detector response. We later recruited a patient injected with 222 MBq In-111 DTPAOC imaged at 3 SPECT/CT sessions for clinical evaluations. Four registration schemes were evaluated: whole-body-based registration performed on sequential (1) SPECT (WB-SPECT) or (2) CT (WB-CT) images; organ-based registration applied on organs individually segmented from sequential (3) SPECT (O-SPECT) or (4) CT (O-CT) images. Voxel-by-voxel integration was performed followed by Y-90 voxel-S-kernel convolution. Organ-absorbed doses, iso-dose curves, dose-volume histograms (DVHs) were generated for targeted organs for analysis. RESULTS In simulation study, organ-absorbed dose errors were (- 8.66 ± 2.83)%, (- 2.51 ± 3.69)%, (- 9.23 ± 3.28)%, (- 7.17 ± 2.53)% for liver, (- 14.81 ± 4.91)%, (- 3.60 ± 4.37)%, (- 18.13 ± 4.44)%, (- 11.34 ± 4.22)% for spleen, for O-SPECT, O-CT, WB-SPECT and WB-CT registrations, respectively. For all organs, O-CT showed superior results. Results of iso-dose contour, DVHs were in accordance with the organ-absorbed doses. In clinical studies, the results were also consistent which showed O-CT method deviated the most from the result with no registration. CONCLUSIONS We conclude that if both sequential SPECT/CT scans are available, CT organ-based registration method can more effectively improve the 3D dose estimation. Sequential low-dose CT scans might be considered to be included in the standard TRT protocol.
Collapse
Affiliation(s)
- Tiantian Li
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Nien-Yun Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan, Republic of China.,Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Na Song
- Department of Nuclear Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, 10461, USA
| | - Greta S P Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China. .,Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|