1
|
Camoni L, Santos A, Luporsi M, Grilo A, Pietrzak A, Gear J, Zucchetta P, Bar-Sever Z. EANM procedural recommendations for managing the paediatric patient in diagnostic nuclear medicine. Eur J Nucl Med Mol Imaging 2023; 50:3862-3879. [PMID: 37555902 PMCID: PMC10611649 DOI: 10.1007/s00259-023-06357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE The manuscript aims to characterize the principles of best practice in performing nuclear medicine procedures in paediatric patients. The paper describes all necessary technical skills that should be developed by the healthcare professionals to ensure the best possible care in paediatric patients, as it is particularly challenging due to psychological and physical conditions of children. METHODS We performed a comprehensive literature review to establish the most relevant elements of nuclear medicine studies in paediatric patients. We focused the attention to the technical aspects of the study, such as patient preparation, imaging protocols, and immobilization techniques, that adhere to best practice principles. Furthermore, we considered the psychological elements of working with children, including comforting and distraction strategies. RESULTS The extensive literature review combined with practical conclusions and recommendations presented and explained by the authors summarizes the most important principles of the care for paediatric patient in the nuclear medicine field. CONCLUSION Nuclear medicine applied to the paediatric patient is a very special and challenging area, requiring proper education and experience in order to be performed at the highest level and with the maximum safety for the child.
Collapse
Affiliation(s)
- Luca Camoni
- University of Brescia, 25123, Brescia, Italy.
- Nuclear Medicine Department, University of Brescia, ASST Spedali Civili Di Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Marie Luporsi
- Department of Nuclear Medicine, Institut Curie, PSL Research University, 75005, Paris, France
- LITO Laboratory INSERM U1288, Institut Curie, 91440, Orsay, France
| | - Ana Grilo
- H&TRC - Health and Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, Lisbon, Portugal
| | - Agata Pietrzak
- Electroradiology Department, Poznan University of Medical Sciences, Poznan, Poland
- Nuclear Medicine Department, Greater Poland Cancer Centre, Poznan, Poland
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK
| | - Pietro Zucchetta
- Nuclear Medicine Department, Padova University Hospital, 35128, Padua, Italy
| | - Zvi Bar-Sever
- Department of Nuclear Medicine, Schneider Children's Medical Center, Tel-Aviv University, Petach Tikva, Israel
| |
Collapse
|
2
|
Alhorani Q, Alkhybari E, Rawashdeh M, Sabarudin A, Latiff RA, Al-Ibraheem A, Vinjamuri S, Mohamad M. Revising and exploring the variations in methodologies for establishing the diagnostic reference levels for paediatric PET/CT imaging. Nucl Med Commun 2023; 44:937-943. [PMID: 37615527 DOI: 10.1097/mnm.0000000000001748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
PET-computed tomography (PET/CT) is a hybrid imaging technique that combines anatomical and functional information; to investigate primary cancers, stage tumours, and track treatment response in paediatric oncology patients. However, there is debate in the literature about whether PET/CT could increase the risk of cancer in children, as the machine is utilizing two types of radiation, and paediatric patients have faster cell division and longer life expectancy. Therefore, it is essential to minimize radiation exposure by justifying and optimizing PET/CT examinations and ensure an acceptable image quality. Establishing diagnostic reference levels (DRLs) is a crucial quantitative indicator and effective tool to optimize paediatric imaging procedures. This review aimed to distinguish and acknowledge variations among published DRLs for paediatric patients in PET/CT procedures. A search of relevant articles was conducted using databases, that is, Embase, Scopus, Web of Science, and Medline, using the keywords: PET-computed tomography, computed tomography, PET, radiopharmaceutical, DRL, and their synonyms. Only English and full-text articles were included, with no limitations on the publication year. After the screening, four articles were selected, and the review reveals different DRL approaches for paediatric patients undergoing PET/CT, with primary variations observed in patient selection criteria, reporting of radiation dose values, and PET/CT equipment. The study suggests that future DRL methods for paediatric patients should prioritize data collection in accordance with international guidelines to better understand PET/CT dose discrepancies while also striving to optimize radiation doses without compromising the quality of PET/CT images.
Collapse
Affiliation(s)
- Qays Alhorani
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Essam Alkhybari
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Mohammad Rawashdeh
- Radiologic Technology Program, Applied Medical Sciences College, Jordan University of Science and Technology, Irbid
| | - Akmal Sabarudin
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rukiah A Latiff
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Centre, Amman, Jordan
| | - Sobhan Vinjamuri
- Department of Nuclear Medicine, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Mazlyfarina Mohamad
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Hu Y, Zheng Z, Yu H, Wang J, Yang X, Shi H. Ultra-low-dose CT reconstructed with the artificial intelligence iterative reconstruction algorithm (AIIR) in 18F-FDG total-body PET/CT examination: a preliminary study. EJNMMI Phys 2023; 10:1. [PMID: 36592256 PMCID: PMC9807709 DOI: 10.1186/s40658-022-00521-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To investigate the feasibility of ultra-low-dose CT (ULDCT) reconstructed with the artificial intelligence iterative reconstruction (AIIR) algorithm in total-body PET/CT imaging. METHODS The study included both the phantom and clinical parts. An anthropomorphic phantom underwent CT imaging with ULDCT (10mAs) and standard-dose CT (SDCT) (120mAs), respectively. ULDCT was reconstructed with AIIR and hybrid iterative reconstruction (HIR) (expressed as ULDCT-AIIRphantom and ULDCT-HIRphantom), respectively, and SDCT was reconstructed with HIR (SDCT-HIRphantom) as control. In the clinical part, 52 patients with malignant tumors underwent the total-body PET/CT scan. ULDCT with AIIR (ULDCT-AIIR) and HIR (ULDCT-HIR), respectively, was reconstructed for PET attenuation correction, followed by the SDCT reconstructed with HIR (SDCT-HIR) for anatomical location. PET/CT images' quality was qualitatively assessed by two readers. The CTmean, as well as the CT standard deviation (CTsd), SUVmax, SUVmean, and the SUV standard deviation (SUVsd), was recorded. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated and compared. RESULTS The image quality of ULDCT-HIRphantom was inferior to the SDCT-HIRphantom, but no significant difference was found between the ULDCT-AIIRphantom and SDCT-HIRphantom. The subjective score of ULDCT-AIIR in the neck, chest and lower limb was equivalent to that of SDCT-HIR. Besides the brain and lower limb, the change rates of CTmean in thyroid, neck muscle, lung, mediastinum, back muscle, liver, lumbar muscle, first lumbar spine and sigmoid colon were -2.15, -1.52, 0.66, 2.97, 0.23, 8.91, 0.06, -4.29 and 8.78%, respectively, while all CTsd of ULDCT-AIIR was lower than that of SDCT-HIR. Except for the brain, the CNR of ULDCT-AIIR was the same as the SDCT-HIR, but the SNR was higher. The change rates of SUVmax, SUVmean and SUVsd were within [Formula: see text] 3% in all ROIs. For the lesions, the SUVmax, SUVsd and TBR showed no significant difference between PET-AIIR and PET-HIR. CONCLUSION The SDCT-HIR could not be replaced by the ULDCT-AIIR at date, but the AIIR algorithm decreased the image noise and increased the SNR, which can be implemented under special circumstances in PET/CT examination.
Collapse
Affiliation(s)
- Yan Hu
- grid.8547.e0000 0001 0125 2443Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Nuclear Medicine Institute of Fudan University, Shanghai, 200032 China ,grid.413087.90000 0004 1755 3939Shanghai Institute of Medical Imaging, Shanghai, 200032 China
| | - Zhe Zheng
- grid.8547.e0000 0001 0125 2443Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Nuclear Medicine Institute of Fudan University, Shanghai, 200032 China ,grid.413087.90000 0004 1755 3939Shanghai Institute of Medical Imaging, Shanghai, 200032 China
| | - Haojun Yu
- grid.8547.e0000 0001 0125 2443Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Nuclear Medicine Institute of Fudan University, Shanghai, 200032 China ,grid.413087.90000 0004 1755 3939Shanghai Institute of Medical Imaging, Shanghai, 200032 China
| | - Jingyi Wang
- grid.497849.fUnited Imaging Healthcare Co., Ltd., Shanghai, China
| | - Xinlan Yang
- grid.497849.fUnited Imaging Healthcare Co., Ltd., Shanghai, China
| | - Hongcheng Shi
- grid.8547.e0000 0001 0125 2443Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Nuclear Medicine Institute of Fudan University, Shanghai, 200032 China ,grid.413087.90000 0004 1755 3939Shanghai Institute of Medical Imaging, Shanghai, 200032 China
| |
Collapse
|
4
|
Liu Q, Liu H, Mirian N, Ren S, Viswanath V, Karp J, Surti S, Liu C. A personalized deep learning denoising strategy for low-count PET images. Phys Med Biol 2022; 67:10.1088/1361-6560/ac783d. [PMID: 35697017 PMCID: PMC9321225 DOI: 10.1088/1361-6560/ac783d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022]
Abstract
Objective. Deep learning denoising networks are typically trained with images that are representative of the testing data. Due to the large variability of the noise levels in positron emission tomography (PET) images, it is challenging to develop a proper training set for general clinical use. Our work aims to develop a personalized denoising strategy for the low-count PET images at various noise levels.Approach.We first investigated the impact of the noise level in the training images on the model performance. Five 3D U-Net models were trained on five groups of images at different noise levels, and a one-size-fits-all model was trained on images covering a wider range of noise levels. We then developed a personalized weighting method by linearly blending the results from two models trained on 20%-count level images and 60%-count level images to balance the trade-off between noise reduction and spatial blurring. By adjusting the weighting factor, denoising can be conducted in a personalized and task-dependent way.Main results.The evaluation results of the six models showed that models trained on noisier images had better performance in denoising but introduced more spatial blurriness, and the one-size-fits-all model did not generalize well when deployed for testing images with a wide range of noise levels. The personalized denoising results showed that noisier images require higher weights on noise reduction to maximize the structural similarity and mean squared error. And model trained on 20%-count level images can produce the best liver lesion detectability.Significance.Our study demonstrated that in deep learning-based low dose PET denoising, noise levels in the training input images have a substantial impact on the model performance. The proposed personalized denoising strategy utilized two training sets to overcome the drawbacks introduced by each individual network and provided a series of denoised results for clinical reading.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Biomedical Engineering, Yale University, United States of America
| | - Hui Liu
- Department of Radiology and Biomedical Imaging, Yale University, United States of America
- Department of Engineering Physics, Tsinghua University, People's Republic of China
- Key Laboratory of Particle&Radiation Imaging, Tsinghua University, People's Republic of China
| | - Niloufar Mirian
- Department of Radiology and Biomedical Imaging, Yale University, United States of America
| | - Sijin Ren
- Department of Radiology and Biomedical Imaging, Yale University, United States of America
| | - Varsha Viswanath
- Department of Radiology, University of Pennsylvania, United States of America
| | - Joel Karp
- Department of Radiology, University of Pennsylvania, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, United States of America
| | - Chi Liu
- Department of Biomedical Engineering, Yale University, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, United States of America
| |
Collapse
|
5
|
Ho Shon I, Reece C, Hennessy T, Horsfield M, McBride B. Influence of X-ray computed tomography (CT) exposure and reconstruction parameters on positron emission tomography (PET) quantitation. EJNMMI Phys 2020; 7:62. [PMID: 33034791 PMCID: PMC7547057 DOI: 10.1186/s40658-020-00331-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022] Open
Abstract
Background The CT of PET CT provides diagnostic information, anatomic localisation and attenuation correction (AC). When only AC is required, very lose dose CT is desirable. CT iterative reconstruction (IR) improves image quality with lower exposures however there is little data on very low dose IR CT for AC of PET. This work assesses the impact of CT exposure and reconstruction algorithm on PET voxel values. Method An anthropomorphic torso phantom was filled with physiologically typical [18]F concentrations in heart, liver and background compartments. A 17-mm-diameter right lung “tumour” filled with [18]F was included (surrounding lung contained no 18[F]). PET was acquired followed by 24 CT acquisitions with varying CT exposures (15–50 mAs, 80–120 kVp, pitch 0.671 or 0.828). Each CT was reconstructed twice using filtered back projection (FBP) or IR and these used for AC of PET. The reference PET reconstruction (RR) used CT acquired at 50 mAs, 120 kVp, pitch 0.828, IR, all others were test PET reconstructions (TR). Regions of interest (ROIs) were drawn in the liver, soft tissue and over “tumour” on each TR and compared with the RR. Voxel values in each TR were compared to the RR using a paired t test and by calculating which and what proportion of voxels in each TR differed by a quantitatively significant difference (QSD) from the RR. Results TRs reconstructed using lower dose CTs underestimated mean and maximum ROI activity relative to the RR; greater with IR than FBP. Once CT dose index (CTDI) increased to 1 mGy, differences were less than QSD. On voxel analysis, all TRs were significantly different to the RR (p < 0.0001). TRs reconstructed at the lowest CT exposure with IR had 6% of voxels that differed by greater than QSD. Differences were reduced with increasing CTDI and FBP reconstruction. Voxels which exceeded the QSD were spatially localised to regions of high activity, interfaces between different attenuation and areas of CT beam hardening. Conclusions Very low dose CT exposures are feasible for accurate PET AC. Scanner- and reconstruction-specific validation should be employed prior very low dose CT AC for PET.
Collapse
Affiliation(s)
- Ivan Ho Shon
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Level 2 Campus Centre, Barker Rd, Randwick, 2031, NSW, Australia. .,Prince of Wales Clinical School, UNSW Medicine, Kensington, NSW, 2025, Australia. .,Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Missenden Rd, Camperdown, NSW, 2050, Australia.
| | - Christopher Reece
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Level 2 Campus Centre, Barker Rd, Randwick, 2031, NSW, Australia
| | - Thomas Hennessy
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Level 2 Campus Centre, Barker Rd, Randwick, 2031, NSW, Australia
| | - Megan Horsfield
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Level 2 Campus Centre, Barker Rd, Randwick, 2031, NSW, Australia
| | - Bruce McBride
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Level 2 Campus Centre, Barker Rd, Randwick, 2031, NSW, Australia
| |
Collapse
|
6
|
Bertolini V, Palmieri A, Bassi MC, Bertolini M, Trojani V, Piccagli V, Fioroni F, Cavuto S, Guberti M, Versari A, Cola S. CT protocol optimisation in PET/CT: a systematic review. EJNMMI Phys 2020; 7:17. [PMID: 32180029 PMCID: PMC7076098 DOI: 10.1186/s40658-020-00287-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose Currently, no consistent guidelines for CT scans used within PET/CT examinations are available. This systematic review provides an up-to-date overview of studies to answer the following questions: What are the specific CT protocols used in PET/CT? What are the possible purposes of requiring a CT study within a PET/CT scan? Is the CT protocol obtained from a dosimetric optimisation study? Materials and method PubMed/MEDLINE, Cochrane Library, Embase and Scopus were systematically searched for relevant studies in accordance with the PRISMA statement. The literature search was conducted from January 2007 until June 2019. Data derived from studies were standardized in order to reduce possible biases, and they were divided into clinically homogeneous subgroups (adult, child or phantom). Subsequently, we divided the CT protocol intents into 3 types (anatomic localization only, attenuation correction only and diagnostic purpose). A narrative approach was used to summarise datasets and to investigate their heterogeneity (due to medical prescription methodology) and their combination in multiseries CT protocols. When weighted computed tomography dose index (CTDIw) was available, we calculated the volumetric computed tomography dose index (CTDIvol) using the pitch value to make the results uniform. Eventually, the correlation between protocol intents and CTDIvol values was obtained using a Kruskal–Wallis one-way ANOVA statistical test. Result Starting from a total of 1440 retrieved records, twenty-four studies were eligible for inclusion in addition to two large multicentric works that we used to compare the results. We analyzed 87 CT protocols. There was a considerable range of variation in the acquisition parameters: tube current–time product revealed to have the most variable range, which was 10–300 mAs for adults and 10–80 mAs for paediatric patients. Seventy percent of datasets presented scans acquired with tube current modulation, 9% used fixed tube current and in 21% of them, this information was not available. Dependence between mean CTDIvol values and protocol intent was statistically significant (p = 0.002). As expected, in diagnostic protocols, there was a statistically significant difference between CTDIvol values of with and without contrast acquisitions (11.68 mGy vs 7.99 mGy, p = 0.009). In 13 out of 87 studies, the optimisation aim was not reported; in 2 papers, a clinical protocol was used; and in 11 works, a dose optimisation protocol was applied. Conclusions According to this review, the dose optimisation in PET/CT exams depends heavily on the correct implementation of the CT protocol. In addition to this, considering the latest technology advances (i.e. iterative algorithms development), we suggest a periodic quality control audit to stay updated on new clinical utility modalities and to achieve a shared standardisation of clinical protocols. In conclusion, this study pointed out the necessity to better identify the specific CT protocol use within PET/CT scans, taking into account the continuous development of new technologies.
Collapse
Affiliation(s)
- V Bertolini
- Medical Physics Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - A Palmieri
- Nuclear Medicine Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - M C Bassi
- Medical Library, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - M Bertolini
- Medical Physics Unit, Azienda USL-IRCCS, Reggio Emilia, Italy.
| | - V Trojani
- Medical Physics Unit, Azienda USL-IRCCS, Reggio Emilia, Italy.,Medical Physics Specialization School, Università degli Studi di Bologna, Bologna, Italy
| | - V Piccagli
- Medical Physics Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - F Fioroni
- Medical Physics Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - S Cavuto
- Research and Statistics Infrastructure, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - M Guberti
- Health Care Professionals Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - A Versari
- Nuclear Medicine Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - S Cola
- Nuclear Medicine Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| |
Collapse
|
7
|
Gullberg GT, Shrestha UM, Seo Y. Dynamic cardiac PET imaging: Technological improvements advancing future cardiac health. J Nucl Cardiol 2019; 26:1292-1297. [PMID: 29388118 PMCID: PMC6068005 DOI: 10.1007/s12350-018-1201-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Grant T Gullberg
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., Ste 350, San Francisco, CA, 94143-0946, USA.
| | - Uttam M Shrestha
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., Ste 350, San Francisco, CA, 94143-0946, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., Ste 350, San Francisco, CA, 94143-0946, USA
| |
Collapse
|
8
|
Abstract
Nuclear medicine has a central role in the diagnosis, staging, response assessment and long-term follow-up of neuroblastoma, the most common solid extracranial tumour in children. These EANM guidelines include updated information on 123I-mIBG, the most common study in nuclear medicine for the evaluation of neuroblastoma, and on PET/CT imaging with 18F-FDG, 18F-DOPA and 68Ga-DOTA peptides. These PET/CT studies are increasingly employed in clinical practice. Indications, advantages and limitations are presented along with recommendations on study protocols, interpretation of findings and reporting results.
Collapse
|
9
|
Azizi AA, Slavc I, Theisen BE, Rausch I, Weber M, Happak W, Aszmann O, Hojreh A, Peyrl A, Amann G, Benkoe TM, Wadsak W, Kasprian G, Staudenherz A, Hacker M, Traub-Weidinger T. Monitoring of plexiform neurofibroma in children and adolescents with neurofibromatosis type 1 by [ 18 F]FDG-PET imaging. Is it of value in asymptomatic patients? Pediatr Blood Cancer 2018; 65. [PMID: 28771999 DOI: 10.1002/pbc.26733] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/20/2017] [Accepted: 07/02/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE About 10% of patients with neurofibromatosis type 1 (NF-1) develop malignant peripheral nerve sheath tumours (MPNST) mostly arising in plexiform neurofibroma (PN); 15% of MPNST arise in children and adolescents. 2-[18 F]fluoro-2-deoxy-d-glucose ([18 F]FDG)-PET (where PET is positron emission tomography) is a sensitive method in differentiating PN and MPNST in symptomatic patients with NF-1. This study assesses the value of [18 F]FDG-PET imaging in detecting malignant transformation in symptomatic and asymptomatic children with PN. METHODS Forty-one patients with NF-1 and extensive PN underwent prospective [18 F]FDG imaging from 2003 to 2014. Thirty-two of the patients were asymptomatic. PET data, together with histological results and clinical course were re-evaluated retrospectively. Maximum standardised uptake values (SUVmax) and lesion-to-liver ratio were assessed. RESULTS A total of 104 examinations were performed. Mean age at first PET was 13.5 years (2.6-22.6). Eight patients had at least one malignant lesion; four of these patients were asymptomatic. Two of four symptomatic patients died, while all patients with asymptomatic malignant lesions are alive. All malignant tumours could be identified by PET imaging in both symptomatic and asymptomatic patients. All lesions judged as benign by [18 F]FDG imaging and clinical judgment were either histologically benign if removed or remained clinically silent during follow-up. SUVmax of malignant and benign lesions overlapped, but no malignant lesion showed FDG uptake ≤3.15. Asymptomatic malignant lesions were detected with a sensitivity of 100%, a negative predictive value of 100% and a specificity of 45.1%. CONCLUSION Malignant transformation of PN also occurs in asymptomatic children and adolescents. Detection of MPNST at early stages could increase the possibility of oncologically curative resections.
Collapse
Affiliation(s)
- Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Benjamin Emile Theisen
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Happak
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Oskar Aszmann
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Azadeh Hojreh
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gabriele Amann
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas M Benkoe
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Anton Staudenherz
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Fahey FH, Goodkind A, MacDougall RD, Oberg L, Ziniel SI, Cappock R, Callahan MJ, Kwatra N, Treves ST, Voss SD. Operational and Dosimetric Aspects of Pediatric PET/CT. J Nucl Med 2017; 58:1360-1366. [PMID: 28687601 DOI: 10.2967/jnumed.116.182899] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/05/2017] [Indexed: 01/04/2023] Open
Abstract
No consistent guidelines exist for the acquisition of a CT scan as part of pediatric PET/CT. Given that children may be more vulnerable to the effects of ionizing radiation, it is necessary to develop methods that provide diagnostic-quality imaging when needed, in the shortest time and with the lowest patient radiation exposure. This article describes the basics of CT dosimetry and PET/CT acquisition in children. We describe the variability in pediatric PET/CT techniques, based on a survey of 19 PET/CT pediatric institutions in North America. The results of the survey demonstrated that, although most institutions used automatic tube current modulation, there remained a large variation of practice, on the order of a factor of 2-3, across sites, pointing to the need for guidelines. We introduce the approach developed at our institution for using a multiseries PET/CT acquisition technique that combines diagnostic-quality CT in the essential portion of the field of view and a low-dose technique to image the remainder of the body. This approach leads to a reduction in radiation dose to the patient while combining the PET and the diagnostic CT into a single acquisition. The standardization of pediatric PET/CT provides an opportunity for a reduction in the radiation dose to these patients while maintaining an appropriate level of diagnostic image quality.
Collapse
Affiliation(s)
- Frederic H Fahey
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts .,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Alison Goodkind
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | - Robert D MacDougall
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | - Leah Oberg
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | - Sonja I Ziniel
- Section of Pediatric Hospital Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado; and
| | - Richard Cappock
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | - Michael J Callahan
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Neha Kwatra
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - S Ted Treves
- Department of Radiology, Harvard Medical School, Boston, Massachusetts.,Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Stephan D Voss
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Brady SL, Shulkin BL. Dose optimization: a review of CT imaging for PET attenuation correction. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0232-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Gelfand MJ, Clements C, MacLean JR. Nuclear Medicine Procedures in Children: Special Considerations. Semin Nucl Med 2016; 47:110-117. [PMID: 28236999 DOI: 10.1053/j.semnuclmed.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nuclear medicine imaging in children is best accomplished when a child-friendly environment is provided for patients and parents. An approach that minimizes patient anxiety and fear is described. International guidelines for administered activity should be used to minimize absorbed radiation doses from radiopharmaceuticals. CT exposure parameters may be reduced to pediatric best practice for diagnostic CT and further reduced when CT images are needed only for localization purposes.
Collapse
Affiliation(s)
- Michael J Gelfand
- Section of Nuclear Medicine, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH.
| | - Crysta Clements
- Section of Nuclear Medicine, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH
| | - Joseph R MacLean
- Section of Nuclear Medicine, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
13
|
Sibille L, Chambert B, Alonso S, Barrau C, D’Estanque E, Al Tabaa Y, Collombier L, Demattei C, Kotzki PO, Boudousq V. Impact of the Adaptive Statistical Iterative Reconstruction Technique on Radiation Dose and Image Quality in Bone SPECT/CT. J Nucl Med 2016; 57:1091-5. [DOI: 10.2967/jnumed.115.164772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/24/2016] [Indexed: 11/16/2022] Open
|
14
|
JOURNAL CLUB: A Comprehensive Risk Assessment Method for Pediatric Patients Undergoing Research Examinations Using Ionizing Radiation: How We Answered the Institutional Review Board. AJR Am J Roentgenol 2015; 204:W510-8. [DOI: 10.2214/ajr.14.13892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|