1
|
Shende R, Dhoble SJ, Gupta G. Dosimetric Evaluation of Radiation Treatment Planning for Simultaneous Integrated Boost Technique Using Monte Carlo Simulation. J Med Phys 2023; 48:298-306. [PMID: 37969148 PMCID: PMC10642595 DOI: 10.4103/jmp.jmp_4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 11/17/2023] Open
Abstract
Monte Carlo (MC) techniques have been recognized as the gold standard for the simulation of radiation transport in radiotherapy. The aim of the study is to perform dosimetric evaluation of Simultaneous Integrated Boost (SIB) radiation treatment planning using MC simulation approach. The geometrical source modeling and simulation of 6 MV Flattening Filter Free (FFF)beam from TrueBeam linear accelerator have been carried out to simulate Volumetric Modulated Arc Therapy (VMAT) plans using MC simulation software PRIMO. All the SIB plans have been generated using VMAT techniques for patients with locally advanced postoperative head-and-neck squamous cell carcinoma in Eclipse Treatment Planning System (TPS) retrospectively. TPS plans have been compared against their respective MC-simulated plans in PRIMO. The quality assessments of plans have been performed using several dose volume parameters, plan quality indices, and methods of gamma analysis. Dmean, D50%, and D2% received by planning target volume (PTV), PTV60, and PTV52 have been found significantly lower in TPS-generated plans compared to MC-simulated plans. D100%, D98%, and D95% received by PTV60 exhibit good agreement. However, PTV52 shows a significant deviation between TPS and MC plans. The mean organ-at-risk doses have been found significantly lower in TPS plans compared to MC plans. TPS and MC plans have been found in close agreement within gamma acceptance criteria of 3% Dose Difference (DD) and 3 mm Distance to Agreement (DTA). Dose distributions computed using MC simulation techniques are reliable, accurate, and consistent with analytical anisotropic algorithm. Plan quality indices have been found slightly compromised in MC-simulated plans compared with TPS-generated plans appeared to be a true representation of real dose distribution obtained from MC simulation technique. Validation using MC simulation approach provides an independent secondary check for ensuring accuracy of TPS-generated plan.
Collapse
Affiliation(s)
- Ravindra Shende
- Department of Radiation Oncology, Balco Medical Centre, Raipur, Chhattisgarh, India
- Department of Physics, RTM Nagpur University, Nagpur, Maharashtra, India
| | - S. J. Dhoble
- Department of Physics, RTM Nagpur University, Nagpur, Maharashtra, India
| | - Gourav Gupta
- Department of Radiation Oncology, Balco Medical Centre, Raipur, Chhattisgarh, India
| |
Collapse
|
2
|
Monte-Carlo techniques for radiotherapy applications I: introduction and overview of the different Monte-Carlo codes. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Introduction:
The dose calculation plays a crucial role in many aspects of contemporary clinical radiotherapy treatment planning process. It therefore goes without saying that the accuracy of the dose calculation is of very high importance. The gold standard for absorbed dose calculation is the Monte-Carlo algorithm.
Methods:
This first of two papers gives an overview of the main openly available and supported codes that have been widely used for radiotherapy simulations.
Results:
The paper aims to provide an overview of Monte-Carlo in the field of radiotherapy and point the reader in the right direction of work that could help them get started or develop their existing understanding and use of Monte-Carlo algorithms in their practice.
Conclusions:
It also serves as a useful companion to a curated collection of papers on Monte-Carlo that have been published in this journal.
Collapse
|
3
|
Li Y, Sun X, Liang Y, Hu Y, Liu C. Monte Carlo simulation of linac using PRIMO. Radiat Oncol 2022; 17:185. [PMID: 36384637 PMCID: PMC9667592 DOI: 10.1186/s13014-022-02149-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background Monte Carlo simulation is considered as the most accurate method for dose calculation in radiotherapy. PRIMO is a Monte-Carlo program with a user-friendly graphical interface. Material and method A VitalBeam with 6MV and 6MV flattening filter free (FFF), equipped with the 120 Millennium multileaf collimator was simulated by PRIMO. We adjusted initial energy, energy full width at half maximum (FWHM), focal spot FWHM, and beam divergence to match the measurements. The water tank and ion-chamber were used in the measurement. Percentage depth dose (PDD) and off axis ratio (OAR) were evaluated with gamma passing rates (GPRs) implemented in PRIMO. PDDs were matched at different widths of standard square fields. OARs were matched at five depths. Transmission factor and dose leaf gap (DLG) were simulated. DLG was measured by electronic portal imaging device using a sweeping gap method. Result For the criterion of 2%/2 mm, 1%/2 mm and 1%/1 mm, the GPRs of 6MV PDD were 99.33–100%, 99–100%, and 99–100%, respectively; the GPRs of 6MV FFF PDD were 99.33–100%, 98.99–99.66%, and 97.64–98.99%, respectively; the GPRs of 6MV OAR were 96.4–100%, 90.99–100%, and 85.12–98.62%, respectively; the GPRs of 6MV FFF OAR were 95.15–100%, 89.32–100%, and 87.02–99.74%, respectively. The calculated DLG matched well with the measurement (6MV: 1.36 mm vs. 1.41 mm; 6MV FFF: 1.07 mm vs. 1.03 mm, simulation vs measurement). The transmission factors were similar (6MV: 1.25% vs. 1.32%; 6MV FFF: 0.8% vs. 1.12%, simulation vs measurement). Conclusion The calculated PDD, OAR, DLG and transmission factor were all in good agreement with measurements. PRIMO is an independent (with respect to analytical dose calculation algorithm) and accurate Monte Carlo tool. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02149-5.
Collapse
|
4
|
A plan verification platform for online adaptive proton therapy using deep learning-based Monte–Carlo denoising. Phys Med 2022; 103:18-25. [DOI: 10.1016/j.ejmp.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
|
5
|
Shende R, Dhoble S, Gupta G. Geometrical source modeling of 6MV flattening-filter-free (FFF) beam from TrueBeam linear accelerator and its commissioning validation using Monte Carlo simulation approach for radiotherapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Mahur M, Singh M, Gurjar OP, Semwal MK. Assessment of Surface and Build-up Doses for a 6 MV Photon Beam using Parallel Plate Chamber, EBT3 Gafchromic Films, and PRIMO Monte Carlo Simulation Code. J Biomed Phys Eng 2022; 12:455-464. [PMID: 36313413 PMCID: PMC9589075 DOI: 10.31661/jbpe.v0i0.2101-1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/25/2021] [Indexed: 11/06/2022]
Abstract
Background: Accurate assessment of surface and build-up doses has a key role in radiotherapy, especially for the superficial lesions with uncertainties involved while performing measurements in the build-up region. Objective: This study aimed to assess surface and build-up doses for 6 MV photon beam from linear accelerator using parallel plate ionization chamber, EBT3 Gafchromic films, and PRIMO Monte Carlo (MC) simulation code. Material and Methods: In this experimental study, parallel plate chamber (PPC05) and EBT3 Gafchromic films were used to measure doses in a build-up region for 6 MV beam from the linear accelerator for different field sizes at various depths ranging from 0 to 2 cm from the surface with 100 cm source to surface distance (SSD) in a solid water phantom. Measured results were compared with Monte Carlo simulated results using PENELOPE-based PRIMO simulation code for the same setup conditions. Effect of gantry angle incidence and SSD were also analyzed for depth doses at the surface and build-up regions using PPC05 ion chamber and EBT3 Gafchromic films. Results: Doses measured at the surface were 14.78%, 19.87%, 25.83%, and 31.54% for field sizes of 5×5, 10×10, 15×15, and 20×20 cm2, respectively for a 6 MV photon beam with a parallel plate chamber and 14.20%, 19.14%, 25.149%, and 30.90%, respectively for EBT3 Gafchromic films. Both measurement sets were in good agreement with corresponding simulated results from the PRIMO MC simulation code; doses increase with the increase in field sizes. Conclusion: Good agreement was observed between the measured depth doses using parallel plate ionization chamber, EBT3 Gafchromic films, and the simulated depth doses using PRIMO Monte Carlo simulation code.
Collapse
Affiliation(s)
- Mamta Mahur
- MSc, Department of Radiation Oncology, Delhi State Cancer Institute, Dilshad Garden, Delhi, India
- MSc, Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munendra Singh
- PhD, Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Om Prakash Gurjar
- PhD, Government Cancer Hospital, Mahatma Gandhi Memorial Medical College, Indore-452001, India
| | - Manoj Kumar Semwal
- PhD, Department of Radiation Oncology, Army Hospital (Research & Referral), Delhi Cantonment New Delhi-110010, India
| |
Collapse
|
7
|
Calvo-Ortega JF, Moragues-Femenía S, Laosa-Bello C, Hermida-López M, Pozo-Massó M, Zamora-Pérez A. Monte Carlo-based independent dose verification of radiosurgery HyperArc plans. Phys Med 2022; 102:19-26. [PMID: 36037748 DOI: 10.1016/j.ejmp.2022.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To investigate the feasibility of using the free PRIMO Monte Carlo software for independent dose check of cranial SRS plans designed with the Varian HyperArc (HA) technique. MATERIALS AND METHODS In this study, the PRIMO Monte Carlo software v. 0.3.64.1800 was used with the phase-space files (v. 2, Feb. 27, 2013) provided by Varian for 6 MV flattening-filter-free (FFF) photon beams from a Varian TrueBeam linear accelerator (linac), equipped with a Millennium 120 multileaf collimator (MLC). This configuration was validated by comparing the percentage depth doses (PDDs), lateral profiles and relative output factors (OFs) simulated in a water phantom against measurements for field sizes from 1 × 1 to 40 × 40 cm2. The agreement between simulated and experimental relative dose curves was evaluated using a global (G) gamma index analysis. In addition, the accuracy of PRIMO to model the MLC was investigated (dosimetric leaf gap, tongue and groove, leaf transmission and interleaf leakage). Thirty-five HA SRS plans computed in the Eclipse treatment planning system (TPS) were simulated in PRIMO. The Acuros XB algorithm v. 16.10 (dose to medium) was used in Eclipse. Sixty targets with diameters ranging from 6 to 33 mm were included. Agreement between the dose distributions given by Eclipse and PRIMO was evaluated in terms of 3D global gamma passing rates (GPRs) for the 2 %/2 mm criteria. RESULTS Average GPR greater than 95 % with the 2 %(G)/1 mm criteria were obtained over the PDD and profiles of each field size. Differences between PRIMO calculated and measured OFs were within 0.5 % in all fields, except for the 1 × 1 cm2 with a discrepancy of 1.5 %. Regarding the MLC modeling in PRIMO, an agreement within 3 % was achieved between calculated and experimental doses. Excellent agreement between PRIMO and Eclipse was found for the 35 HA plans. The 3D global GPRs (2 %/2 mm) for the targets and external patient contour were 99.6 % ± 1.1 % and 99.8 % ± 0.5 %, respectively. CONCLUSIONS According to the results described in this study, the PRIMO Monte Carlo software, in conjunction with the 6X FFF Varian phase-space files, can be used as secondary dose calculation software to check stereotactic radiosurgery plans from Eclipse using the HyperArc technique.
Collapse
Affiliation(s)
- Juan-Francisco Calvo-Ortega
- Servicio de Oncología Radioterápica, Hospital Quirónsalud, Barcelona, Spain; Servicio de Oncología Radioterápica, Hospital Quirónsalud, Málaga, Spain.
| | | | - Coral Laosa-Bello
- Servicio de Oncología Radioterápica, Hospital Quirónsalud, Barcelona, Spain
| | - Marcelino Hermida-López
- Marcelino Hermida-López. Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Miguel Pozo-Massó
- Servicio de Oncología Radioterápica, Hospital Quirónsalud, Barcelona, Spain
| | | |
Collapse
|
8
|
Choi JW, Choi JY, Jang H, Joo KK, Kim BC. Pixel Image Analysis and Its Application with an Alcohol-Based Liquid Scintillator for Particle Therapy. SENSORS (BASEL, SWITZERLAND) 2022; 22:4876. [PMID: 35808370 PMCID: PMC9269500 DOI: 10.3390/s22134876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
We synthesized an alcohol-based liquid scintillator (AbLS), and we implemented an auxiliary monitoring system with short calibration intervals using AbLS for particle therapy. The commercial liquid scintillator used in previous studies did not allow the user to control the chemical ratio and its composition. In our study, the chemical ratio of AbLS was freely controlled by simultaneously mixing water and alcohol. To make an equivalent substance to the human body, 2-ethoxyethanol was used. There was no significant difference between AbLS and water in areal density. As an application of AbLS, the range was measured with AbLS using an electron beam in an image analysis that combined AbLS and a digital phone camera. Given a range-energy relationship for the electron expressed as areal density, the electron beam range (cm) in water can be easily estimated. To date, no literature report for the direct comparison of a pixel image analysis and Monte Carlo (MC) simulation has been published. Furthermore, optical tomography of the inverse problem was performed with AbLS and a mobile phone camera. Analyses of optical tomography images provide deeper insight into Radon transformation. In addition, the human phantom, which is difficult to compose with semiconductor diodes, was easily implemented as an image acquisition and analysis system.
Collapse
Affiliation(s)
- Ji-Won Choi
- Institute for Universe & Elementary Particles, Department of Physics, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, Korea;
| | - Ji-Young Choi
- Department of Fire Safety, Seoyeong University, Seogang-ro 1, Puk-gu, Gwangju 61268, Korea;
| | - Hanil Jang
- Department of Fire Safety, Seoyeong University, Seogang-ro 1, Puk-gu, Gwangju 61268, Korea;
| | - Kyung-Kwang Joo
- Institute for Universe & Elementary Particles, Department of Physics, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, Korea;
| | - Byoung-Chan Kim
- Medical Radiation, Wonkwang Health Science University, 514, Iksan-daero, Iksan-si 54538, Korea
| |
Collapse
|
9
|
Vassiliev ON, Peterson CB, Chang JY, Mohan R. Monte Carlo evaluation of target dose coverage in lung stereotactic body radiation therapy with flattening filter-free beams. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022; 21:81-87. [PMID: 35401050 PMCID: PMC8992779 DOI: 10.1017/s1460396920000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aim Previous studies showed that replacing conventional flattened beams (FF) with flattening filter-free (FFF) beams improves the therapeutic ratio in lung stereotactic body radiation therapy (SBRT), but these findings could have been impacted by dose calculation uncertainties caused by the heterogeneity of the thoracic anatomy and by respiratory motion, which were particularly high for target coverage. In this study, we minimized such uncertainties by calculating doses using high-spatial-resolution Monte Carlo and four-dimensional computed tomography (4DCT) images. We aimed to evaluate more reliably the benefits of using FFF beams for lung SBRT. Materials and methods For a cohort of 15 patients with early stage lung cancer that we investigated in a previous treatment planning study, we recalculated dose distributions with Monte Carlo using 4DCT images. This included fifteen FF and fifteen FFF treatment plans. Results Compared to Monte Carlo, the treatment planning system (TPS) over-predicted doses in low-dose regions of the planning target volume. For most patients, replacing FF beams with FFF beams improved target coverage, tumor control, and uncomplicated tumor control probabilities. Conclusions Monte Carlo tends to reveal deficiencies in target coverage compared to coverage predicted by the TPS. Our data support previously reported benefits of using FFF beams for lung SBRT.
Collapse
Affiliation(s)
- Oleg N Vassiliev
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Chiuyo J, Lugendo I, Muhogora W. Determination of dose distributions by monte-carlo simulation of 6 MV photon beam of varian vitalbeam accelerator using geant4 multithreaded code. J Med Phys 2022; 47:181-188. [PMID: 36212206 PMCID: PMC9543005 DOI: 10.4103/jmp.jmp_139_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Accuracy of dose delivery in radiation therapy is a primary requirement for effective cancer treatment. In practice, dose delivery accuracy of ±5% is desired. To achieve this accuracy level, an accurate method for calculating the dose distributions in the tumor volume is required. Monte-Carlo method is one of the methods considered to be the most accurate for calculating dose distributions. Materials and Methods: G4 linac-MT code was used to simulate a 6 MV photon beam. The initial electron beam parameters were tuned to validate the beam modeling from depth doses and beam profile. The dose distributions measured in water phantom were compared to the calculated dose distributions based on gamma index criterion. Results: The beam tuning showed the initial electron energy, sigma and full width at half maximum of 6.2 MeV, 0.8 MeV, and 1.18 mm, respectively, best match the measured dose distributions. The gamma index tests showed the calculated depth doses and beam profile were generally comparable with measurements, passing the standard acceptance criterion of 2%/2 mm. The simulated photon beam was justified by the index of beam quality, which showed excellent agreement with measured doses with a discrepancy of 0.1%. Conclusion: The observed agreement confirm the accuracy of the simulated 6 MV photon beam. It can therefore be used as radiation source for calculating dose distributions and further investigations aimed at improving dose delivery and planning in cancer patients.
Collapse
|
11
|
Aamri H, Fielding A, Aamry A, Sulieman A, Tamam N, Alkhorayef M, Bradley DA. Comparison between PRIMO and EGSnrc Monte Carlo models of the Varian True Beam linear accelerator. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Ghareeb F, Esposito A, Lencart J, Santos JA. Localized extra focal dose collimator angle dependence during VMAT: An out-of-field Monte Carlo study using PRIMO software. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Sarin B, Bindhu B, Saju B, Nair RK. Validation of PRIMO Monte Carlo Model of Clinac ®iX 6MV Photon Beam. J Med Phys 2020; 45:24-35. [PMID: 32355432 PMCID: PMC7185709 DOI: 10.4103/jmp.jmp_75_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/04/2022] Open
Abstract
Purpose This study aims to model 6MV photon of Clinac®iX linear accelerator using PRIMO Monte Carlo (MC) code and to assess PRIMO as an independent MC-based dose verification and quality assurance tool. Materials and Methods The modeling of Clinac®iX linear accelerator has been carried out by using PRIMO simulation software (Version 0.3.1.1681). The simulated beam parameters were compared against the measured beam data of the Clinac®iX machine. The PRIMO simulation model of Clinac®iX was also validated against Eclipse® Acuros XB dose calculations in the case of both homogenous and inhomogeneous mediums. The gamma analysis method with the acceptance criteria of 2%, 2 mm was used for the comparison of dose distributions. Results Gamma analysis shows a minimum pass percentage of 99% for depth dose curves and 95.4% for beam profiles. The beam quality index and output factors and absolute point dose show good agreement with measurements. The validation of PRIMO dose calculations, in both homogeneous and inhomogeneous medium, against Acuros® XB shows a minimum gamma analysis pass rate of 99%. Conclusions This study shows that the research software PRIMO can be used as a treatment planning system-independent quality assurance and dose verification tool in daily clinical practice. Further validation will be performed with different energies, complex multileaf collimators fields, and with dynamic treatment fields.
Collapse
Affiliation(s)
- B Sarin
- Department of Physics, Noorul Islam Centre For Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India.,Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - B Bindhu
- Department of Physics, Noorul Islam Centre For Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - B Saju
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Raguram K Nair
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
14
|
Evaluation of dosimetric parameters of small fields of 6 MV flattening filter free photon beam measured using various detectors against Monte Carlo simulation. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurpose:This study aims to evaluate dosimetric parameters like percentage depth dose, dosimetric field size, depth of maximum dose surface dose, penumbra and output factors measured using IBA CC01 pinpoint chamber, IBA stereotactic field diode (SFD), PTW microDiamond against Monte Carlo (MC) simulation for 6 MV flattening filter-free small fields.Materials and Methods:The linear accelerator used in the study was a Varian TrueBeam® STx. All field sizes were defined by jaws. The required shift to effective point of measurement was given for CC01, SFD and microdiamond for depth dose measurements. The output factor of a given field size was taken as the ratio of meter readings normalised to 10 × 10 cm2 reference field size without applying any correction to account for changes in detector response. MC simulation was performed using PRIMO (PENELOPE-based program). The phase space files for MC simulation were adopted from the MyVarian Website.Results and Discussion:Variations were seen between the detectors and MC, especially for fields smaller than 2 × 2 cm2 where the lateral charge particle equilibrium was not satisfied. Diamond detector was seen as most suitable for all measurements above 1 × 1 cm2. SFD was seen very close to MC results except for under-response in output factor measurements. CC01 was observed to be suitable for field sizes above 2 × 2 cm2. Volume averaging effect for penumbra measurements in CC01 was observed. No detector was found suitable for surface dose measurement as surface ionisation was different from surface dose due to the effect of perturbation of fluence. Some discrepancies in measurements and MC values were observed which may suggest effects of source occlusion, shift in focal point or mismatch between real accelerator geometry and simulation geometry.Conclusion:For output factor measurement, TRS483 suggested correction factor needs to be applied to account for the difference in detector response. CC01 can be used for field sizes above 2 × 2 cm2 and microdiamond detector is suitable for above 1 × 1 cm2. Below these field sizes, perturbation corrections and volume averaging corrections need to be applied.
Collapse
|
15
|
Efendi MA, Funsian A, Chittrakarn T, Bhongsuwan T. Monte Carlo simulation using PRIMO code as a tool for checking the credibility of commissioning and quality assurance of 6 MV TrueBeam STx varian LINAC. Rep Pract Oncol Radiother 2020; 25:125-132. [PMID: 31920464 DOI: 10.1016/j.rpor.2019.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 11/26/2022] Open
Abstract
Aim To validate and implement Monte Carlo simulation using PRIMO code as a tool for checking the credibility of measurements in LINAC initial commissioning and routine Quality Assurance (QA). Relative and absolute doses of 6 MV photon beam from TrueBeam STx Varian Linear Accelerator (LINAC) were simulated and validated with experimental measurement, Analytical Anisotropic Algorithm (AAA) calculation, and golden beam. Methods and Materials Varian phase-space files were imported to the PRIMO code and four blocks of jaws were simulated to determine the field size of the photon beam. Water phantom was modeled in the PRIMO code with water equivalent density. Golden beam data, experimental measurement, and AAA calculation results were imported to PRIMO code for gamma comparison. Results PRIMO simulations of Percentage Depth Dose (PDD) and in-plane beam profiles had good agreement with experimental measurements, AAA calculations and golden beam. However, PRIMO simulations of cross-plane beam profiles have a better agreement with AAA calculation and golden beam than the experimental measurement. Furthermore, PRIMO simulations of absolute dose agreed well with experimental results with ±0.8% uncertainty. Conclusion The PRIMO code has good accuracy and is appropriate for use as a tool to check the credibility of beam scanning and output measurement in initial commissioning and routine QA.
Collapse
Affiliation(s)
- M Arif Efendi
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand
| | - Amporn Funsian
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand
| | - Thawat Chittrakarn
- Department of Physics, Faculty of Science, Prince of Songkla University, Hatyai, Thailand
| | - Tripob Bhongsuwan
- Department of Physics, Faculty of Science, Prince of Songkla University, Hatyai, Thailand
| |
Collapse
|
16
|
Paganini L, Reggiori G, Stravato A, Palumbo V, Mancosu P, Lobefalo F, Gaudino A, Fogliata A, Scorsetti M, Tomatis S. MLC parameters from static fields to VMAT plans: an evaluation in a RT-dedicated MC environment (PRIMO). Radiat Oncol 2019; 14:216. [PMID: 31791355 PMCID: PMC6889207 DOI: 10.1186/s13014-019-1421-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
Background PRIMO is a graphical environment based on PENELOPE Monte Carlo (MC) simulation of radiotherapy beams able to compute dose distribution in patients, from plans with different techniques. The dosimetric characteristics of an HD-120 MLC (Varian), simulated using PRIMO, were here compared with measurements, and also with Acuros calculations (in the Eclipse treatment planning system, Varian). Materials and methods A 10 MV FFF beam from a Varian EDGE linac equipped with the HD-120 MLC was used for this work. Initially, the linac head was simulated inside PRIMO, and validated against measurements in a water phantom. Then, a series of different MLC patterns were established to assess the MLC dosimetric characteristics. Those tests included: i) static fields: output factors from MLC shaped fields (2 × 2 to 10 × 10 cm2), alternate open and closed leaf pattern, MLC transmitted dose; ii) dynamic fields: dosimetric leaf gap (DLG) evaluated with sweeping gaps, tongue and groove (TG) effect assessed with profiles across alternate open and closed leaves moving across the field. The doses in the different tests were simulated in PRIMO and then compared with EBT3 film measurements in solid water phantom, as well as with Acuros calculations. Finally, MC in PRIMO and Acuros were compared in some clinical cases, summarizing the clinical complexity in view of a possible use of PRIMO as an independent dose calculation check. Results Static output factor MLC tests showed an agreement between MC calculated and measured OF of 0.5%. The dynamic tests presented DLG values of 0.033 ± 0.003 cm and 0.032 ± 0.006 cm for MC and measurements, respectively. Regarding the TG tests, a general agreement between the dose distributions of 1–2% was achieved, except for the extreme patterns (very small gaps/field sizes and high TG effect) were the agreement was about 4–5%. The analysis of the clinical cases, the Gamma agreement between MC in PRIMO and Acuros dose calculation in Eclipse was of 99.5 ± 0.2% for 3%/2 mm criteria of dose difference/distance to agreement. Conclusions MC simulations in the PRIMO environment were in agreement with measurements for the HD-120 MLC in a 10 MV FFF beam from a Varian EDGE linac. This result allowed to consistently compare clinical cases, showing the possible use of PRIMO as an independent dose calculation check tool.
Collapse
Affiliation(s)
- Lucia Paganini
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Giacomo Reggiori
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy.
| | - Antonella Stravato
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Valentina Palumbo
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Pietro Mancosu
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Francesca Lobefalo
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Anna Gaudino
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Antonella Fogliata
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, (Milan), Italy
| | - Stefano Tomatis
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| |
Collapse
|
17
|
Lee B, Jeong S, Chung K, Yoon M, Park HC, Han Y, Jung SH. Feasibility of a GATE Monte Carlo platform in a clinical pretreatment QA system for VMAT treatment plans using TrueBeam with an HD120 multileaf collimator. J Appl Clin Med Phys 2019; 20:101-110. [PMID: 31544350 PMCID: PMC6806485 DOI: 10.1002/acm2.12718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose To evaluate the quality of patient‐specific complicated treatment plans, including commercialized treatment planning systems (TPS) and commissioned beam data, we developed a process of quality assurance (QA) using a Monte Carlo (MC) platform. Specifically, we constructed an interface system that automatically converts treatment plan and dose matrix data in digital imaging and communications in medicine to an MC dose‐calculation engine. The clinical feasibility of the system was evaluated. Materials and Methods A dose‐calculation engine based on GATE v8.1 was embedded in our QA system and in a parallel computing system to significantly reduce the computation time. The QA system automatically converts parameters in volumetric‐modulated arc therapy (VMAT) plans to files for dose calculation using GATE. The system then calculates dose maps. Energies of 6 MV, 10 MV, 6 MV flattening filter free (FFF), and 10 MV FFF from a TrueBeam with HD120 were modeled and commissioned. To evaluate the beam models, percentage depth dose (PDD) values, MC calculation profiles, and measured beam data were compared at various depths (Dmax, 5 cm, 10 cm, and 20 cm), field sizes, and energies. To evaluate the feasibility of the QA system for clinical use, doses measured for clinical VMAT plans using films were compared to dose maps calculated using our MC‐based QA system. Results A LINAC QA system was analyzed by PDD and profile according to the secondary collimator and multileaf collimator (MLC). Values for MC calculations and TPS beam data obtained using CC13 ion chamber (IBA Dosimetry, Germany) were consistent within 1.0%. Clinical validation using a gamma index was performed for VMAT treatment plans using a solid water phantom and arbitrary patient data. The gamma evaluation results (with criteria of 3%/3 mm) were 98.1%, 99.1%, 99.2%, and 97.1% for energies of 6 MV, 10 MV, 6 MV FFF, and 10 MV FFF, respectively. Conclusions We constructed an MC‐based QA system for evaluating patient treatment plans and evaluated its feasibility in clinical practice. We observed robust agreement between dose calculations from our QA system and measurements for VMAT plans. Our QA system could be useful in other clinical settings, such as small‐field SRS procedures or analyses of secondary cancer risk, for which dose calculations using TPS are difficult to verify.
Collapse
Affiliation(s)
- Boram Lee
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Seonghoon Jeong
- Department of Bio-convergence Engineering, Korea University, Seoul, Korea
| | - Kwangzoo Chung
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myonggeun Yoon
- Department of Bio-convergence Engineering, Korea University, Seoul, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youngyih Han
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology,, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Sang Hoon Jung
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
18
|
Martins JC, Saxena R, Neppl S, Alhazmi A, Reiner M, Veloza S, Belka C, Parodi K. Optimization of Phase Space files from clinical linear accelerators. Phys Med 2019; 64:54-68. [PMID: 31515036 DOI: 10.1016/j.ejmp.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022] Open
Abstract
This work proposes a methodology to produce an optimized phase-space (PhSp) for the Elekta Synergy linac by tuning the energy and direction of particles inside the 6-MV Elekta Precise PhSp, provided by the International Atomic Energy Agency (IAEA), for Monte Carlo (MC) simulations. First, the energies of the particles emerging from the original PhSp were increased by different factors, producing new PhSps. Percentage depth dose (PDD) profiles were simulated and compared to measured data from a Synergy linac for 6-MV photon beam. This process was repeated until a minimum difference was reached. Particles' directions were then manipulated following identified correlations to lateral profiles, resulting in two distinct perturbation factors based on inline and crossline profiles. Both factors were merged into one single optimal factor. For energy optimization, an increase of 0.32 MeV applied to all particles inside the original PhSp, but to 0.511 MeV annihilation photons, provided the best results. The direction optimization factor was the combination of the individual factors for inline (0.605%) and crossline (0.051%). The agreement between measured and simulated profiles, when using the optimized PhSp, improved considerably in comparison to simulations performed with the original IAEA PhSp. For all fields and depths analyzed, the discrepancies for PDD, inline and crossline profiles dropped from 11.2%, 15.7% and 27.5% to under 1.4%, 4.7% and 13.2%, respectively. The optimized PhSp should not replace the full linac modelling, however it offers an alternative for MC dose calculations when neither geometric details nor validated IAEA PhSp are available to the user.
Collapse
Affiliation(s)
- Juliana Cristina Martins
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching b. München, Germany.
| | - Rangoli Saxena
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching b. München, Germany.
| | - Sebastian Neppl
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße15, 81377 Munich, Germany.
| | - Abdulaziz Alhazmi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching b. München, Germany.
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße15, 81377 Munich, Germany.
| | - Stella Veloza
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching b. München, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße15, 81377 Munich, Germany; German Cancer Consortium (DKTK), Pettenkoferstraße 8a, 80336 Munich, Germany.
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching b. München, Germany.
| |
Collapse
|
19
|
An EGS Monte Carlo model for Varian TrueBEAM treatment units: Commissioning and experimental validation of source parameters. Phys Med 2019; 64:81-88. [PMID: 31515039 DOI: 10.1016/j.ejmp.2019.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 11/23/2022] Open
Abstract
In this work we have created and commissioned a Monte Carlo model of 6FFF Varian TrueBeam linear accelerator using BEAMnrc. For this purpose we have experimentally measured the focal spot size and shape of three Varian TrueBeam treatment units in 6FFF modality with a slit collimator and several depth dose and lateral beam profiles in a water phantom. The Monte Carlo model of a 6FFF TrueBeam machine was implemented with a primary electron source commissioned as a 2D Gaussian with Full Width Half Maximum selected by comparison of simulated and measured narrow beam profiles. The energy of the primary electron beam was optimized through a simultaneous fit to the measured beam depth dose profiles. Special attention was paid to evaluation of uncertainties of the selected Monte Carlo source parameters. These uncertainties were calculated by analysing the sensitivity of the commissioning process to changes in both primary beam size and energy. Both experimental and Monte Carlo commissioned focus size values were compared and found to be in excellent agreement. The commissioned Monte Carlo model reproduces within 1% accuracy the dose distributions of radiation field size from 3 cm × 3 cm to 15 cm × 15 cm.
Collapse
|
20
|
Wijesooriya K, Liyanage NK, Kaluarachchi M, Sawkey D. Part II: Verification of the TrueBeam head shielding model in Varian VirtuaLinac via out-of-field doses. Med Phys 2019; 46:877-884. [PMID: 30368838 DOI: 10.1002/mp.13263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A good Monte Carlo model with an accurate head shielding model is important in estimating the long-term risks of unwanted radiation exposure during radiation therapy. The aim of this paper was to validate the Monte Carlo simulation of a TrueBeam linear accelerator (linac) head shielding model. We approach this by evaluating the accuracy of out-of-field dose predictions at extended distances which are comprised of scatter from within the patient and treatment head leakage and thus reflect the accuracy of the head shielding model. We quantify the out-of-field dose of a TrueBeam linac for low-energy photons, 6X and 6X-FFF beams, and compare measurements to Monte Carlo simulations using Varian VirtuaLinac that include a realistic head shielding model, for a variety of jaw sizes and angles up to a distance of 100 cm from the isocenter, in both positive and negative directions. Given the high value and utility of the VirtuaLinac model, it is critical that this model is validated thoroughly and the results be available to the medical physics community. MATERIALS AND METHOD Simulations were done using VirtuaLinac, the GEANT4-based Monte Carlo model of the TrueBeam treatment head from Varian Medical Systems, and an in-house GEANT4-based code. VirtuaLinac included a detailed model of the treatment head shielding and was run on the Amazon Web Services cloud to generate spherical phase space files surrounding the treatment head. These phase space files were imported into the in-house code, which modeled the measurement setup with a solid water buildup, the carbon fiber couch, and the gantry stand. For each jaw size (2 × 2 cm2 , 4 × 4 cm2 , 10 × 10 cm2 , and 20 × 20 cm2 ) and angular setting (0°, 90°, 45°, 135°), the dose was calculated at intervals of 5 cm along each measurement direction. RESULTS For the 10 × 10 cm2 jaw size, both 6X and 6X-FFF showed very good agreement between simulation and measurement in both in-plane directions, with no apparent systematic bias. The percentage deviations for these settings were as follows: (mean, STDEV, maximum) (8.34, 6.44, 24.84) for 6X and (13.21, 8.93, 35.56) for 6X-FFF. For all jaw sizes, simulation agreed well in the in-plane direction going away from the gantry, but, some deviations were observed moving toward the gantry at larger distances. At larger distances, for the jaw sizes smaller than 10 × 10 cm2 , the simulation underestimates the dose compared with measurement, while for jaw sizes larger than 10 × 10 cm2 , it overestimates dose. For all comparisons between ±50 cm from isocenter, average absolute agreement between simulation and measurement was better than 28%. CONCLUSION We have validated the Varian VirtuaLinac's head shielding model via out-of-field doses and quantified the differences between TrueBeam head shielding model created out-of-field doses and measurements for an extended distance of 100 cm.
Collapse
Affiliation(s)
- Krishni Wijesooriya
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Physics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Nilanga K Liyanage
- Department of Physics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Maduka Kaluarachchi
- Department of Physics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Daren Sawkey
- Varian Medical Systems, Inc., 3120 Hansen way, Palo Alto, CA, 94304, USA
| |
Collapse
|
21
|
Vassiliev ON, Kry SF, Wang HC, Peterson CB, Chang JY, Mohan R. Radiotherapy of lung cancers: FFF beams improve dose coverage at tumor periphery compromised by electronic disequilibrium. Phys Med Biol 2018; 63:195007. [PMID: 30189421 DOI: 10.1088/1361-6560/aadf7d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to investigate radiotherapy underdosing at the periphery of lung tumors, and differences in dose for treatments delivered with flattening filter-free (FFF) beams and with conventional flattened (FF) beams. The true differences between these delivery approaches, as assessed with Monte Carlo simulations, were compared to the apparent differences seen with clinical treatment planning algorithms AAA and Acuros XB. Dose was calculated in a phantom comprised of a chest wall, lung parenchyma, and a spherical tumor (tested diameters: 1, 3, and 5 cm). Three lung densities were considered: 0.26, 0.2, and 0.1 g cm-3, representing normal lung, lung at full inspiration, and emphysematous lung, respectively. The dose was normalized to 50 Gy to the tumor center and delivered with 7 coplanar, unmodulated 6 MV FFF or FF beams. Monte Carlo calculations used EGSnrc and phase space files for the TrueBeam accelerator provided by Varian Medical Systems. Voxel sizes were 0.5 mm for the 1 cm tumor and 1 mm for the larger tumors. AAA and Acuros XB dose calculations were performed in Eclipse™ with a 2.5 mm dose grid, the resolution normally used clinically. Monte Carlo dose distributions showed that traditional FF beams underdosed the periphery of the tumor by up to ~2 Gy as compared to FFF beams; the latter provided a more uniform dose throughout the tumor. In all cases, the underdosed region was a spherical shell about 5 mm thick around the tumor and extending into the tumor by 2-3 mm. The effect was most pronounced for smaller tumors and lower lung densities. The underdosing observed with conventional FF beams was not captured by the clinical treatment planning systems. We concluded that FFF beams mitigate dose loss at tumor periphery and current clinical practice fails to capture tumor periphery underdosing and possible ways to mitigate it.
Collapse
Affiliation(s)
- Oleg N Vassiliev
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
22
|
Faught AM, Davidson SE, Popple R, Kry SF, Etzel C, Ibbott GS, Followill DS. Development of a flattening filter free multiple source model for use as an independent, Monte Carlo, dose calculation, quality assurance tool for clinical trials. Med Phys 2017; 44:4952-4960. [PMID: 28657114 DOI: 10.1002/mp.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The Imaging and Radiation Oncology Core-Houston (IROC-H) Quality Assurance Center (formerly the Radiological Physics Center) has reported varying levels of compliance from their anthropomorphic phantom auditing program. IROC-H studies have suggested that one source of disagreement between institution submitted calculated doses and measurement is the accuracy of the institution's treatment planning system dose calculations and heterogeneity corrections used. In order to audit this step of the radiation therapy treatment process, an independent dose calculation tool is needed. METHODS Monte Carlo multiple source models for Varian flattening filter free (FFF) 6 MV and FFF 10 MV therapeutic x-ray beams were commissioned based on central axis depth dose data from a 10 × 10 cm2 field size and dose profiles for a 40 × 40 cm2 field size. The models were validated against open-field measurements in a water tank for field sizes ranging from 3 × 3 cm2 to 40 × 40 cm2 . The models were then benchmarked against IROC-H's anthropomorphic head and neck phantom and lung phantom measurements. RESULTS Validation results, assessed with a ±2%/2 mm gamma criterion, showed average agreement of 99.9% and 99.0% for central axis depth dose data for FFF 6 MV and FFF 10 MV models, respectively. Dose profile agreement using the same evaluation technique averaged 97.8% and 97.9% for the respective models. Phantom benchmarking comparisons were evaluated with a ±3%/2 mm gamma criterion, and agreement averaged 90.1% and 90.8% for the respective models. CONCLUSIONS Multiple source models for Varian FFF 6 MV and FFF 10 MV beams have been developed, validated, and benchmarked for inclusion in an independent dose calculation quality assurance tool for use in clinical trial audits.
Collapse
Affiliation(s)
- Austin M Faught
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Scott E Davidson
- Department of Radiation Oncology, The University of Texas Medical Branch of Galveston, Galveston, TX, 77555, USA
| | - Richard Popple
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Carol Etzel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Consortium of Rheumatology Researchers of North America (CORRONA), Inc., Southborough, MA, 01772, USA
| | - Geoffrey S Ibbott
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - David S Followill
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| |
Collapse
|
23
|
Brualla L, Rodriguez M, Lallena AM. Monte Carlo systems used for treatment planning and dose verification. Strahlenther Onkol 2016; 193:243-259. [PMID: 27888282 DOI: 10.1007/s00066-016-1075-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations.
Collapse
Affiliation(s)
- Lorenzo Brualla
- NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, D-45122, Essen, Germany.
| | | | - Antonio M Lallena
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071, Granada, Spain
| |
Collapse
|
24
|
Strolin S, Minosse S, D'Andrea M, Fracchiolla F, Bruzzaniti V, Luppino S, Benassi M, Strigari L. Zero field PDD and TMR data for unflattened beams in conventional linacs: A tool for independent dose calculations. Phys Med 2016; 32:1621-1627. [PMID: 27876285 DOI: 10.1016/j.ejmp.2016.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To investigate the applicability of the formalism described in BJR supplement n.25 for Flattening Filter Free (FFF) beams in determining the zero-field tissue maximum ratio (TMR) for an independent calculation method of Percentage Depth Doses (PDDs) and relative dose factors (RDFs) at different experimental setups. METHODS Experimental PDDs for field size from 40×40cm2 to 2×2cm2 with Source Surface Distance (SSD) 100cm were acquired. The normalized peak scatter factor for each square field was obtained by fitting experimental RDFs in water and collimator factors (CFs) in air. Maximum log-likelihood methods were used to extract fit parameters in competing models and the Bayesian Information Criterion was used to select the best one. In different experimental setups additional RDFs and TPR1020s for field sizes other than reference field were measured and Monte Carlo simulations of PDDs at SSD 80cm were carried out to validate the results. PDD agreements were evaluated by gamma analysis. RESULTS The BJR formalism allowed to predict the PDDs obtained with MC within 2%/2mm at SSD 80cm from 100% down to 50% of the maximum dose. The agreement between experimental TPR1020s and RDFs values at SSD=90cm and BJR calculations were within 1% for field sizes greater than 5×5cm2 while it was within 3% for fields down to 2×2cm2. CONCLUSIONS BJR formalism can be used for FFF beams to predict PDD and RDF at different SSDs and can be used for independent MU calculations.
Collapse
Affiliation(s)
- Silvia Strolin
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Silvia Minosse
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Marco D'Andrea
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Francesco Fracchiolla
- Azienda Provinciale per i Servizi Sanitari (APSS), Protontherapy Department, Trento, Italy
| | - Vicente Bruzzaniti
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Stefano Luppino
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Marcello Benassi
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Lidia Strigari
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|
25
|
Guy CL, Karki K, Sharma M, Kim S. Clinically relevant investigation of flattening filter-free skin dose. J Appl Clin Med Phys 2016; 17:140-148. [PMID: 27929489 PMCID: PMC5690509 DOI: 10.1120/jacmp.v17i6.6307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/08/2016] [Accepted: 06/07/2016] [Indexed: 11/23/2022] Open
Abstract
As flattening filter‐free (FFF) photon beams become readily available for treatment delivery in techniques such as SBRT, thorough investigation of skin dose from FFF photon beams is necessary under clinically relevant conditions. Using a parallel‐plate PTW Markus chamber placed in a custom water‐equivalent phantom, surface‐dose measurements were taken at 2×2,3×3,4×4,6×6,8×8,10×10,20×20, and 30×30 cm2 field sizes, at 80, 90, and 100 cm source‐to‐surface distances (SSDs), and with fields defined by jaws and multileaf collimator (MLC) using multiple beam energies (6X, 6XFFF, 10X, and 10XFFF). The same set of measurements was repeated with the chamber at a reference depth of 10 cm. Each surface measurement was normalized by its corresponding reference depth measurement for analysis. The FFF surface doses at 100 cm SSD were higher than flattened surface doses by 45% at 2×2 cm2 to 13% at 20×20 cm2 for 6 MV energy. These surface dose differences varied to a greater degree as energy increased, ranging from +63% at 2×2 cm2 to −2% at 20×20 cm2 for 10 MV. At small field sizes, higher energy increased FFF surface dose relative to flattened surface dose; while at larger field sizes, relative FFF surface dose was higher for lower energies. At both energies investigated, decreasing SSD caused a decrease in the ratios of FFF‐to‐flattened surface dose. Variability with SSD of FFF‐to‐flattened surface dose differences increased with field size and ranged from 0% to 6%. The field size at which FFF and flattened beams gave the same skin dose increased with decreasing beam energy. Surface dose was higher with MLC fields compared to jaw fields under most conditions, with the difference reaching its maximum at a field size between 4×4 cm2 and 6×6 cm2 for a given energy and SSD. This study conveyed the magnitude of surface dose in a clinically meaningful manner by reporting results normalized to 10 cm depth dose instead of depth of dose maximum. PACS number(s): 87.53.Bn, 87.53.Ly, 87.55.‐x, 87.55.N‐, 87.56.N‐
Collapse
|
26
|
Lloyd SAM, Gagne IM, Bazalova-Carter M, Zavgorodni S. Validation of Varian TrueBeam electron phase-spaces for Monte Carlo simulation of MLC-shaped fields. Med Phys 2016; 43:2894-2903. [PMID: 27277038 DOI: 10.1118/1.4949000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work evaluates Varian's electron phase-space sources for Monte Carlo simulation of the TrueBeam for modulated electron radiation therapy (MERT) and combined, modulated photon and electron radiation therapy (MPERT) where fields are shaped by the photon multileaf collimator (MLC) and delivered at 70 cm SSD. METHODS Monte Carlo simulations performed with EGSnrc-based BEAMnrc/DOSXYZnrc and penelope-based PRIMO are compared against diode measurements for 5 × 5, 10 × 10, and 20 × 20 cm(2) MLC-shaped fields delivered with 6, 12, and 20 MeV electrons at 70 cm SSD (jaws set to 40 × 40 cm(2)). Depth dose curves and profiles are examined. In addition, EGSnrc-based simulations of relative output as a function of MLC-field size and jaw-position are compared against ion chamber measurements for MLC-shaped fields between 3 × 3 and 25 × 25 cm(2) and jaw positions that range from the MLC-field size to 40 × 40 cm(2). RESULTS Percent depth dose curves generated by BEAMnrc/DOSXYZnrc and PRIMO agree with measurement within 2%, 2 mm except for PRIMO's 12 MeV, 20 × 20 cm(2) field where 90% of dose points agree within 2%, 2 mm. Without the distance to agreement, differences between measurement and simulation are as large as 7.3%. Characterization of simulated dose parameters such as FWHM, penumbra width and depths of 90%, 80%, 50%, and 20% dose agree within 2 mm of measurement for all fields except for the FWHM of the 6 MeV, 20 × 20 cm(2) field which falls within 2 mm distance to agreement. Differences between simulation and measurement exist in the profile shoulders and penumbra tails, in particular for 10 × 10 and 20 × 20 cm(2) fields of 20 MeV electrons, where both sets of simulated data fall short of measurement by as much as 3.5%. BEAMnrc/DOSXYZnrc simulated outputs agree with measurement within 2.3% except for 6 MeV MLC-shaped fields. Discrepancies here are as great as 5.5%. CONCLUSIONS TrueBeam electron phase-spaces available from Varian have been implemented in two distinct Monte Carlo simulation packages to produce dose distributions and outputs that largely reflect measurement. Differences exist in the profile shoulders and penumbra tails for the 20 MeV phase-space off-axis and in the outputs for the 6 MeV phase-space.
Collapse
Affiliation(s)
- Samantha A M Lloyd
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 3P6 5C2, Canada
| | - Isabelle M Gagne
- Department of Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5, Canada and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2, Canada
| | - Sergei Zavgorodni
- Department of Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5, Canada and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2, Canada
| |
Collapse
|
27
|
Cheng JY, Ning H, Arora BC, Zhuge Y, Miller RW. Output factor comparison of Monte Carlo and measurement for Varian TrueBeam 6 MV and 10 MV flattening filter-free stereotactic radiosurgery system. J Appl Clin Med Phys 2016; 17:100-110. [PMID: 27167266 PMCID: PMC5690931 DOI: 10.1120/jacmp.v17i3.5956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/30/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022] Open
Abstract
The dose measurements of the small field sizes, such as conical collimators used in stereotactic radiosurgery (SRS), are a significant challenge due to many factors including source occlusion, detector size limitation, and lack of lateral electronic equilibrium. One useful tool in dealing with the small field effect is Monte Carlo (MC) simulation. In this study, we report a comparison of Monte Carlo simulations and measurements of output factors for the Varian SRS system with conical collimators for energies of 6 MV flattening filter‐free (6 MV) and 10 MV flattening filter‐free (10 MV) on the TrueBeam accelerator. Monte Carlo simulations of Varian's SRS system for 6 MV and 10 MV photon energies with cones sizes of 17.5 mm, 15.0 mm, 12.5 mm, 10.0 mm, 7.5 mm, 5.0 mm, and 4.0 mm were performed using EGSnrc (release V4 2.4.0) codes. Varian's version‐2 phase‐space files for 6 MV and 10 MV of TrueBeam accelerator were utilized in the Monte Carlo simulations. Two small diode detectors Edge (Sun Nuclear) and Small Field Detector (SFD) (IBA Dosimetry) were applied to measure the output factors. Significant errors may result if detector correction factors are not applied to small field dosimetric measurements. Although it lacked the machine‐specific kQclin,Qmsrfclin,fmsr correction factors for diode detectors in this study, correction factors were applied utilizing published studies conducted under similar conditions. For cone diameters greater than or equal to 12.5 mm, the differences between output factors for the Edge detector, SFD detector, and MC simulations are within 3.0% for both energies. For cone diameters below 12.5 mm, output factors differences exhibit greater variations. PACS number(s): 87.55.k, 87.55.Qr
Collapse
Affiliation(s)
- Jason Y Cheng
- National Cancer Institute; National Institutes of Health.
| | | | | | | | | |
Collapse
|
28
|
Feng Z, Yue H, Zhang Y, Wu H, Cheng J, Su X. Monte Carlo simulation of beam characteristics from small fields based on TrueBeam flattening-filter-free mode. Radiat Oncol 2016; 11:30. [PMID: 26921246 PMCID: PMC4769502 DOI: 10.1186/s13014-016-0601-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/15/2016] [Indexed: 11/10/2022] Open
Abstract
Purpose Through the Monte Carlo (MC) simulation of 6 and 10 MV flattening-filter-free (FFF) beams from Varian TrueBeam accelerator, this study aims to find the best incident electron distribution for further studying the small field characteristics of these beams. Methods By incorporating the training materials of Varian on the geometry and material parameters of TrueBeam Linac head, the 6 and 10 MV FFF beams were modelled using the BEAMnrc and DOSXYZnrc codes, where the percentage depth doses (PDDs) and the off-axis ratios (OARs) curves of fields ranging from 4 × 4 to 40 × 40 cm2 were simulated for both energies by adjusting the incident beam energy, radial intensity distribution and angular spread, respectively. The beam quality and relative output factor (ROF) were calculated. The simulations and measurements were compared using Gamma analysis method provided by Verisoft program (PTW, Freiburg, Germany), based on which the optimal MC model input parameters were selected and were further used to investigate the beam characteristics of small fields. Results The Full Width Half Maximum (FWHM), mono-energetic energy and angular spread of the resultant incident Gaussian radial intensity electron distribution were 0.75 mm, 6.1 MeV and 0.9° for the nominal 6 MV FFF beam, and 0.7 mm, 10.8 MeV and 0.3° for the nominal 10 MV FFF beam respectively. The simulation was mostly comparable to the measurement. Gamma criteria of 1 mm/1 % (local dose) can be met by all PDDs of fields larger than 1 × 1 cm2, and by all OARs of no larger than 20 × 20 cm2, otherwise criteria of 1 mm/2 % can be fulfilled. Our MC simulated ROFs agreed well with the measured ROFs of various field sizes (the discrepancies were less than 1 %), except for the 1 × 1 cm2 field. Conclusions The MC simulation agrees well with the measurement and the proposed model parameters can be clinically used for further dosimetric studies of 6 and 10 MV FFF beams.
Collapse
Affiliation(s)
- Zhongsu Feng
- Key laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, 100088, China.
| | - Haizhen Yue
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiotherapy, Peking University Cancer Hospital & Institute, 52 Fuchen Road, Haidian, Beijing, 100142, China.
| | - Yibao Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiotherapy, Peking University Cancer Hospital & Institute, 52 Fuchen Road, Haidian, Beijing, 100142, China.
| | - Hao Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiotherapy, Peking University Cancer Hospital & Institute, 52 Fuchen Road, Haidian, Beijing, 100142, China.
| | - Jinsheng Cheng
- Key laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, 100088, China.
| | - Xu Su
- Key laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, 100088, China.
| |
Collapse
|
29
|
Teke T, Duzenli C, Bergman A, Viel F, Atwal P, Gete E. Monte Carlo validation of the TrueBeam 10XFFF phase-space files for applications in lung SABR. Med Phys 2015; 42:6863-74. [PMID: 26632043 DOI: 10.1118/1.4935144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To establish the clinical acceptability of universal Monte Carlo phase-space data for the 10XFFF (flattening filter free) photon beam on the Varian TrueBeam Linac, including previously unreported data for small fields, output factors, and inhomogeneous media. The study was particularly aimed at confirming the suitability for use in simulations of lung stereotactic ablative radiotherapy treatment plans. METHODS Monte Carlo calculated percent depth doses (PDDs), transverse profiles, and output factors for the TrueBeam 10 MV FFF beam using generic phase-space data that have been released by the Varian MC research team were compared with in-house measurements and published data from multiple institutions (ten Linacs from eight different institutions). BEAMnrc was used to create field size specific phase-spaces located underneath the jaws. Doses were calculated with DOSXYZnrc in a water phantom for fields ranging from 1 × 1 to 40 × 40 cm(2). Particular attention was paid to small fields (down to 1 × 1 cm(2)) and dose per pulse effects on dosimeter response for high dose rate 10XFFF beams. Ion chamber measurements were corrected for changes in ion collection efficiency (P(ion)) with increasing dose per pulse. MC and ECLIPSE ANISOTROPIC ANALYTICAL ALGORITHM (AAA) calculated PDDs were compared to Gafchromic film measurement in inhomogeneous media (water, bone, lung). RESULTS Measured data from all machines agreed with Monte Carlo simulations within 1.0% and 1.5% for PDDs and in-field transverse profiles, respectively, for field sizes >1 × 1 cm(2) in a homogeneous water phantom. Agreements in the 80%-20% penumbra widths were better than 2 mm for all the fields that were compared. For all the field sizes considered, the agreement between their measured and calculated output factors was within 1.1%. Monte Carlo results for dose to water at water/bone, bone/lung, and lung/water interfaces as well as within lung agree with film measurements to within 2.8% for 10 × 10 and 3 × 3 cm(2) field sizes. This represents a significant improvement over the performance of the ECLIPSE AAA. CONCLUSIONS The 10XFFF phase-space data offered by the Varian Monte Carlo research team have been validated for clinical use using measured, interinstitutional beam data in water and with film dosimetry in inhomogeneous media.
Collapse
Affiliation(s)
- Tony Teke
- Medical Physics, BC Cancer Agency-Centre for the Southern Interior, Kelowna, British Columbia V1Y 5L3, Canada
| | - Cheryl Duzenli
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Alanah Bergman
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Francis Viel
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Parmveer Atwal
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Ermias Gete
- Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia V5Z 4E6, Canada
| |
Collapse
|
30
|
Quino L, Hernandez C, Calvo O, Deweese M. Evaluation of a novel reference chamber “stealth chamber” through Monte Carlo simulations and experimental data. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.32.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
31
|
Rodriguez M, Sempau J, Fogliata A, Cozzi L, Sauerwein W, Brualla L. A geometrical model for the Monte Carlo simulation of the TrueBeam linac. Phys Med Biol 2015; 60:N219-29. [PMID: 25984796 DOI: 10.1088/0031-9155/60/11/n219] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monte Carlo simulation of linear accelerators (linacs) depends on the accurate geometrical description of the linac head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files of the flattening-filter-free (FFF) beams tallied at a plane located just upstream of the jaws. Yet, Monte Carlo simulations based on third-party tallied phase spaces are subject to limitations. In this work, an experimentally based geometry developed for the simulation of the FFF beams of the Varian TrueBeam linac is presented. The Monte Carlo geometrical model of the TrueBeam linac uses information provided by Varian that reveals large similarities between the TrueBeam machine and the Clinac 2100 downstream of the jaws. Thus, the upper part of the TrueBeam linac was modeled by introducing modifications to the Varian Clinac 2100 linac geometry. The most important of these modifications is the replacement of the standard flattening filters by ad hoc thin filters. These filters were modeled by comparing dose measurements and simulations. The experimental dose profiles for the 6 MV and 10 MV FFF beams were obtained from the Varian Golden Data Set and from in-house measurements performed with a diode detector for radiation fields ranging from 3 × 3 to 40 × 40 cm(2) at depths of maximum dose of 5 and 10 cm. Indicators of agreement between the experimental data and the simulation results obtained with the proposed geometrical model were the dose differences, the root-mean-square error and the gamma index. The same comparisons were performed for dose profiles obtained from Monte Carlo simulations using the phase-space files distributed by Varian for the TrueBeam linac as the sources of particles. Results of comparisons show a good agreement of the dose for the ansatz geometry similar to that obtained for the simulations with the TrueBeam phase-space files for all fields and depths considered, except for the 40 × 40 cm(2) field where the ansatz geometry was able to reproduce the measured dose more accurately. Our approach overcomes some of the limitations of using the Varian phase-space files. It makes it possible to: (i) adapt the initial beam parameters to match measured dose profiles; (ii) reduce the statistical uncertainty to arbitrarily low values; and (iii) assess systematic uncertainties (type B) by using different Monte Carlo codes. One limitation of using phase-space files that is retained in our model is the impossibility of performing accurate absolute dosimetry simulations because the geometrical description of the TrueBeam ionization chamber remains unknown.
Collapse
Affiliation(s)
- M Rodriguez
- Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, E-08028, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|